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Abstract

We develop a measure for evaluating the performance
of generative networks given two sets of images. A pop-
ular performance measure currently used to do this is the
Fréchet Inception Distance (FID). FID assumes that images
featurized using the penultimate layer of Inception-v3 fol-
low a Gaussian distribution, an assumption which cannot
be violated if we wish to use FID as a metric. However,
we show that Inception-v3 features of the ImageNet dataset
are not Gaussian; in particular, every single marginal is not
Gaussian. To remedy this problem, we model the featurized
images using Gaussian mixture models (GMMs) and com-
pute the 2-Wasserstein distance restricted to GMMs. We
define a performance measure, which we call WaM, on two
sets of images by using Inception-v3 (or another classifier)
to featurize the images, estimate two GMMs, and use the re-
stricted 2-Wasserstein distance to compare the GMMs. We
experimentally show the advantages of WaM over FID, in-
cluding how FID is more sensitive than WaM to impercep-
tible image perturbations. By modelling the non-Gaussian
features obtained from Inception-v3 as GMMs and using a
GMM metric, we can more accurately evaluate generative
network performance.

1. Introduction

Generative networks, such as generative adversarial net-
works (GANs) [17] and variational autoencoders [24],
model distributions implicitly by trying to learn a map from
a simple distribution, such as a Gaussian, to the desired
target distribution. Using generative networks, one can
generate new images [7, 22, 23, 21, 24], superresolve im-
ages [26, 39], solve inverse problems [5], and perform a host
of image-to-image translation tasks [20, 41, 40]. However,
the high dimensionality of an image distribution makes it
difficult to model explicitly, that is, to estimate the moments
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of the distribution via some parameterization. Just estimat-
ing the covariance of a distribution requires p(p+1)

2 param-
eters, where p is the feature dimension. For this reason,
modelling distributions implicitly, using transformations of
simple distributions, can be useful for high dimensional
data. Since the generator network is typically nonlinear,
the explicit form of the generated distribution is unknown.
Nonetheless, these generative models allow one to sample
from the learned distribution.

Because we only have access to samples from these gen-
erative networks, instead of explicit probability densities,
evaluating their performance can be difficult. Several ways
of evaluating the quality of the samples drawn from gen-
erative networks [6] have been proposed, the most popular
of which is the Fréchet Inception distance (FID) [19]. FID
fits Gaussian distributions to features extracted from a set
of a real images and a set of GAN-generated images. The
features are typically extracted using the Inception-v3 clas-
sifier [36]. These two distributions are then compared using
the 2-Wasserstein [38, 37] metric. While FID has demon-
strated its utility in providing a computationally efficient
metric for assessing the quality of GAN-generated images,
our examination reveals that the fundamental assumption of
FID—namely, that the underlying feature distributions are
Gaussian—is invalid. A more accurate model of the un-
derlying features will capture a more comprehensive and
informative assessment of GAN quality.

In this paper, we first show that the features used to cal-
culate FID are not Gaussian, violating the main assumption
in FID (Section 3). As we depict in Figure 1, this can result
in an FID value of 0 even when the data distributions are
completely different. This happens because FID only cap-
tures the first two moments of the feature distribution and
completely ignores all information present in the higher or-
der moments. Thus, FID is biased toward artificially low
values and invariant to information present in the higher or-
der moments of the featurized real and generated data.

Thus, we propose a Gaussian mixture model
(GMM) [29] for the features instead for several rea-
sons. First, GMMs can model complex distributions and
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Figure 1: The FID score between each pair of the distributions shown above is zero although they are clearly different distributions. This
is because Equation (1) is only defined for Gaussians, and FID treats any input distribution as Gaussian, even if it is not. We plot one
dimensional distributions here for visualization purposes, but the FID score will remain zero even if we extend these distributions to their
high dimensional isotrophic counterparts. All that is required for the FID score between two distributions to be zero is that their first two
moments match. Figure 1a is the only Gaussian distribution. Figures 1b and 1d are Gaussian mixtures with two components, Figure 1c is
a uniform distribution, and 1e is a Laplace distribution. We show that GMMs can fit these distributions easily in Figure 2 in Appendix C.

capture higher order moments. In fact, any distribution
can be approximated arbitrarily well with a GMM [12].
Second, GMMs are estimated efficiently on both CPU and
GPU. Third, there exists a Wasserstein-type metric for
GMMs [12] (Section 4) which allows us to generalize FID.
We use this newly developed metric from optimal transport
to construct our generative model evaluation metric, WaM.

