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Figure 1: Results generated by our Restorable Arbitrary Style Transfer (RAST) architecture. The content image is shown in
the top-left corner. The style images are shown in the top-right corner of stylized images.

Abstract

Arbitrary style transfer aims to reproduce the target im-
age with the artistic or photo-realistic styles provided. Even
though existing approaches can successfully transfer style
information, arbitrary style transfer still faces many chal-
lenges, such as the content leak issue. Specifically, the em-
bedding of artistic style can lead to content changes. In this
paper, we solve the content leak problem from the perspec-
tive of image restoration. In particular, an iterative archi-
tecture is proposed to achieve the Restorable Arbitrary Style
Transfer (RAST), which can realize transmission of both
content and style information through multi-restorations.
We control the content-style balance in stylized images by
the accuracy of image restoration. In order to ensure ef-
fectiveness of the proposed RAST architecture, we design
two novel loss functions: multi-restoration loss and style
difference loss. In addition, we propose a new quanti-
tative evaluation method to measure content preservation

performance and style embedding performance. Compre-
hensive experiments comparing with state-of-the-art meth-
ods demonstrate that our proposed architecture can pro-
duce stylized images with superior performance on content
preservation and style embedding.

1. Introduction

Arbitrary style transfer [37, 39, 5] is a long-standing im-
age processing topic, which aims to render an image with
referenced arbitrary styles. The styles can be either artistic
or photo-realistic. Since Gatys et al. [13] proposed using
convolutional neural networks to solve artistic style trans-
fer, neural style transfer [9, 22, 46] has attracted significant
attention as an application of computer vision in the field
of art. Recently, transformer-based approaches [6, 51] were
also involved in neural style transfer by applying the self-
attention mechanism and positional encoding. Although ex-
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isting algorithms can achieve the delivery of styles, the ar-
bitrary style transfer task still has challenges maintaining a
balance between content preservation and style embedding.
In artistic style transfer, it is challenging to preserve the con-
tent details during artistic style embedding due to style dif-
ferences. Excessive style embedding can result in changes
in content information. For photo-realistic style transfer,
the architecture pays more attention to content preservation,
which can result in a lack of delicate patterns [20].

We propose a novel framework that tackles the prob-
lem of content-style balance from the perspective of image
restoration. During the style transformation process, most
of the style features do not change the content information.
Thus, embedding these style features does not impact con-
tent restoration. However, the embedding of certain style
features can results in content leak [1], which can lead to
the failure of image restoration. Our purpose is to embed
more style features into content features without impacting
the restoration of content and style images.

Differing from existing methods that minimize content
and style differences between input images and stylized im-
ages, we achieve style transfer by minimizing the difference
between restored images and input images and maximizing
the style difference between the stylized images and the in-
put images. This approach can avoid the interference caused
by different content information or style information during
feature evaluation. Through extensive experiments, both
qualitative and quantitative results demonstrate that our pro-
posed framework has better performance on content preser-
vation and style embedding. In addition, our framework can
restore the stylized images back to the input images more
accurately. The contributions of the this paper are summa-
rized below:

• We propose a quadruple-cycle framework to support
iterative learning so that Restorable Arbitrary Style
Transfer (RAST) can be achieved. The RAST frame-
work can realize transmission of both content and style
information through multiple restorations. Content
transmission can guarantee the performance of content
preservation. Style transmission can ensure the perfor-
mance of style consistency.

• We propose multi-restoration loss and style difference
loss which are extended from perceptual loss. In par-
ticular, the style difference loss can enable our frame-
work to embed more style patterns that do not af-
fect restoration. The multi-restoration loss can achieve
content transmission and style transmission through
multi-restorations.

• We also propose a novel quantitative evaluation ap-
proach that measures the performance of content
preservation and style embedding from the perspective
of restoration.

The remainder of this paper is organized as below: Sec-
tion 2 reviews state-of-the-art style transfer methods and
indicates the difference between our proposed framework
and existing approaches. Section 3 introduces our proposed
RAST framework and related loss functions. Device infor-
mation and data arrangement are summarized in Section 4.
We also demonstrate the experimental results in this sec-
tion. We illustrate the effectiveness of our proposed RAST
framework by comparing it with eight state-of-the-art ap-
proaches. We evaluate performance using both qualitative
and quantitative measures.

