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Abstract

LiDAR 3D object detection models are inevitably biased
towards their training dataset. The detector clearly exhibits
this bias when employed on a target dataset, particularly
towards object sizes. However, object sizes vary heavily
between domains due to, for instance, different labeling
policies or geographical locations. State-of-the-art unsu-
pervised domain adaptation approaches outsource methods
to overcome the object size bias. Mainstream size adap-
tation approaches exploit target domain statistics, contra-
dicting the original unsupervised assumption. Our novel
unsupervised anchor calibration method addresses this lim-
itation. Given a model trained on the source data, we es-
timate the optimal target anchors in a completely unsuper-
vised manner. The main idea stems from an intuitive obser-
vation: by varying the anchor sizes for the target domain,
we inevitably introduce noise or even remove valuable ob-
ject cues. The latent object representation, perturbed by the
anchor size, is closest to the learned source features only
under the optimal target anchors. We leverage this observa-
tion for anchor size optimization. Our experimental results
show that, without any retraining, we achieve competitive
results even compared to state-of-the-art weakly-supervised
size adaptation approaches. In addition, our anchor cali-
bration can be combined with such existing methods, mak-
ing them completely unsupervised.

1. Introduction

Acquiring and labeling data for the training of 3D object
detectors requires considerable effort. The sheer size and
the underlying unorganized structure of point clouds make
this process cumbersome. Detecting objects in a point cloud
can be difficult even for humans since an object may con-
tain just a few points. Moreover, during labeling, an expert
will usually examine a single LiDAR frame from multiple
viewpoints to account for unavoidable occlusions and trun-

Figure 1: Box sizes, showing the domain gap across
datasets. Boxes are generated by a fully-supervised oracle
model trained on KITTI [8], Waymo [20], nuScenes [1] and
Lyft [11], respectively.

cations, usually switching the context between an image and
a point cloud. These interruptions substantially increase la-
beling time and, consecutively, labeling cost.

To mitigate the high labeling cost, our research commu-
nity is making immense advances in unsupervised 3D do-
main adaptation [15, 23, 31]. State-of-the-art approaches
typically rely on some variant of self-training [30, 31], input
transformation [21, 24, 27], feature alignment [35] and/or
tracking [7, 34]. These approaches share a common prob-
lem, initially reported by Wang et al. [23]: the discrepancy
between object sizes, as depicted in Figure 1, introduces a
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tremendous domain gap.
In 2D object detection, object sizes vary depending on

the distance of an object from a sensor. This naturally oc-
curring augmentation increases a detector’s robustness to-
wards size variation. In 3D object detection, however, the
size of an object does not correlate with the distance from
the sensor. Instead, it depends on where the dataset has been
acquired, e.g. on average, vehicles in the USA are larger
than the vehicles in Europe [23], or on the labeling policy,
e.g. Waymo Open Dataset [20] includes side mirrors of cars
in its annotations, whereas KITTI [8] does not.

Object detectors are commonly evaluated using the
Mean Average Precision (mAP) metric, which further uti-
lizes Intersection over Union (IoU) for ground truth match-
ing. In 2D detection, IoU is calculated given the area of
the predicted and ground truth bounding box, whereas in
3D, it is derived using the volumes of the predicted and the
ground truth cuboid. Given the additional dimension, the
overall influence of the incorrect size prediction leads to an
exponential accuracy decrease. This correlation makes 3D
detectors extremely volatile to changes in the object sizes.

Statistical Normalization (SN) [23] has become the stan-
dard approach for bridging the size gap. It attempts to shift
the source data statistics to the target statistics through de-
liberate scaling of the source annotations as a training aug-
mentation. Random Object Scaling (ROS) [31] strives to
overcome this size bias without directed scaling. Instead, it
substantially augments the ground truth boxes via a wider
range of scales. Nevertheless, both approaches exploit key
target domain insights, which are usually not available in
an unsupervised setting. First, they employ anchor sizes,
manually optimized for the target domain. Second, they
manually refine the magnitude of the augmentation scales.
Lastly, the stochastic nature of these approaches does not al-
low a deterministic checkpoint selection, but rather the best
performing one.