We show that WaM is not as sensitive to visually imper-
ceptible noise as FID (Section 5). This is important because
we do not want our evaluations metrics to vary widely be-
tween different generated datasets if we cannot visually see
any difference between them. Since GMMs can capture
more information than Gaussians, WaM more accurately
identifies differences between sets of images and avoids the
low score bias of FID. We therefore reduce the issue of FID
being overly sensitive to various noise perturbations [6] by
modelling more information in the feature distributions. We
test perturbation sensitivity using additive isotropic Gaus-
sian noise and perturbed images which specifically attempt
to increase the feature means using backpropagation [28].
The ability of WaM to model more information in the fea-
ture distribution makes it a better evaluation metric than FID
for generative networks.

2. Related work
2.1. Wasserstein distance

A popular metric from optimal transport [37, 38] is the
p-Wasserstein metric. Let X be a Polish metric space with
a metric d. Given p ∈ (0,∞) and two distributions P and
Q on X with finite moments of order p, the p-Wasserstein
metric is given by

Wp(P,Q) =

(
inf
γ

∫
X×X

d(x, y)pdγ(x, y)

) 1
p

where the infimum is taken over all joint distributions γ of
P and Q. Different values of p yield different metric proper-
ties; in image processing, the 1-Wasserstein metric on dis-
crete spaces is often used and called the earth mover dis-
tance [33]. The 2-Wasserstein metric [15, 30] is often used
when comparing Gaussians since there exists a closed form
solution. The formula

W2
2 (N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥22 (1)

+ Tr(Σ1) + Tr(Σ2)− 2Tr
((

Σ
1
2
1 Σ2Σ

1
2
1

) 1
2

)
is used to calculate the Fréchet Inception distance.

2.2. FID and variants

The Fréchet Inception distance (FID) [19] is a perfor-
mance measure typically used to evaluate generative net-
works. In order to compare two sets of images, X1 and
X2, they are featurized using the penultimate layer of the
Inception-v3 network to get sets of features F1 and F2. For
ImageNet data, this reduces the dimension of the data from
3 × 224 × 224 = 150,528 to 2048. These features are as-
sumed to be Gaussian, allowing Equation (1) to be used to
obtain a distance between them.

There are several ways that FID has been improved. One
work has shown that FID is biased [11], especially when it
is computed using a small number of samples. They show
that FID is unbiased asymptotically and show how to esti-
mate the asymptotic value of FID to obtain an unbiased esti-
mate. Others have used a network different from Inception-
v3 to evaluate data that is not from ImageNet; for example,
a LeNet-like [25] feature extractor can be used for MNIST.
In this work we focus on several different ImageNet fea-
ture extractors because of their widespread use. Modelling
ImageNet features has been improved due to a conditional
version of FID [35] which extends FID to conditional dis-
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tributions, and a class-aware Fréchet distance [27] which
models the classes with GMMs. In this work, we do not
consider conditional versions of FID, but our work can be
extended to fit such a formulation in a straightforward man-
ner. Moreover, we use GMMs over the feature space rather
than one component per class as is done in the class-aware
Fréchet distance.

The kernel Inception distance [2] is calculated by map-
ping the image features to a reproducing kernel Hilbert
space and then using an unbiased estimate of maximum
mean discrepancy to calculate a distance between sets of
images. We compare to KID in Appendix E.