2. Related Work

2.1. Image Style Transfer

Image style transfer has been an attractive research topic
since the 1990s. Originally, it was proposed as a stroke-
based rendering [17, 11] algorithm, which can add strokes
on target images with objective guidance. Later on, it was
further explored as an image analogy [18, 42, 12] problem
to learn the transformation from paired images. Style trans-
fer can also be solved as an image filtering [49] problem
by utilizing Gaussian filters [14] and bilateral filters [45].
However, these methods can only learn low-level image fea-
tures, which cannot guarantee image structures.

In addition to traditional approaches, Gatys et al. [13]
proposed a neural-based style transfer approach, which uti-
lized a convolutional neural network to recombine content
features and style features from layers. It can achieve itera-
tive optimization with the support of the Gram matrix. In-
spired by Gatys et al., the feed-forward neural network [9,
22, 46] has been widely applied to solve style transfer tasks.
With the utilization of encoder-decoder architecture, many
transformation-based methods were proposed. The AdaIN
[21] approach proposed the adaptive instance normalization
layer to obtain the mean and variance of features. Based
on AdaIN, WCT [31] replaced variance by covariance uti-
lizing whitening and coloring, which was further improved
by OptimalWCT[35] with a more general closed-form so-
lution. Similarly, LST [30] proposed linear transformation
on cross-domain features for solving universal style trans-
fer. Furthermore, the transformation-based methods could
also be improved by neural flows [8, 19, 27]. ArtFlow [1]
utilized reversible neural flows, which could solve the con-
tent leak problem. In addition to the above transformation-
based approaches, image style transfer can also be solved by
patch-based methods [10, 29, 41]. StyleSwap [3] replaced
each activation patch of a content image by matched style
patches. Similarly, Avatar-net [41] proposed a patch-based
style decorator, which could use the pattern characteristics
to decorate the content features.

With the wide use of attention mechanism [47, 52],
attention-based methods [37, 7, 5] were involved in the
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style transfer field. By calculating the style attention on
feature spaces, SANet [37] could embed matched style
features onto content features. Considering features from
multiple layers, SANet combined local and global style
patterns. Furthermore, IEContraAST [2] explored SANet
as the backbone by involving internal-external learning
[38, 44] and contrastive learning [23, 39, 50]. With the ex-
ternal learning of a discriminator [15], IEContraAST could
learn human-aware style. Also, contrastive learning could
ensure the accuracy of content and style transmission. In ad-
dition, MANet [7] and MCCNet [5] were proposed employ-
ing multi-adaptation and multi-channel correlation tech-
niques respectively, which enhanced the performance of
feature fusion. AdaAttN [33] proposed an Adaptive Atten-
tion Normalization module, which can learn spatial atten-
tion from shallow and deep features. PAMA [36] proposed
progressive attentional manifold alignment, which could re-
position the style features dynamically by repeated atten-
tion operations. Furthermore, transformer-based methods
[6, 51, 34] were proposed in the style transfer field by using
self-attention mechanism and positional encoding. StyTr2

[6] proposed content-aware positional coding and modified
the transformer structure to fit a style transfer task. Simi-
larly, StyleFormer [51] modified transformer structure uti-
lizing a style bank and parametric composition, which could
guarantee the style transformation performance. TxST [34]
proposed a text-driven architecture, which could achieve
style transfer according to the text description.

2.2. Restoration-based Style Transfer

Restoration-based style transfer [55, 25, 4, 54] was first
employed by CycleGAN [55]. Similar to GAN-based
[15, 40, 28] approaches, it solved style transfer as a domain
adaption problem. Utilizing two generators and two dis-
criminators, CycleGAN could achieve bidirectional image
generation from domain A to B and B to A. With the use of
pixel-level consistency loss, the restored images could help
generators and discriminators to optimize the accuracy of
domain adaption. However, CycleGAN still suffered from
the geometry structure constraint. Specifically, the images
in domains A and B need to have similar geometrical struc-
tures. If the geometric structures are different, the adaption
performance of color and texture could not be guaranteed.
Similarly, DiscoGAN [25] involves restoration with learn-
ing cross-domain relations by double generators. Based on
CycleGAN, StarGAN [4] was proposed with a classification
module and domain classification loss, which could achieve
the restoration process by using a single generator. In addi-
tion to StarGAN, CAST [54] proposed a different solution
to replace the double generators from CycleGAN. It em-
ployed contrastive learning to involve multiple style images
and utilized a memory bank architecture [16] to store style
information, which could also achieve arbitrary style trans-

fer with a single generator.
In contrast, we propose a Restorable Arbitrary Style

