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Abstract

Convolutional neural networks have been successful in
restoring images captured under poor illumination condi-
tions. Nevertheless, such approaches require a large num-
ber of paired low-light and ground truth images for train-
ing. Thus, we study the problem of semi-supervised learn-
ing for low-light image restoration when limited low-light
images have ground truth labels. Our main contributions
in this work are twofold. We first deploy an ensemble of
low-light restoration networks to restore the unlabeled im-
ages and generate a set of potential pseudo-labels. We
model the contrast distortions in the labeled set to gen-
erate different sets of training data and create the en-
semble of networks. We then design a contrastive self-
supervised learning based image quality measure to obtain
the pseudo-label among the images restored by the ensem-
ble. We show that training the restoration network with
the pseudo-labels allows us to achieve excellent restoration
performance even with very few labeled pairs. We con-
duct extensive experiments on three popular low-light im-
age restoration datasets to show the superior performance
of our semi-supervised low-light image restoration com-
pared to other approaches. Project page is available at
https://github.com/sameerIISc/SSL-LLR.

1. Introduction

Restoring low-light images is challenging because of
the presence of multiple distortions such as poor contrast,
noise and color cast. While several traditional low-light im-
age restoration (LLIR) methods exist, convolutional neural
networks (CNNs) have tremendously succeeded in such a
complex restoration task. However, CNNs suffer from the
shortcoming of requiring large amounts of aligned low-light
and clean well-exposed image pairs for training. Moreover,
such models are camera distortion specific and require data
to be collected everytime a new model needs to be trained

for a different camera.
While a few research articles have studied training LLIR

models when such labeled data is not available, [6, 10],
whether a small number of labeled examples would also be
useful for designing better models for LLIR has not been
explored. In this context, the role of semi-supervised learn-
ing (SSL) for LLIR is interesting. Here, the goal is to col-
lect a few pairs of labeled images, and use a large corpus of
unlabeled images to enrich the training.

While SSL has been extensively studied for classification
tasks, only few works explore this learning paradigm for
image restoration. Most of the existing SSL image restora-
tion approaches are based on the use of distortion models
specific to the restoration tasks such as single image dehaz-
ing [15] and deraining [9, 37]. These approaches are not
directly applicable to semi-supervised LLIR.

In this work, we approach SSL for LLIR by generating
pseudo-labels for the unlabeled data. To generate pseudo-
labels, we first create several enhanced versions of the given
unlabeled image through an ensemble of restoration mod-
els. We then choose the best image according to a learnt
quality assessor to serve as a pseudo-label for the unlabeled
image. While there exists pseudo-labeling and ensembling
approaches for SSL in the image classification literature
[13, 27], they are not directly applicable to the LLIR prob-
lem. In particular, the design of ensembling and pseudo-
label generation approaches for LLIR are non-trivial. To
this end, our main contribution and novelty lies in the design
of ensemble models and the approach to generate pseudo-
labels from the ensemble model outputs for LLIR.

We design the ensemble of LLIR models, by creating a
set of expert models, each model expert at restoring differ-
ent distortions in the labelled set. We do this by training a
model exclusively on the distortion corresponding to each
low-light labelled image. We first learn distortion models
that relate the pairs of low-light and well-exposed images
in the available labeled data. We then use these distortion
models to generate more distorted versions for each of the
well-exposed images available in the labeled set to train a
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restoration network for each distortion model. We apply the
ensemble of restoration networks to each unlabeled image
to generate its several restored versions. Given an unlabeled
image, the models which are expert at restoring distortions
similar to that of the given unlabeled image are expected to
produce good quality images.

To choose a good quality image from the set of restored
versions produced by the ensemble models, we design a
quality assessment model for low-light restored images. We
note that there is no reference image available for select-
ing the best pseudo-label. Popular no reference (NR) qual-
ity assessment (QA) models [11, 22, 40, 42] cannot be used
off the shelf since the distortions that occur during LLIR
are quite different and vary from camera to camera. Also,
there are no human labels to train such quality models for
LLIR. Existing unsupervised NR QA models [23, 41] also
do not effectively capture LLIR distortions. Thus, our sec-
ond main contribution is in the design of a self-supervised
quality measurement tool that can select the best pseudo-
label for semi-supervised learning of image restoration.

We design an NR QA model for low-light restored im-
ages based on self-supervised contrastive learning. In par-
ticular, we use the large corpus of unlabeled images and
learn features from multiple restored versions of these unla-
beled images. After learning such self-supervised features,
we compute the similarity of these features with such fea-
tures extracted from well-exposed images to obtain a quality
score. Our quality index based on this score is used to se-
lect the pseudo-label and train the restoration network along
with the few labeled pairs. Although there has been some
recent work on contrastive learning for self-supervised fea-
ture learning of quality features [18, 19], these have been
primarily used in a supervised setup to measure generic
quality. Further, their ability to measure the quality of low-
light restored images has not been explored. We present
a novel application of an unsupervised quality measure for
pseudo-labeling in semi-supervised LLIR.