Another related metric is called WInD [13]. WInD uses a
combination of the 1-Wasserstein metric on discrete spaces
with the 2-Wasserstein metric on Rp. For this reason, it is
not a p-Wasserstein metric in Rp or between GMMs. For
example, if P and Q are a mixture of Dirac delta func-
tions, then the WInD distance between them becomes the
1-Wasserstein distance. However, if P and Q are Gaus-
sian, then the WInD distance between them becomes the
2-Wasserstein distance. Moreover, if P and Q are arbi-
trary GMMs, the relationship between WInD and the p-
Wasserstein metrics is not clear. This means that WInD
can alternate between the 1-Wasserstein and 2-Wasserstein
distance depending on the input distributions. In this pa-
per, we focus on using a metric which closely follows the
2-Wasserstein distance as is currently done with FID.

2.3. 2-Wasserstein metric on GMMs: MW2

A closed form solution for the 2-Wasserstein distance be-
tween GMMs is not known. This is because the joint dis-
tribution between two GMMs is not necessarily a GMM.
However, if we restrict ourselves to the relaxed problem
of only considering joint distributions over GMMs, then
the resulting 2-Wasserstein distance of this new space is
known. The restricted space of GMMs is quite large, since
GMMs can approximate any distribution to arbitrary pre-
cision given enough mixture components. So given two
GMMs, P and Q, we can calculate

MW2
2(P,Q) = inf

γ

∫
X×X

d(x, y)2dγ(x, y)

where the infimum is over all joint distributions γ which
are also GMMs. Constraining the class of joint distribu-
tions is a relaxation that has been done before [3] due to the
difficulty of considering arbitrary joint distributions. This
metric, MW2, appears in a few different sources in the lit-
erature [9, 8, 10] and has been studied theoretically [12];
recently, implementations of this quantity have emerged.1

The practical formulation of this problem is done as fol-
lows. Let P =

∑K0

i=1 πiνi and Q =
∑K1

j=1 αjµj be two

1https://github.com/judelo/gmmot

GMMs with Gaussians νi, µj for i ∈ {1, . . . ,K0}, j ∈
{1, . . . ,K1}. Then, we have that

MW2
2(P,Q) = min

γ

∑
ij

γijW2
2 (νi, µj) (2)

where γ is taken to be the joint distribution over
the two categorical distributions

[
π1 . . . πK0

]
and[

α1 . . . αK1

]
; hence, γ in this case is actually a matrix.

Thus, MW2 can be implemented as a discrete optimal trans-
port plan and efficient software exists to compute this [16].

MW2 is a great candidate for modelling the distance
between GMMs for several reasons; most importantly, it
is an actual distance metric. Since we are restricting the
joint distribution to be a GMM, we see that MW2 must be
greater than or equal to the 2-Wasserstein distance between
two GMMs. Moreover, MW2 clearly approximates the 2-
Wasserstein metric; there are bounds showing how close
MW2 is to W2 [12]. It is also computationally efficient to
compute because it can be formulated as a discrete optimal
transport problem, making it practical. The strong theoreti-
cal properties and computational efficiency of MW2 make it
a prime candidate to calculate the distance between GMMs.

3. Inception-v3 has Non-Gaussian features on
ImageNet

3.1. Non-Gaussian features can differ and have zero
FID

The calculation of FID assumes that features from the
penultimate layer of Inception-v3 [36] are Gaussian. This
layer average pools the outputs of several convolutional lay-
ers which are rectified via the ReLU activation. Though an
argument can be made for why the preactivations of the con-
volutional layers are Gaussian (using the central limit the-
orem), the rectified and averaged outputs are not. In fact,
they are likely to be averages of rectified Gaussians [1]. Al-
though these features are high dimensional and cannot be
visualized, we plot the histograms of a randomly selected
feature extracted with Inception-v3, ResNet-18, ResNet-50,
and ResNeXt-101 (32×8d) in Figure 2. We construct these
histograms using the 50,000 images in the ImageNet vali-
dation dataset. We see that none these randomly selected
features appear Gaussian.