We propose SAILOR, a novel unsupervised anchor cal-
ibration pipeline which estimates optimal target anchors
given a pretrained source model. Our objective is to identify
target anchors under which the feature similarity between a
source and a target domain is maximized. We first establish
a reference feature database by gathering instance features
from the source domain. In the next phase, we iteratively
perturb the anchors by a small amount, and analogously
compute a target feature database. The fitness of the tar-
get feature database to the reference feature database pro-
vides a stochastic gradient, which we employ in a stochas-
tic optimization method. Our method achieves similar im-
provements as SN or ROS, but does not introduce additional
model parameters, does not require retraining, and does not
require any knowledge from the target domain at all.

Experimental results on the autonomous driving datasets
KITTI [8], Waymo [20], nuScenes [1] and Lyft [11] indicate

large performance gains with minimal effort. We demon-
strate that a simple exchange of the source anchors with our
optimized ones, leads to large precision gains on the tar-
get domain. Our method is competitive even with the pop-
ular weakly-supervised approaches for bridging the object
size domain gap, but costs only a fraction of the computa-
tion time, since we do not require retraining. Additionally,
our optimized anchors can also be used as an unsupervised
prior to extend weakly-supervised methods, turning them
into fully unsupervised approaches.

2. Related Work
3D Object Detection State-of-the-art 3D detectors con-
sist of a Region Proposal Network (RPN) followed by a de-
tection head. RPN first abstracts an input point cloud with
a feature extractor, which is commonly point-based [17],
voxel-based [18, 28] or a hybrid between these two [16].
Afterwards, at each discrete location of the abstracted
point cloud, RPN predicts an objectness probability and re-
gresses coarse bounding boxes. The magnitude of this re-
gression is either absolute [33] or relative to anchor val-
ues [5, 12, 16, 18, 28]. The anchors reduce the network’s
regression space in such a way that the predictions become
residuals from a matched anchor. The anchor values are
commonly derived from the training data and have to be
manually selected with care. The following detection head
refines such coarse predictions into the final predictions.

Unsupervised 3D Domain Adaptation A 3D detection
model trained on one dataset usually does not generalize
well to new, unseen data. The source and target dataset dif-
ference is commonly referred to as the domain gap. Unsu-
pervised domain adaptation aims to reduce the gap without
any additional annotations.

Style-transfer approaches lessen the gap in the input
space by transforming the target data into source-like data.
Wei et al. [24] demonstrate the generalization capabilities of
a model trained on dense data augmented by pseudo-sparse
point clouds derived from the original dense data. Drop-
ping LiDAR beams scales up with the size of a point cloud
since it is not a costly operation. However, it is ambiguous
to what extent the background transformation helps and if
it justifies a more complex conversion. Modifying just the
foreground objects by adding new points [21, 27] or reorga-
nizing the existing ones [13] saves computational resources
with a similar effect.

The sequential acquisition of autonomous driving
datasets allows exploiting temporal consistency for the
adaptation. Some self-training approaches [15, 29, 34]
refine per-frame detection via Multi Object Tracking
(MOT) [25] and are thus able to improve naı̈ve retraining by
reducing the false positive and negative rate. Even without
explicit tracking, aggregating several LiDAR frames into a
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common reference frame already leads to denser static ob-
jects. Detecting such objects is a trivial task for state-of-the-
art 3D detectors [3, 16, 28]. By propagating high-quality
detections to all aggregated frames, [22] generates pseudo
labels for even the more complex (sparse and static) sam-
ples. FAST3D [7] further extends this idea to moving ob-
jects, by leveraging scene flow [26] for aggregation.

Besides tracking and flow pitfalls, e.g. association, do-
main gap, etc., temporal information may not always be
available. Generating pseudo labels on a per-frame ba-
sis has also been beneficial for self-training [2]. Leverag-
ing the gradual improvement on the presented pseudo la-
bels, memory ensembles [30, 31] enhance the robustness
by cataloging the predictions during training. An auxiliary
loss [32, 35] can further reduce the inevitable noise induced
by the pseudo labels. Still, the self-training is going to am-
plify the noise. This is a well-known side effect called in-
ductive bias, which is generally resolved with the student-
teacher paradigm [10, 14].