Transfer (RAST) framework, which handles the content
leak issue from the perspective of image restoration. In-
stead of involving a classification module and style mem-
ory bank, the proposed RAST framework achieves multiple
restorations via iterative learning. By sharing the same pa-
rameters for the attention-based transfer block, our frame-
work can achieve bidirectional multi-restoration with the
same transfer block. Differing from CycleGAN, Disco-
GAN, StarGAN, and CAST, the proposed RAST frame-
work can achieve transmission of both content and style
information. Moreover, we propose multi-restoration loss
and style difference loss at the feature level to support our
RAST framework. Note that CycleGAN, DiscoGAN, Star-
GAN, and CAST are mainly guided by an adversarial pro-
cess to achieve domain adaption. However, our framework
is mainly guided by the restoration process to achieve the
delivery of content and style information.

3. Proposed Method

Previous arbitrary style transfer approaches usually suf-
fer from the content leak problem. In order to handle this
problem, the Restorable Arbitrary Style Transfer (RAST)
framework is proposed. Through multi-restoration of con-
tent and style images, our framework can not only achieve
transmission of content and style information but it also fil-
ters out the style features that interfere with image restora-
tion. To ensure effectiveness of the proposed framework,
we also design multi-restoration loss and style difference
loss to guide the learning process. The overview of our
framework is shown in Figure 2. In our transfer block, we
employ SANet [37] as the backbone, which can map the
correspondence between content feature map and style fea-
ture map semantically by calculating style attention. The
pre-trained VGG-19 network [43] is utilized as the encoder
to obtain feature maps. The decoder is a symmetric VGG-
19 network [21], which can decode feature maps into im-
ages. Apart from this, multi-scale discriminators [48] are
applied as external [2] discriminators to learn human-aware
style information.

3.1. Network Architecture

The main architecture of the proposed framework is
shown in Figure 2. Assuming T is the transfer block of the
proposed approach, the input images of T include a content
image Ic and a style image Is, and the output is the style
transfer image Io, which is a combination of the content
part of Ic and the style part of Is. Mathematically:

Io “ T pIc, Isq ” Ic
Is

ÝÑ Io, (1)
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Figure 2: Overview of the proposed Restorable Arbitrary Style Transfer (RAST) framework. It includes one transfer block,
which is utilized iteratively for stylization and restoration by sharing the same parameters. It also employs two external
discriminators D1 and D2, which can deal with realistic-to-artistic and artistic-to-realistic processes, respectively.

where Ic
Is

ÝÑ Io is defined as the notation of the process
of style transfer Io “ T pIc, Isq in the proposed approach,
which will be used in the remaining part of this section.

To the best of our knowledge, there is no golden standard
of what is content or style. Fortunately, in the proposed ap-
proach, we re-input the stylized image Io of the proposed
approach and the style of the content image, with the new
output expected to approach the original content image Ic,
when the transfer block works appropriately. Mathemati-
cally, this can be expressed as:

Ic
Is

ÝÑ T pIc, Isq “ Io
Ic

ÝÑ T pIo, Icq “ I1
c « Ic, (2)

where I1
c is the restored content image, which is supposed

to be close to the original content image Ic. In addition, we
can also restore the style image by using Is as the content
image and Io as the style image. The restored style im-
age I1

s is supposed to approach the original style image Is,
which is mathematically shown in Equation 3, where I1

s is
the restored style image which is supposed to be close to the
original style image Is. Similarly, when we switch Ic and
Is, we can in total get 4 different restored images, which are
supposed to be close to the original input images. Overall,
the multiple restored images of the proposed framework are
shown as follows:

Ic
Is

ÝÑ T pIc, Isq “ Io
Ic|Is
ÝÑ

$

&

%

T pIo, Icq “ I1
c « Ic

T pIs, Ioq “ I1
s « Is

Is
Ic

ÝÑ T pIs, Icq “ I1
o

Is|Ic
ÝÑ

$

&

%

T pI1
o, Isq “ I2

s « Is

T pIc, I
1
oq “ I2

c « Ic,

(3)

where I1
c, I2

c , I1
s and I2

s are restored content images and style
images respectively.