If the Gaussian assumption of FID is false, one can
achieve low FID values while having drastically different
distributions, as shown on Figure 1. This is true in part be-
cause FID only considers the first two moments of the dis-
tributions being compared; differences in skew and higher
order moments are not taken into account in the FID calcu-
lation. This can cause FID to be extremely low when the
distributions being compared are quite different.
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Figure 2: Histograms showing non-Gaussianity of randomly chosen features from the ImageNet validation dataset featurized by ResNet-
18, ResNet-50, ResNeXt-101 (32×8d), and Inception-v3. They are non-negative because these features are passed through a ReLU layer
and then average pooled; for this reason, we have a spike around 0. These histograms are empirical distributions.

3.2. ImageNet features are not Gaussian

Testing if Inception-v3 features are Gaussian is not
trivial because they are 2048-dimensional. Even if each
marginal distribution appears Gaussian, we cannot be sure
that the joint distribution is Gaussian. However, if the
marginals are not Gaussian, this implies that original dis-
tribution is not Gaussian. Therefore, we conducted a
series of Kolmogorov–Smirnov hypothesis tests [14], a
statistical nonparametric goodness-of-fit test that verifies
whether an underlying probability distribution, in our case
the marginals, differs from a Gaussian distribution.

We calculated features from the entire ImageNet vali-
dation dataset using ResNet-18, ResNet-50, ResNeXt-101
(32×8d), and Inception-v3. For each set of features, we
then tested each marginal using the Kolmogorov–Smirnov
tests with the hypothesis that the features come from a nor-
mal distribution. Using a p-value of 0.01, the test found that
100% of the marginals fail to pass the hypothesis. This con-
firms, with high certainty, that neither the marginals nor the
whole feature distribution is Gaussian.

Since the features of Inception-v3 are not Gaussian, we
have a few options. The first option is to use features be-
fore the average pooling layer and ReLU operation because
these features may actually be Gaussian. However, these
features are extremely high dimensional (64 × 2048 =
131,072) and thus very hard to estimate accurately. Al-
ternatively, we can remove the ReLU operation, but this
would distort the features by removing the nonlinearity that
is so critical to deep networks. Another option we have
is to use a different network for feature extraction; how-
ever, most networks which perform very well on ImageNet
have high dimensionality convolutional features followed
by ReLU and average pooling, e.g., ResNet-18, ResNet-
50, and ResNeXt-101 (32×8d). Moreover, trying to obtain
Gaussian features is not a general solution because even
if the training data has Gaussian features, new data may
not. Therefore, we decided to model these non-Gaussian

features using Gaussian mixture models which can capture
information past the first two moments of a distribution.

4. WaM — Model details

4.1. A Gaussian mixture model can learn more com-
plex distributions

In this work we use the Gaussian mixture model (GMM)
to model non-Gaussian features. GMMs are a generaliza-
tion of Gaussian distributions (i.e., when the number of
components equal 1) and hence we can generalize FID us-
ing the formulas discussed in Section 2.3. Moreover, any
distribution can be approximated to arbitrary precision us-
ing a GMM [12]. Estimation of GMM parameters are
also computationally efficient and have been studied thor-
oughly [4, 29]. Most importantly, we can calculate the dis-
tance between GMMs using equation 2.

Before modelling the image features with GMMs, we
transform them using a simple element-wise natural loga-
rithm transformation; i.e., x′ = ln(x) for features x. This
squashes the peak and make the data easier to model [29]
although it is still not easily modeled by just one Gaussian
distribution.