The self-training approaches are not able to indepen-
dently overcome the object size bias induced by the source
data. The extent of the object size gap immensely influences
the performance of the final model. Therefore, state-of-the-
art self-training approaches explicitly utilize mechanisms to
mitigate the cross-domain size mismatch.

Overcoming Object Size Bias Mainstream methods ex-
ploit target domain knowledge to overcome the object size
bias. Wang et al. [23] propose employing the target do-
main statistics in two ways. Output Transformation (OT)
directly modifies a predicted bounding box size by adding
a residual. The difference between an average source and
a target sample defines this residual. Statistical Normal-
ization (SN) scales source ground truth boxes and points
inside during training. Analogously to OT, the scaled inten-
sity is derived from the source and target dataset statistics.
To avoid precise target domain statistics that are usually un-
available, Random Object Scaling (ROS) [31] implements
heavy size augmentation on the source ground truth objects.
However, increasing the network’s search space leads to a
frequent size prediction mismatch.

Contrary to the weakly-supervised approaches, we pro-
pose a completely unsupervised method, which specifically
optimizes a model’s anchors for the target domain. More-
over, our approach does not require retraining and thus costs
just a fraction of computational time. We achieve a simi-
lar effect as these weakly-supervised methods, since more
suitable target anchors alleviate the model’s extrapolation
efforts and implicitly provide improved detections.

3. Unsupervised Anchor Calibration
We consider a 3D detection model H( · |Θ) = D ◦

RPN , with a Region Proposal Network RPN and a de-

tection head D. Its parameters Θ are trained on a la-
beled source dataset S = {(P s

i ,Y
s
i )}

Ns
i=1, which con-

tains LiDAR point clouds P s and a respective set of la-
beled instances Y s. The target dataset T = {P t

i }
Nt
i=1,

however, contains only unlabeled point clouds. Be-
sides the trainable parameters, the model is addition-
ally defined via its hyperparameters. The anchors Ψ =
{(ψ(x), ψ(y), ψ(z), ψ(w), ψ(l), ψ(h), ψ(θ))} ⊂ Θ provide a
starting point for the regression head, where the network
predicts residuals relative to an anchor, instead of regressing
the absolute values. The anchors’ width, length and height
are usually handpicked to match the average size of anno-
tated objects from S.

The size discrepancy between objects in S and T in-
duces an apparent domain gap, as illustrated in Figure 1.
With our unsupervised anchor calibration, we adapt the
anchor sizes to the target dataset T without any supervi-
sion. As depicted in Figure 2, using a model H( · |Θ)
pretrained on the source data, we first construct a refer-
ence feature database (Section 3.1) by accumulating the
proposal feature vectors from the source domain S. Then,
we iteratively perturb the model’s anchor sizes by a small
amount ε, while leaving all other parameters unchanged
(ψ(x), ψ(y), ψ(z), ψ(w)+ε(w), ψ(l)+ε(l), ψ(h)+ε(h), ψ(θ))
and, analogous to the reference feature database, compute a
target feature database from T . The fitness of such a target
feature database to the source feature database (Section 3.2)
provides a stochastic gradient, which we utilize to adapt the
model’s anchor sizes (Section 3.3). Our approach yields an-
chors which are specifically tailored to the given model for
the target domain, without any retraining.

3.1. Reference Feature Database

Using the model H(· |Θ), pretrained on the source data
S, we first generate a reference feature database

Fs =
{
RPN(P s |Θ)δ[ĉ>τ ] | ∀P s ∈ S

}
. (1)

We select the RPN features of the frame P s where the re-
spective prediction score ĉ, obtained from the classification
head, exceeds a certain threshold τ . Ultimately, Fs is a la-
tent feature database of the source database samples.