3.2. Loss Function

As discussed in Section 3.1, our framework can
achieve restorable arbitrary style transfer through a multi-
restoration process. To ensure the accuracy of the restora-
tion, we design the feature-level multi-restoration loss
Lmulti and style difference loss Ldiff to ensure feature con-
sistency and style embedding, respectively. We utilize per-
ceptual loss [22, 21] as the base functions to calculate the
feature difference. As shown in Equation 4, fs can calcu-
late the difference of style features by the mean and stan-
dard deviation of the feature maps, where ϕi represents the
ith layer of the VGG-19 network. Specifically, Relu1 1,
Relu2 1, Relu3 1, Relu4 1, and Relu5 1 layers are utilized
to capture style feature maps. E denotes the mean of the
feature maps and σ represents the standard deviation of the
feature maps. Besides, fc can calculate the difference of
content features as shown in Equation 5, where Relu4 1 and
Relu5 1 layers are employed to extract content features.

fspI1, I2q “

L
ÿ

i“1

}EpϕipI1qq ´ EpϕipI2qq}2

` }σpϕipI1qq ´ σpϕipI2qq}2

(4)

fcpI1, I2q “ }ϕ4 1pI1q ´ ϕ4 1pI2q}2

` }ϕ5 1pI1q ´ ϕ5 1pI2q}2 .
(5)

Based on the above functions, we design the multi-
restoration loss Lmulti, which can not only calculate the
feature difference between restored images and input im-
ages but also measure the differences among multi-restored
images.

Lmulti “ fcpI1
c, Icq ` fcpI2

s, Isq ` fspI1
s, Isq ` fspI2

c , Icq

`αrfcpI1
c, I

2
cq ` fspI1

c, I
2
cq ` fcpI1

s, I
2
sq ` fspI1

s, I
2
sqs.

(6)
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Figure 3: Training performance of proposed loss functions
after the initialization stage.

As shown in Equation 6, Lmulti first calculates the feature
difference between restored images I1

c|s, I2
c|s and input im-

ages Ic|s. Specifically, content feature difference through
restoration is calculated between I1

c and Ic, I2
s and Is. The

reason is that the content features in I1
c and I2

s are transmit-
ted from stylized images Io and I1

o instead of being provided
by input images directly. Similarly, style feature difference
is calculated between I1

s and Is, I2
c and Ic since the pro-

cess from Is to I1
s and the process from Ic to I2

c involve
style transmission. In addition to the feature loss caused by
the content and style transmission, Lmulti also calculates
the feature difference among multi-restored images. As
shown in Figure 2, our RAST architecture involves a multi-
restoration process. For each input image, two restored im-
ages are produced through content transmission and style
transmission, respectively. Through the visualization, we
observe that the restored image via content transmission is
slightly different from the restored image via style trans-
mission. Thus, we calculate the feature difference between
I1
c and I2

c , I1
s and I2

s . Considering the difference caused by
different transmission processes, our architecture can fur-
ther improve the accuracy of content transmission and style
transmission. We employ a hyper-parameter α to provide
a different weight to this feature difference caused by dif-
ferent transmission methods. As shown in Figure 4, higher
α values can lead to better feature consistency. Differing
from standard cycle loss [55], the overall multi-restoration
loss Lmulti can calculate the feature difference caused by
transmission while also taking into account the error caused
by different transmission methods, which can be used to re-
place the existing content loss and style loss in our architec-
ture. It is worth mentioning that the loss of content features
and style features are given equal weights.

In addition to the multi-restoration loss, we also design
the style difference loss. To avoid the stylized images con-

Content = 0.5 = 1 = 2 Style

Figure 4: Results of training with different hyper-
parameters of multi-restoration loss. The other weights are
the same as in Equation 8. The Batch Size is set to 4 for
60000 iterations.