We calculate our performance metric for generative
models by using the MW2 [12] metric for GMMs on GMMs
estimated from extracted features of images. The procedure
is summarized as follows. We first pick a network, such as
Inception-v3, to calculate the features. These features are
then used to estimate a GMM with K components. We do
this for real data and for generated data. We then calcu-
late the FID of each combination of components, one from
the real data GMM and one from the generated data GMM.
Then, we solve a discrete optimal transport problem using
the 2-Wasserstein distance squared as the ground distances
to obtain WaM. We use n = 50,000 samples because this
was shown to be an approximately unbiased [11] estimate
of FID. We call our metric WaM since it is a Wasserstein-
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Figure 3: AIC curves for features used for picking the number of mixture components K. We choose K = 10 for ResNet-18, K = 40
for both ResNet-50 and ResNeXt-101 (32×8d), and K = 15 and Inception-v3. The black line is the AIC for a Gaussian, indicating that
GMMs fit the feature distribution better than Gaussians.

type metric on GMMs of image features.
We fit the GMM to the data using the expectation maxi-

mization algorithm implemented in scikit-learn [32] and py-
cave2. We model the features with full covariance matrices
so that we are truly generalizing FID. One can fit diagonal
or spherical covariance matrices if speed is required, but
this will yield simpler GMMs. We considered several GPU
implementations of GMM fitting instead of the scikit-learn
CPU implementation. However, the sequential nature of the
expectation maximization algorithm caused the run times to
be similar for GPU and CPU algorithms.

4.2. Using different networks

In addition to using Inception-v3 for feature extrac-
tion, we also use ResNet-18, ResNet-50, and ResNeXt-101
(32×8d) trained on ImageNet. For each network, we use
the penultimate layer for feature extraction, as was done
originally for Inception-v3. We use ResNet-18 because its
features are only 512-dimensional and hence can be calcu-
lated faster than Inception-v3. ResNet-50 performs better
than ResNet-18 and so we included it in some of our exper-
iments. Finally, ResNeXt-101 (32×8d) achieves the highest
accuracy in the ImageNet classification task of all the pre-
trained classifiers on Pytorch [31].

4.3. Picking K and fitting the GMM

When modelling features, we must pick the number of
components we choose to have in our GMM. If we pick
K = 1 (and use Inception-v3 as our feature extractor), then
we just calculate FID. The more components we pick, the
better our fit will be. However, if we pick K to be too
large, such as K ≥ N , then we may overfit in the sense
that we can have each component centered around single
data points. This is clearly not desirable, so we fit all of our
GMMs with a maximum of K = 50 components.

We use the Akaike information criterion (AIC) to choose
K since likelihood criteria are well suited for density es-

2https://github.com/borchero/pycave

k 5 10 15 20 25 30

GMM Fitting 51.1 83.3 78.3 99.8 143.2 139.2
WaM Calc 17.4 32.2 47.1 60.3 74.6 86.9

Table 1: Average number of seconds it takes to fit a GMM and
calculate WaM on one GPU. This makes WaM approximately 2
minutes slower than FID.

timation [29] as compared with cross validation for clus-
tering. However, calculating AIC for multiple components
will take significant computation time and power if done
every time one wants to calculate WaM. For this reason,
we pick a specific K based on the ImageNet validation
set. A value for K which models the ImageNet valida-
tion dataset well should be a good K for modelling simi-
lar image datasets. As shown in Figure 3, the AIC curves
have varying shapes but all beat the baseline AIC of a Gaus-
sian (the black line). We use the kneed method [34] for our
choice of K (using S = 0.5 in the official implementation 3)
for the ResNet-18, ResNet-50, ResNeXt-101 (32×8d), and
Inception-v3 features. In the calculation of the knee, we ig-
nore the first few points of the plots because desirable knees
lie in the convex part of the plot, not the concave part.

Since GMMs have more parameters, they are computa-
tionally more expensive to train than simply modelling the
data as a Gaussian. However, we use GMM training pro-
cedures that take advantage of GPU parallelization4. As
shown on Table 1, fitting a 20 component GMM only takes
approximately 100 seconds and calculating WaM takes an
additional 60 seconds. In these calculations, we compare to
a fixed reference dataset with precalculated parameters as
is typically done. From empirical observations, FID takes
about 20 seconds to compute, making WaM only 140 sec-
onds, or about 2 minutes, slower.