Depending on the size of the source dataset, Fs can have
a large memory footprint. Therefore, to compresses a po-
tentially abundant reference feature database we fit a Gaus-
sian Mixture Model (GMM) to the data. A GMM consists
of K weighted Gaussian distributions, where the probabil-
ity of observing a sample f is defined as

p(f |Ω) =
K∑
i=1

ωi · N (f |µi,Σi), where (2)

N (f |µi,Σi) =
exp

(
− 1

2 (f − µi)
TΣ−1

i (f − µi)
)√

(2π)K |Σi|
. (3)
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Figure 2: Overview of SAILOR: Given a model H( · |Θ) with parameters Θ trained on the source data and anchors Ψ ⊂ Θ
optimized for the same data, we first extract a source feature database Fs by accumulating Region Proposal Network’s (RPN)
predictions. We then fit a Gaussian Mixture Model (GMM) parameters ΩFs to Fs using Expectation Maximization (EM) [4].
During anchor calibration on the target domain, using the same model, we iteratively introduce small noise ε to the source
anchors and extract a temporary target feature database F t

Ψ′ . We utilize a stochastic gradient ∇L, estimated from the fitness
L(F t

Ψ′ |ΩFs), to directly adapt the source anchors to the target domain. We neither perform any further adaption, nor require
any retraining.

Here, ωi weighs the ith Gaussian distribution, which is de-
fined by its mean vector µi and covariance matrix Σi. We fit
the GMM parameters ΩFs = {(ωi, µi,Σi)}Ki=1 to a source
feature database Fs using Expectation-Maximization [4].

3.2. Target Fitness Quantification

The reference probability model ΩFs describes ideal la-
tent instances, i.e. high-dimensional feature vectors that
are abstractions of a complete object without background
noise. The inference on the target data, using the source
model, will inevitably lead to predictions which include
background noise or do not contain the object completely.
However, we can reduce such noisy predictions by select-
ing adequate anchor sizes. In this section, we show how we
quantify the quality of the selected anchors.

Using the source model H( · |Θ), we compute the tar-
get database F t from the target dataset T , analogous to
Equation (1). However, during this inference, we ignore the
network’s size residual predictions (∆(w),∆(l),∆(h)) and
use only matched anchor sizes, i.e. (ψ(x) + ∆(x), ψ(y) +

∆(y), ψ(z) +∆(z), ψ(w), ψ(l), ψ(h), ψ(θ) +∆(θ)). This iso-
lates the influence of the selected anchors, because other-
wise, the consecutive regression stage of the detector would
obfuscate the changes.

To quantify the fitness of the anchors, we leverage the
joint probability density

p(F t |ΩFs) =
∏

ft
i∈Ft

p(f ti |ΩFs), (4)

where ΩFs are the parameters of the reference probability
model and the features f ti are independent and identically
distributed. To avoid numerical instabilities we do not ex-
plicitly employ the joint probability but instead use the per-
sample average log-likelihood

L(F t |ΩFs) =
1

|F t|
∑

ft
i∈Ft

log p(f ti |ΩFs). (5)

The sum of the logarithms is numerically stable and the car-
dinality normalization ensures independence of the number
of target features.
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Smaller values of L indicate unfit predictions, e.g. if tar-
get features include more background clutter or less object
cues compared to the source features, and is maximized
for anchors which are optimal for the target domain. We
present an experiment which demonstrates this behavior in
Figure 3.

3.3. Anchor Calibration

Using the reference feature database Fs and fitness
quantification L, we can now compute the optimal anchors
Ψ∗ for a model H( · |Θ) by optimizing

Ψ∗ = argmin
Ψ

−L(F t
Ψ |ΩFs), (6)

where Ψ∗ ⊂ Θ represents the optimal anchors for the target
dataset T . We outline our approach in Algorithm 1.