Content Weight = 0.5 Weight = 1 Weight = 2 Style

Figure 5: Results of training with different weights of style
difference loss. The rest of the weights are the same as in
Equation 8. The Batch size is set to 4 for 75000 iterations.

verging to content images, we design the style difference
loss Ldiff to maximize the style difference between con-
tent images and stylized images. Specifically, we maximize
the style feature difference between Io and Ic, I1

o and Is.
The equation of style difference loss Ldiff is shown below.

Ldiff “ fspIo, Icq ` fspI1
o, Isq. (7)

The combination of style difference loss Ldiff and Lmulti

can promise the embedding of style features from style im-
ages. Style difference loss Ldiff can ensure the style fea-
tures in stylized images are different from the style features
in content images. Also, the calculation of style consis-
tency in Lmulti can guarantee that the embedded style fea-
tures originate from style images. The results of training
with different Ldiff weights are shown in Figure 5, where
higher weights of Ldiff can lead to a richer style in styl-
ized images. Since the purpose of style difference loss is to
maximize the difference of style features, we expect an in-
creasing value during the training process as shown in Fig-
ure 3. To ensure convergence of the final loss function, we
take the reciprocal value of style difference loss Ldiff in
the final loss.

In addition to the above proposed loss, we also include
three existing loss functions: identity loss [37], contrastive
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Style Ours CAST PAMA StyTr2 IEAST ArtFlow SANet AdaINMCCNetContent

Figure 6: Stylized results for comparisons. The 1st and 2nd columns represent the style images and content images, respec-
tively. The 3rd to 11th columns are stylized results from the proposed architecture and state-of-the-art approaches. The 1st

to 6th rows reveal the artistic style transfer. Photo-realistic style transfer are shown in the 7th and 8th rows.

loss [2] and external-adversarial loss [2]. Identity loss
Lidentity was proposed by SANet [37] to achieve the iden-
tity mapping, where the content and the style originated
from the same image. As proved by SANet, identity loss
can optimize content preservation and improve the accu-
racy of style embedding. In addition, we include con-
trastive learning by utilizing contrastive loss Lcontra [2].
Taking batch size of 4 as an instance, each content image
matches two different style images so that two results with
the same content information can be obtained. Similarly,
each style image can produce two results sharing the same
style. By evaluating the feature difference of associated re-
sults, the contrastive loss can learn stylization-to-stylization
relations. Finally, we involve the internal-external learn-
ing by utilizing external-adversarial loss Ladv [2], which
can learn human-aware style information. Differing from
IEAST [2], we include two multi-scale discriminators[48]

D1 and D2, which can deal with realistic-to-artistic and
artistic-to-realistic processes respectively.

The final loss function Lfinal can be summarized as be-
low, where the loss weights are set to λ1 “ 2, λ2 “ 2,
λ3 “ 1, λ4 “ 5 and λ5 “ 0.3.

Lfinal “ λ1Lmulti ` λ2L´1
diff`

λ3Lidentity ` λ4Ladv ` λ5Lcontra.
(8)

Note that we replace the existing content loss and style
loss by the proposed multi-restoration loss Lmulti and style
difference loss Ldiff so that the restorable style transfer
can be achieved. Utilizing the proposed loss functions,
the effectiveness of the proposed RAST architecture can be
promised. In addition to the guidance of two proposed loss
functions, three state-of-the-art loss functions can further
optimize the style transfer performance from different as-
pects.
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Method Ours CAST PAMA StyTr2 IEAST ArtFlow MCCNet SANet AdaIN
LPIPS (Ic,I1

c) Ó 0.187 0.324 0.266 0.260 0.328 0.411 0.320 0.455 0.434
LPIPS (Is,I1

s) Ó 0.250 0.423 0.305 0.312 0.309 0.184 0.178 0.436 0.454
Lc (Ic,I1

c) Ó 2.021 4.203 3.594 3.646 4.786 5.549 5.406 7.325 6.952
Ls (Is,I1

s) Ó 0.787 2.624 1.857 1.222 1.052 0.985 1.334 1.272 1.927
Inference Time (ms/img) Ó 6 8 10 538 6 280 9 6 12

Table 1: Quantitative comparisons with state-of-the-art approaches.

4. Experimental results
To demonstrate the style transfer performance of the

RAST architecture, we compare with eight state-of-the-
art approaches, including CAST [54], PAMA [36], StyTr2

[6], IEAST [2], Artflow [1], MCCNet [5], SANet [37] and
AdaIN [21]. Qualitative and quantitative comparison results
are organized in Sections 4.2 and 4.3, respectively.