3https://github.com/arvkevi/kneed
4https://github.com/borchero/pycave
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5. Experiments
In these experiments we find that WaM performs better

than both FID and KID. The KID experiments are in Ap-
pendix E.We also show that both FID and WaM track with
human perception in Appendices A and B.

5.1. Targeted perturbations — WaM captures more
information than FID

The purpose of this experiment is to show that WaM can
capture more information than FID by implicitly capturing
higher order moments. Although features extracted from
classifiers are not Gaussian, we do not have a perfect model
for them. In fact, it is difficult to come up with distributions
of features without images to start with. Thus, we start with
a set of images, perturb them in order to change their first
and second moments, then calculate WaM and FID on the
perturbed images. Since WaM is a generalization of FID,
the perturbed images will likely affect both WaM and FID.
However, since WaM can capture more information than
FID on the feature distributions, we hypothesize that WaM
will not be as affected as FID.

We construct these perturbed sets of images by trying to
maximize the following losses

L(µ) = ∥µ− µ0∥22 (3)
L(Σ) = ∥Σ−Σ0∥F (4)

L(µ,Σ) =
1

2

(
∥µ− µ0∥22 + ∥Σ−Σ0∥F

)
(5)

L(Σ) = Tr(Σ) + Tr(Σ0)− 2Tr
((

Σ
1
2Σ0Σ

1
2

) 1
2

)
(6)

using the Fast Gradient Sign Method (FGSM) [18], where
µ0 and Σ0 are the fixed first and second moment of the
ImageNet training data. In addition we adversarially per-
turb FID and report our findings in more detail in Appendix
D.In Figure 4 we show how the mean perturbation using
Equation (3) affects FID significantly more than WaM even
though there are no visual differences.

To calculate FID or WaM, we must compare two sets of
images; thus, we always compare to the ImageNet training
set [7]. This allows us to calculate the FID and WaM of
the ImageNet training set against real images from the Im-
ageNet validation set, generated images from BigGAN [7],
and perturbed images from each. We compare to real im-
ages because we want our metrics to work well with the
most realistic images possible, given the continuously im-
proving nature of GANs. We used 50,000 images for doing
all the comparisons and the whole training set for the ref-
erence. To produce the adversarial images, we extracted
the features from all the 50,000 ImageNet validation im-
ages, then ran FGSM with an ϵ = 0.01 and batch size of
64 until we perturbed all 50,000 of our target images (e.g.,
ImageNet validation set). This means that the maximum

difference per pixel is 0.25%. During training we calcu-
lated the gradients that maximize the losses above between
the features of a batch of 64 images and the features of the
ImageNet training set.

Comparing FID and WaM is difficult because they are
different metrics with different scales. For this reason, we
must normalize them when comparing. Thus, we define
RFID to be the ratio of the FID of the perturbed images
over the FID of the original images. Hence, RFID shows
how much FID has increased due to the perturbation. Sim-
ilarly, we define RWaM to be the ratio of WaM squared of
the perturbed images over WaM squared of the original im-
ages. FID is typically reported as the 2-Wasserstein squared
distance, so we square WaM so that it is also a squared dis-
tance. Then we define R = RFID

RWaM
to be the ratio for these

two increases. Thus, for R > 1 we have that FID increased
faster than WaM due to perturbation.

When we perturb images generated from BigGAN [7]
or the ImageNet training data we cannot visually perceive
a difference, as shown in Figure 4. However, for the Big-
GAN images, FID increases by a factor of RFID = 2.77
while WaM only increases by a factor of RWaM = 1.12.
This difference is significantly more evident with real im-
ages drawn from the ImageNet training dataset. We see that
the FID score after perturbation increases by RFID = 12.74
times. Since WaM only increases by RWaM = 1.18 times,
we see that FID increased R = 10.78 times more than WaM
for an imperceptible, but targeted, perturbation. That is an
extremely large sensitivity to noise that human eyes cannot
see. A metric which reflects perceptual quality perfectly
would not be affected whatsoever by these perturbations.
Neither FID nor WaM are perfect, but WaM’s lower sensi-
tivity to visually imperceptible perturbation is better aligned
with the objective of assessing perceptual quality in images.