Algorithm 1 Pseudocode of our SAILOR method

Input: 3D detection model H( · |Θ) and anchors Ψ opti-
mized on a source dataset S; Labeled source S and unla-
beled target T dataset

Output: Optimized anchors Ψ∗ for T
Generate Fs ▷ Section 3.1
Fit GMM parameters ΩFs to Fs with EM
Ψ∗ = Ψ
while Termination criteria is not reached do

Randomly sample small ε
Ψ′ = Ψ∗ + ε ▷ Anchor size perturbation
Generate F t

Ψ′ ▷ Section 3.2
Update Ψ∗ with ∇L(F t

Ψ′ |ΩFs) ▷ Section 3.3
end while

Since Equation (6) is not differentiable w.r.t. the model
hyperparameters, we do not use standard gradient meth-
ods. Instead, we utilize Differential Evolution (DE) [19], a
stochastic optimization technique. At each iteration, given a
population vector, DE constructs a mutation vector. A trial
candidate is constructed in a crossover phase by mixing the
mutation vector with a candidate solution. If the fitness of
the trial candidate exceeds the current candidate solution, it
becomes the next candidate solution. This is repeated until
a convergence criterion is met.

To accelerate the optimization, we first perform a linear
sweep for each parameter separately. Figure 3 depicts an
example of this search. We freeze other anchor sizes, and
while varying a single parameter, assess the fitness at each
step. We use the parameter with the highest overall fitness
as the initial candidate solution for the following joint op-
timization phase. The reduced search space expedites the
final joint fine-tuning.

Starting from this initial candidate solution Ψ∗, we
jointly optimize the length, width and height. For this, we
generate the initial population vector by uniformly sampling

Figure 3: Comparing anchor fitness (Equation (5)) and Av-
erage Precision. The model is trained on Waymo [20],
whereas the fitness and AP are assessed on KITTI [8]. Here,
we fix width and height of the anchors and vary only the
length. The fitness is computed without any annotation in
the target domain and strongly correlates with the AP3D.
We denote ground truth Waymo and KITTI anchors in red
and green, respectively.

Np anchor values Ψ = {Ψi}
Np

i=1 , where the sampling range
is a percentage of the source anchor value. A mutation vec-
tor is constructed as

Ψ′ = Ψ0 + η · (Ψr1 −Ψr2), (7)

where Ψ0 is the population vector member with the best
fitness score, r1 and r2 are two randomly selected indices,
and η is the mutation amplitude constant. We terminate the
optimization when the loss converges or when we reach a
maximum number of iterations.

4. Experiments
We focus our evaluation on KITTI [8], Waymo [20] and

nuScenes [1], and include Lyft [11] for further generaliza-
tion evaluations. Inter-domain anchor calibration demon-
strates the capability, whereas intra-domain calibration ver-
ifies the correctness of our approach. The variety of the
data, e.g. sparse to dense (nuScenes ↔ Waymo) or a large
size gap (KITTI ↔ Waymo), faithfully represents an arbi-
trary use-case. The source and target data are the training
and validation splits of the datasets mentioned above, re-
spectively. We always perform the evaluation following the
evaluation protocol of the target dataset.

4.1. Comparison with the State-of-the-Art

To the best of our knowledge, there is no existing work
in the unsupervised domain to compare to. Therefore,
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Target

KITTI Waymo nuScenes

AP3D@R11 L1 AP mAP
Source Method Car / Pedestrian / Cyclist Vehicle / Pedestrian / Cyclist Car / Pedestrian / Bicycle

KITTI

Source Anchors 78.59 / 54.58 / 64.53 3.55 / 8.69 / 9.93 14.66 / 0.0 / 0.0

SN† - 2.80 / 2.05 / 1.65 20.33 / 0.0 / 0.0
OT† - 6.51 / 13.94 / 16.81 14.65 / 0.0 / 0.0

ROS† - 3.32 / 2.75 / 2.29 18.54 / 0.0 / 0.0
Target Anchors† - 11.69 / 10.40 / 12.15 15.88 / 0.0 / 0.0