4.1. Implementation details

Our proposed RAST architecture is trained with MS-
COCO [32] as the content dataset and WikiArt [24] as the
style dataset. In the training phase, the smaller dimension of
training images are rescaled to 512 and we randomly crop
to 256 ˆ 256 patches. We adopt the Adam optimizer [26]
with the learning rate set to 0.0001. The batch size is set
to 8 for 160000 iterations on a single Nvidia RTX A6000
GPU. For the testing stage, we randomly choose 10000 con-
tent images and 10000 style images from the test sets of
MS-COCO and WikiArt, respectively. We resize images to
512ˆ512 so that the evaluation metric can be applied to the
same size. The testing stage is finished on a single Nvidia
GeForce RTX 2080 GPU. In addition, we utilize widely-
used image pairs for visualization involving both artistic
style transfer and photo-realistic style transfer. Note that
our architecture can deal with testing images of any size.

4.2. Qualitative Comparisons

In Figure 6, we show the qualitative results of our
RAST method against eight state-of-the-art approaches. To
demonstrate the arbitrary style transfer performance, we in-
clude comparisons of both artistic style transfer (the 1st-
6th rows) and photo-realistic style transfer (the 7th and 8th

rows). To ensure the diversity of experiments, we utilize
different types of content images involving portrait, archi-
tecture, animal, still life, and landscape. We also adopt style
images with various styles. From the comparisons, we ob-
serve that AdaIN [21] sometimes generates unreliable re-
sults with weak preservation on local details (the 1st, 2nd,
4th, 5th and 6th rows) and produces undesired patterns (the
2nd, 5th, 6th , 7th and 8th rows). SANet [37] brings repet-
itive patterns (the 1st, 2nd, 3rd, 4th, 6th and 8th rows) and
visual artifacts (the 3rd and 7th row). Similar to SANet,

MCCNet [5] also suffers from the halation artifact around
contours (the 3rd, 4th, 6th and 7th rows). Artflow [1] pro-
duces unexpected patterns near the edge of the images (the
1st, 2nd, 3rd, 4th, 6th and 8th rows). IEAST [2] applies
repeated patterns in stylized images (the 2nd, 3rd and 6th

rows) and faces color distortion problem (the 1st, 5th, 7th

and 8th rows).
The above problems have been partially addressed by re-

cent approaches. However, recently proposed methods still
suffer from some existing problems, such as the deficiency
of delicate patterns and poor content preservation. Insuf-
ficient content preservation can lead to the loss of content
details and can make the results blurred. From Figure 6, we
can observe that StyTr2 [6] sometimes fails to preserve the
content information (the 3rd, 5th, 6th and 7th rows). It also
suffers from the color distortion problem (the 6th and 8th

rows). PAMA is still not free from the content preservation
headache (the 1st and 7th rows). Also, it suffers from insuf-
ficient style embedding (the 2nd, 6th and 8th rows). Simi-
larly, CAST [54] cannot produce content-preserved results
(the 1st, 5th and 7th rows), which leads to content changes
and makes the results blurred. In addition, it faces the color
distortion issue for photo-realistic style transfer (the 1st, 6th

and 8th row). By contrast, our RAST architecture achieves
restorable arbitrary style transfer via multiple restorations,
which involves the transmission of both content informa-
tion and style information. Thus, RAST can achieve supe-
rior content preservation performance with promising style
embedding performance compared to other state-of-the-art
methods.

4.3. Quantitative Comparisons

In addition to qualitative comparisons, we also involve
quantitative comparisons. In state-of-the-art methods, there
is no golden metric to evaluate the style transfer perfor-
mance between input images and stylized images. The rea-
son is that the style information between content images Ic
and stylized images Io are different. The content informa-
tion between style images Is and stylized images Io are
also distinct. Due to this limitation, we propose a novel
approach to measure the content preservation performance
and style consistency performance indirectly by evaluating
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Method Ours CAST PAMA StyTr2 IEAST ArtFlow MCCNet SANet AdaIN
Content Preservation Score Ò 4.374 3.134 3.110 3.362 3.444 2.854 3.064 2.624 2.174