Even though these perturbations are targeted to specifi-
cally change the first two moments of the data, we note that
WaM is still affected by these perturbations. This is because
WaM can capture more moments of the data than FID. More
specifically, WaM can learn a Gaussian distribution (e.g., if
all the components are the same), yet FID and WaM yield
different results in this experiment, implying that the fea-
tures are not modeled well by FID and benefit from the ad-
ditional information captured by WaM.

5.2. Random perturbations

In this section we show that WaM is also less sensitive
than FID to additive isotropic Gaussian noise. We do this
by corrupting images generated from BigGAN and the Im-
ageNet training dataset by adding isotropic Gaussian noise
with standard deviation σ ∈ {0.01, 0.05, 0.1, 0.2, 0.5} and
then calculating their features. Samples of how these noisy
images compare to the original are shown in Figures 5
and 6. In these experiments, we use ResNet-18 to extract

284



Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.71

WaM2 = 378.37

FID = 154.19

WaM2 = 424.29

FID = 3.66

WaM2 = 237.05

FID = 46.63

WaM2 = 280.02

RFID = 2.77

RWaM = 1.12

R = 2.47

RFID = 12.74

RWaM = 1.18

R = 10.78

Figure 4: Samples of images showing targeted perturbations which target the feature means, as defined on Equation (3). The two original
images above are randomly selected from a set of 50,000 images generated by BigGAN and a set of 50,000 images of the ImageNet
validation dataset. We cannot visually perceive the difference between the original and perturbed images, despite the datasets from which
they were selected clearly demonstrating a drastic change in FID. The FID, WaM, and R values were calculated using Inception-v3.

original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

FID(orig) 24.14 24.14 24.14 24.14 24.14
FID(pert) 24.37 27.10 33.55 51.10 114.94
WaM2(orig) 504.30 504.30 504.30 504.30 504.30
WaM2(pert) 539.54 516.75 628.68 748.65 1328.01

RFID 1.01 1.12 1.39 2.12 4.76
RWaM 1.07 1.02 1.25 1.48 2.63
R 0.94 1.10 1.11 1.43 1.81

Figure 5: R values for BigGAN-generated images using additive isotropic Gaussian noise showing that FID is slightly more sensitive than
WaM to noise perturbations of generated images. The noise perturbations in this experiment are all greater in magnitude than the targeted
perturbations in Section 5.1. The original image above was randomly selected from a set of 50,000 images generated by BigGAN. The
FID, WaM, and R values were calculated using ResNet-18.

the features. The ϵ = 0.01 used in Section 5.1 corresponds
to approximately σ = 0.0014, meaning that the additive
random noise in Figures 5 and 6 perturbs the images much
more than the targeted noise in Figure 4.

We see that FID and WaM perform similarly when cal-

culated using noisy BigGAN generated images, but WaM
is still significantly more robust than FID (see Figure 5).
Moreover, FID skyrockets when calculated using ImageNet
training data. This is likely due to FID not being able to
capture the differences between the ImageNet training and
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original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

FID(orig) 3.61 3.61 3.61 3.61 3.61
FID(pert) 5.07 21.79 52.30 120.05 322.84
WaM2(orig) 208.45 208.45 208.45 208.45 208.45
WaM2(pert) 219.49 316.06 549.03 1081.28 4007.29

RFID 1.41 6.04 14.49 33.26 89.45
RWaM 1.05 1.52 2.63 5.19 19.22
R 1.34 3.98 5.50 6.41 4.65

Figure 6: R values for real images (ImageNet validation data) using additive isotropic Gaussian noise showing that FID is significantly
more sensitive than WaM to noise perturbations of real images. The noise perturbations in this experiment are all greater in magnitude than
the targeted perturbations in Section 5.1. The original image above was randomly selected from a set of 50,000 images of the ImageNet
validation dataset. In contrast to Figure 5, we see that FID is more sensitive to these perturbations when the images look more realistic.
The FID and WaM values were calculated using ResNet-18.