Ours 77.79 / 55.49 / 63.52 8.26 / 8.87 / 9.52 16.12 / 0.0 / 0.0

Waymo

Source Anchors 23.94 / 59.99 / 52.32 74.84 / 71.59 / 66.49 32.45 / 17.99 / 0.0

SN† 24.11 / 63.51 / 52.83 - 34.05 / 17.24 / 0.0
OT† 38.79 / 53.31 / 61.82 - 37.40 / 19.99 / 0.0

ROS† 43.00 / 62.39 / 51.09 - 35.91 / 18.62 / 0.0
Target Anchors† 39.69 / 49.96 / 55.45 - 37.30 / 20.32 / 0.0

Ours 58.02 / 61.60 / 53.04 73.98 / 69.48 / 66.19 32.34 / 17.27 / 0.0

nuScenes

Source Anchors 26.37 / 10.37 / 22.90 29.59 / 2.99 / 2.66 59.93 / 11.03 / 0.23

SN† 33.67 / 31.67 / 14.29 34.48 / 2.34 / 4.08 -
OT† 36.42 / 18.15 / 8.84 31.37 / 8.22 / 0.13 -

ROS† 56.28 / 26.88 / 19.76 32.10 / 7.73 / 7.03 -
Target Anchors† 57.93 / 18.57 / 11.68 31.70 / 6.69 / 0.41 -

Ours 55.10 / 4.64 / 26.37 29.00 / 2.07 / 2.81 59.41 / 10.98 / 0.12

Table 1: Extensive comparison of Statistical Normalization (SN) [23], Output Transformation (OT) [23] and Random Object
Scaling (ROS) [31] with our method on popular autonomous driving datasets KITTI [8], Waymo [20] and nuScenes [1]. We
use the whole KITTI and nuScenes dataset for both training and evaluation and utilize 20% of Waymo v1.2 for training and
full evaluation dataset. The model is trained on the source data using the configuration as in OpenPCDet [6]. We always
evaluate the last checkpoint using the target dataset evaluation pipeline. For KITTI, we show moderate case of AP3D@R11
for Car / Pedestrian / Cyclist thresholded at 0.7, 0.5 and 0.5, respectively. We report L1 AP for Vehicle / Pedestrian / Cyclist
on Waymo, whereas for nuScenes, we provide mAP for the classes Car / Pedestrian / Bicycle. We mark weakly-supervised
approaches with †, since they require target object statistics.

we compare SAILOR1 with the widely adapted weakly-
supervised approaches that address the object size bias, i.e.
Statistical Normalization (SN) [23], Output Transformation
(OT) [23] and Random Object Scaling (ROS) [31].

For SN, we follow the original publication and set the
model anchors to the average of the source and target do-
main and scale the labeled source bounding boxes and
points inside using the difference between the statistics.
Similarly, ROS exploits this knowledge, but in a more
coarse way. Knowing that KITTI objects are smaller than
Waymo’s, we can apply the appropriate scaling for ROS
during the adaptation. We retrain both models according
to the source configuration. OT does not require training
but instead uses the source model and directly adds the dif-

1https://github.com/malicd/sailor

ference to the predictions. We refer the reader to the sup-
plementary material, where we list the exact anchor config-
uration for reproducibility.

During the evaluation, we directly employ the anchors
optimized by SAILOR. We do not perform any retrain-
ing whatsoever. Table 1 demonstrates the potential of
our method, given a Part-A2 source model. In the case
of Waymo → KITTI, we observe an improvement of 34
AP3D@R11 for the Car class, beating even the weakly-
supervised approaches by a large margin. We depict this im-
provement in Figure 4. Pedestrian and Cyclists are mostly
unchanged, except for a slight improvement, mainly due to
having similar anchors. We report similar behavior in the
nuScenes → KITTI experiment, where we observe an im-
provement of almost 28 AP3D@R11. We also note that the
slight precision increase for the Cyclists class stems from
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Task Method AP3D@R11

Waymo → Lyft

Source Anchors 49.88 / 37.17 / 25.62

SN† 44.96 / 33.98 / 17.00
OT† 51.58 / 37.96 / 15.32

ROS† 49.39 / 34.06 / 25.07
Target Anchors† 51.57 / 37.02 / 16.15

Ours 49.31 / 38.27 / 26.01

KITTI → Lyft

Source Anchors 20.61 / 13.94 / 14.24

SN† 28.27 / 13.36 / 10.81
OT† 20.83 / 16.83 / 10.40

ROS† 25.86 / 16.33 / 8.05
Target Anchors† 26.12 / 17.24 / 17.24

Ours 26.48 / 17.27 / 14.20

Table 2: Results of the adaptation tasks to Lyft. We report
AP3D@R11 for the classes Car / Pedestrian / Bicycle.

the significant height difference (due to different labeling
policies) between the two datasets.