Style Consistency Score Ò 3.570 2.962 3.080 3.188 3.162 2.770 3.062 3.076 2.416
Preference Score Ò 3.860 2.982 2.998 3.210 3.332 2.672 3.054 2.810 2.186

Table 2: User study results.

the feature difference between input images Ic|s and re-
stored images I1

c|s. Specifically, we measure the content
preservation performance by evaluating the feature differ-
ence between content images Ic and restored content im-
ages I1

c since Ic and I1
c share the same style features. Also,

the content information in I1
c is transmitted from Ic follow-

ing the Ic Ñ Io Ñ I1
c process, which only involves con-

tent transmission. Similarly, style consistency performance
is measured by evaluating the difference between style im-
ages Is and restored style images I1

s, involving the same
content features. For the evaluation, we adopt Learned Per-
ceptual Image Patch Similarity (LPIPS) [53] and perceptual
loss [22] as evaluation metrics. The evaluation results of the
testing set (10000 image pairs) are shown in Table 1.

From the results, we can observe that the proposed
RAST framework can achieve superior content preserva-
tion performance for both LPIPS (the 2nd row) and content
loss Lc (the 4th row) evaluation metrics. PAMA and Stytr2

methods can also achieve promising content preservation.
The above results demonstrate that the multi-restoration
training indeed improves content consistency. The pro-
posed framework restricts the content changes caused by
style information, which can avoid the content leak issue.
In addition to content preservation, RAST can also achieve
promising style consistency performance, which ranks first
for style loss Ls (the 5th row) and ranks third for LPIPS
(the 3rd row). From the results, we can see that the combi-
nation of style difference loss Ldiff and style transmission
loss Ltrans´s can effectively make our framework achieve
promising style consistency. In addition, the ArtFlow ap-
proach can also achieve outstanding style consistency per-
formance with second ranking for both style loss and LPIPS
metric. In addition to content preservation and style consis-
tency, we also compare the inference time with state-of-the-
art approaches on the testing set. The time is calculated
from input images entering the model to returning stylized
results, excluding the process of loading and saving images.
From Table 1 (the 5th row), we can observe that SANet can
achieve outstanding style transfer speed. Our RAST frame-
work and IEAST method can also obtain similar results by
utilizing SANet as the backbone.

User Study. To further demonstrate the performance of
the proposed framework, we design a user study, which in-
cludes 20 sections. For each section, we show participants a

different image pair with labeling content and style image.
We present the stylized results of the proposed method and
eight state-of-the-art approaches in a nine-square grid. The
results are arranged randomly in the grid and the names of
methods are hidden from the participants. For each stylized
result, participants are asked to grade the content preserva-
tion performance, the style consistency performance, and
the overall performance, separately. The grading scale is
set from 1 (bad) to 5 (good). This way, participants can de-
cide the score for the current method after comparing the
results of the remaining eight methods. We collect 13500
scores in total from 25 participants. The average scores are
shown in Table 2, where the preference score represents the
overall performance. Comparing with Table 1, we can rec-
ognize that there are two outliers in the user study, IEAST
and CAST. The reason is that IEAST can result in some tiny
unexpected patterns, like the human eyes, which may not be
noticed during the user study process; however, these can
result in low scores. In addition, the CAST model produces
blurred results, which makes the evaluation results lower.
However, this situation may not capture attention during the
user study. Overall, we can conclude that our proposed ap-
proach can achieve comparable style transfer performance.

5. Conclusion

We proposed the Restorable Arbitrary Style Transfer
(RAST) architecture, which handles the content leak prob-
lem from the perspective of image restoration. Through
multi-restorations, we realized the transmission of both con-
tent and style information. Unlike previous methods that
minimize the content and style difference between the in-
put images and the stylized images, we focused on min-
imizing the difference between the restored images and
the input images and maximizing the style difference be-
tween the stylized images and the input images, with the
motivation of avoiding the interference caused by differ-
ent content information or style information. Furthermore,
two new loss functions including style difference loss and
multi-restoration loss were proposed to ensure the effective-
ness of the RAST architecture. Comprehensive experiments
demonstrated that the proposed RAST can achieve superior
style transfer performance with comparable content preser-
vation performance and promising style consistency perfor-
mance.
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