validation set. One can justly assume that both datasets are
sampled from the same distribution; however, we are not
comparing the distributions from which they are sampled.
We are comparing the two sets of images from the train-
ing and validation set, which are not the same. Therefore,
FID’s inability to model the correct distribution of features
causes it to become extremely sensitive to this noise, even
when it is barely visually perceptible. This sensitivity of
FID to noise has been noted before [19, 6]. FID is affected
R = 5.50 times as much as WaM when the noise is barely
visible (σ = 0.1), making WaM much more desirable to use
in noisy contexts (see Figure 6).

A good metric for evaluating generative network perfor-
mance should be able to capture the quality of generated
images at all stages. FID does not do this well. FID is sensi-
tive to noise perturbations, especially when the images look
realistic; hence, R is much larger for the ImageNet training
data than it is for the BigGAN generated images. As gener-
ative networks improve, we must use more information (not
just the first and second moment) from the feature distribu-
tion in order to accurately evaluate generated samples.

6. Conclusions

We generalize the notion of FID by modeling image fea-
tures with GMMs and computing a relaxed 2-Wasserstein

distance on the distributions. Our proposed metric, WaM,
allows us to accurately model more complex distributions
than FID, which relies on the invalid assumption that image
features follow a Gaussian distribution. Moreover, we show
that WaM is less sensitive to both imperceptible targeted
perturbations that modify the first two moments of the fea-
ture distribution and imperceptible additive Gaussian noise.
This is important because we want a performance metric
which is truly reflective of the perceptual quality of images
and will not vary much when visually imperceptible noise
is added. We can use WaM to evaluate networks which gen-
erate new images, superresolve images, solve inverse prob-
lems, perform image-to-image translation tasks, and more.
As networks continue to evolve and generate more realis-
tic images, WaM can provide a superior model of the fea-
ture distributions, thus enabling more accurate evaluation of
extremely-realistic generated images.

Acknowledgements
Rice University affiliates were partially supported by

NSF grants CCF-1911094, IIS-1838177, and IIS-1730574;
ONR grants N00014-18-12571, N00014-20-1-2534, and
MURI N00014-20-1-2787; AFOSR grant FA9550-18-1-
0478; and a Vannevar Bush Faculty Fellowship, ONR grant
N00014-18-1-2047.

286



References
[1] Maxime Beauchamp. On numerical computation for the dis-

tribution of the convolution of n independent rectified gaus-
sian variables. Journal de la Société Française de Statistique,
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Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo
Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham

Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain
Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python
optimal transport. Journal of Machine Learning Research,
22(78):1–8, 2021.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NIPS), pages 2672–
2680, 2014.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in Neural Information Processing Systems
(NIPS), pages 6626–6637, 2017.

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017.

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2019.

[23] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and im-
proving the image quality of StyleGAN. arXiv preprint
arXiv:1912.04958, 2019.

[24] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[25] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541–551,
1989.

[26] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017.

[27] Shaohui Liu, Yi Wei, Jiwen Lu, and Jie Zhou. An improved
evaluation framework for generative adversarial networks.
arXiv preprint arXiv:1803.07474, 2018.

[28] Alexander Mathiasen and Frederik Hvilshøj. Fast fr\’echet
inception distance. arXiv preprint arXiv:2009.14075, 2020.

[29] Geoffrey McLachlan and David Peel. Finite Mixture Models.
John Wiley & Sons, Inc., 1 edition, 10 2000.

[30] Ingram Olkin and Friedrich Pukelsheim. The distance be-
tween two random vectors with given dispersion matrices.
Linear Algebra and its Applications, 48:257–263, 1982.

287



[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
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Alexei A Efros. Generative visual manipulation on the nat-
ural image manifold. In European conference on computer
vision, pages 597–613. Springer, 2016.

[41] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

288