In situations where a source model shows inferior
performance and the size domain gap is large, e.g.
KITTI → Waymo and KITTI → nuScenes, we still ac-
complish substantial relative gain. Calibrating KITTI an-
chors on Waymo, we achieve a relative improvement over
200%. This tremendous increase is significantly better than
the weakly-supervised SN and ROS, which even degrade
the performance slightly. Note that the KITTI → Waymo
scenario is well-known to be extremely challenging and
has thus been often neglected from evaluations, with very
few exceptions, e.g. [7]. The overall low performance on
KITTI → nuScenes stems from a small source dataset and
the sparsity of the nuScenes point clouds, where the detec-
tor struggles. Thus, there are only very few objects with
insufficient latent semantics to apply our method.

The datasets that share similar anchors, e.g.
Waymo ↔ nuScenes, do not exhibit a substantial change
in the overall evaluation score. Since SAILOR introduces
no additional hyperparameters, the weakly-supervised
approaches perform favorable in this scenario, as they
can exploit the target domain statistics. However, note
that similar improvements can also be achieved by fiercer
augmentation, as shown in [9].

Similarly, when our source and target data come from
the same dataset, i.e. the diagonal in Table 1, we report an
insignificant change in the results. We performed this addi-
tional experiment mainly as a sanity check.

To further demonstrate the generalization capabilities
of our method, we perform additional experiments on the
Lyft [11] dataset. Our findings, which we summarize in Ta-
ble 2, confirm our initial experiments. In cases where the
source and target anchors are similar, e.g. Waymo → Lyft,

Task Method AP3D@R11

Waymo → KITTI

SN† 24.11 / 63.51 / 52.83
ROS† 43.00 / 62.39 / 51.09

SN w/ SAILOR 22.31 / 55.68 / 38.96
ROS w/ SAILOR 39.82 / 60.40 / 48.61

nuScenes → KITTI

SN† 33.67 / 31.67 / 14.29
ROS† 56.28 / 26.88 / 19.76

SN w/ SAILOR 39.44 / 0.51 / 0.00
ROS w/ SAILOR 57.98 / 34.59 / 24.15

Table 3: SN and ROS become entirely unsupervised in
combination with SAILOR, otherwise they are weakly-
supervised and denoted with †. The results are the moderate
case for Car / Pedestrian / Cyclist classes.

we report slight performance gains. Additionally, when the
object size gap is large, e.g. KITTI → Lyft for class car,
we report increase of around 6 AP points. Similarly to
KITTI → nuScenes, we found that further improvement is
limited by an ineffective source model caused by a small
source dataset. However, due to sufficient density of the
Lyft point clouds (LiDAR with 64 beams), we do not ob-
serve any precision drop.

Moreover, we demonstrate that combining our method
with existing weakly-supervised approaches leads to com-
petitive results in a completely unsupervised manner. For
this, we replace the target statistics required by SN and ROS
by the anchor sizes calibrated with SAILOR. The results
in Table 3 show that this is well suited to make ROS fully
unsupervised, whereas for SN it works well for vehicles,
but is not suitable for pedestrians and cyclists. This issue
is due to SN, which is tailored explicitly to knowing the
target statistics and requires additional manual fine-tuning
(which we omitted due to the unsupervised setting of this
experiment) to achieve the best results. Note that we are
not interested in estimating the actual target domain object
sizes, but in estimating the optimal target domain anchors
for the given source model. Using these calibrated anchors
to guide ROS, our unsupervised ROS variant performs on
par with the weakly-supervised one, e.g. Waymo → KITTI,
or even better, e.g. nuScenes → KITTI.

4.2. Ablation Studies

We conduct our ablation experiments to investigate the
interaction between the components of our system, as well
as to study the vital points of our pipeline. We also indicate
the known caveats and demonstrate how we overcome them.

Joint Optimization We demonstrate the benefits of our
joint optimization in Table 4, which shows that linear search
already provides a decent performance. However, it opti-
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(a) Source only (b) SN (c) ROS (d) Ours

Figure 4: Qualitative comparison of source only, Statistical Normalization (SN) [23], Random Object Scaling (ROS) [31]
and our method on Waymo → KITTI case. We indicate the ground truth box in green and the predicted boxes in blue. The
object points, according to the ground truth annotation, are shown in orange. Best viewed on screen.

Task Method AP3D@R11

Waymo → KITTI
Source 23.94 / 59.99 / 52.32
LS 50.57 / 58.27 / 51.49
LS + DE 58.02 / 61.59 / 53.04

nuScenes → KITTI
Source 26.37 / 10.37 / 22.90
LS 36.85 / 10.61 / 25.35
LS + DE 55.10 / 4.64 / 26.37

Table 4: Detection performance w.r.t. the optimization strat-
egy for the classes Car / Pedestrian / Cyclist. LS stands for
Linear Search and DE is Differential Evolution.

mizes each component individually, disregarding their en-
tanglement. We leverage this even further to boost the per-
formance using joint optimization from Section 3.3.

In some instances, e.g. nuScenes → KITTI for the class
Pedestrian, DE degrades the result. Our observation shows
that this happens for two reasons. When the number of in-
stances in the source domain is too low for the proper esti-
mation of the GMM parameters, e.g. KITTI → Waymo for
Pedestrians and Cyclists, our objective function becomes
harder to optimize due to the appearing local minima. A
similar effect can be observed by inadequate latent repre-
sentations of the source model, caused by the point cloud
sparsity, e.g. nuScenes → KITTI for Pedestrians.

Smoothness of the Optimization Objective As previ-
ously hinted, the number of samples used for the GMM fit-
ting plays an important role in our method. Our objective
function from Equation (5) gets smoother with the number
of instances we use. If we build the source feature database
from underrepresented samples, it becomes hard to opti-
mize many appearing local minima. This implicitly affects
the performance on the target dataset, as depicted in Fig-
ure 5. On the other hand, SAILOR is not sensitive to the
number of components in the GMM at all. We found that
any reasonable choice of K ≥ 4 works similarly well.

Figure 5: Applying SAILOR on Waymo → KITTI while
varying the number of instances used for GMM fitting. We
report Average Precision for the moderate case of cars.

5. Conclusion
We presented SAILOR, an unsupervised approach for

anchor calibration on the target domain. We estimate an op-
timal anchor configuration under the source model without
prior knowledge. We compare our approach with weakly-
supervised methods, which are widely used for unsuper-
vised 3D domain adaptation. Moreover, SAILOR can be
used as a stand-alone method or can make these weakly-
supervised approaches completely unsupervised.

In this work, we focus explicitly on optimizing anchor
sizes due to the tremendous domain gap across datasets,
particularly KITTI ↔ Waymo. Note, however, that any
model hyperparameter is optimizable with our SAILOR
schema, even the checkpoint selection procedure, which we
want to investigate in future experiments.
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based 3D Object Detection and Tracking. In Proc. CVPR,
2021.

[34] Yurong You, Carlos Andres Diaz-Ruiz, Yan Wang, Wei-
Lun Chao, Bharath Hariharan, Mark Campbell, and Kil-
ian Q Weinberger. Exploiting Playbacks in Unsupervised
Domain Adaptation for 3D Object Detection. arXiv CoRR,
abs/2103.14198, 2021.

[35] Weichen Zhang, Wen Li, and Dong Xu. SRDAN: Scale-
Aware and Range-Aware Domain Adaptation Network for
Cross-Dataset 3D Object Detection. In Proc. CVPR, 2021.

632