We conduct our experiments on a simple multiscale
LLIR architecture owing to the success of such approaches
in literature [14,38]. Our simple multi-scale restoration net-
work explicitly learns the subbands of a Laplacian pyramid
decomposition. We observe that the CNN based models
for restoring bandpass subbands perform quite well even
when trained with very few labels. However, the perfor-
mance of lowpass subbands offers a lot of scope for im-
provement. Thus, we focus on the semi-supervised learn-
ing of the lowpass subband in our work. We show through
extensive experiments on three publicly available low-light
image datasets that our pseudo-label selection approach can
yield superior performance when compared to other com-
peting approaches. The main contributions of our work are
as follows:

• We create an ensemble of LLIR networks designed

to address various distortions in lowpass subbands by
generating data through a low-light distortion model.

• We design a contrastive self-supervised feature learn-
ing approach for predicting the quality of the restored
unlabeled data to determine the pseudo-labels.

• We show through extensive experiments on three
datasets that the pseudo-labels generated can lead to
effective training of a multi-scale LLIR network result-
ing in superior performances.

2. Related Work
We discuss the related work in the areas of LLIR, semi-

supervised learning and unsupervised quality assessment.
Low-light Image Restoration: We mainly discuss learn-
ing based approaches here since our goal is semi-supervised
learning. Existing LLIR approaches consist of retinex
model approaches [33, 36, 43, 44], multi-scale subband
learning methods [14, 20, 38], residual learning [32] and
end-to-end learning methods [16, 17, 31]. Retinex model
based methods disentangle the illuminance adjustment as-
pect of the LLIR from the denoising problem by decom-
posing the low-light image into illuminance and reflectance
components. Multi-scale subband learning methods are also
successful for LLIR due to the sparse nature of the bandpass
subbands. Further, the smoothness of the lowpass subband
makes it easier to learn the restored image due to the re-
duced noise. End-to-end learning approaches include meth-
ods which successively refine the restored low-light image
over several layers [17, 31, 32]. Nevertheless, CNN based
methods require lots of labeled data and there is a need to
study their design with limited labeled data.
Semi-Supervised Learning for Image Restoration: Many
of the SSL approaches to image restoration involve impos-
ing a prior on the distortions estimated on the unlabeled
data. The SSL approach to image deraining in [37] imposes
a Gaussian mixture model prior on the estimated resid-
ual for the unlabeled data. Another SSL image dehazing
method [15] imposes a sparsity prior on the dark channel
prior of the dehazed unlabeled images. Yasarla et al. gen-
erate pseudo-labels for a latent representation by project-
ing the latent vector for unlabelled data onto a latent space
model [39]. In another work [9], a teacher model with an
exponential moving average of the student model is used to
generate pseudo-labels for the unlabeled data. Consistency
regularization [24], a popular SSL approach, has been used
for SSL in image denoising, super-resolution and image col-
oring. In most of the above works, SSL is achieved by very
task specific distortion modeling and their extension to the
LLIR problem is not straightforward.
Unsupervised Quality Assessment: While there exists a
plethora of supervised NR image QA methods, very few un-
supervised NR QA methods are successful. NIQE [23] and
IL-NIQE [41] represent a few examples of unsupervised NR
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QA methods. These methods are primarily designed based
on natural scene statistics (NSS) and a comparison of these
features with a corpus of pristine images. However, these
NSS based features may not accurately capture all the dis-
tortions that can arise during LLIR. In particular, the NSS
based features often operate only in the bandpass domain.
Thus, they could fail to capture distortions such as color
casts and under or over enhancement which cause varia-
tions in brightness levels. While there is recent work on
contrastive learning of quality features [3, 18], the quality
prediction is still supervised and needs to be trained on hu-
man scores.

3. Analysis of a Multi-scale Architecture for
Low-Light Image Restoration

Before discussing our method for semi-supervised learn-
ing of LLIR, we first briefly discuss a simple multi-scale
LLIR architecture that lends itself well for semi-supervised
learning. We then describe our semi-supervised learning
approach on top of it.

While there exist several approaches to LLIR, multi-
scale subband learning approaches have been more success-
ful [14, 38], [20] for several reasons. Firstly, bandpass sub-
bands have well behaved statistics in the form of sparse
coefficients, making it easier to learn to restore these sub-
bands. Secondly, the higher signal to noise ratio in the low-
pass subbands allows for effective contrast enhancement.
Finally, explicitly learning multi-scale subbands separately
constrains the restored image to match the ground truth im-
age in each subband and leads to effective training.

In this work, we adopt a simple yet effective multi-scale
subband learning approach Simple Multi-Scale restoration
Network (SMSNet). In SMSNet, we learn to predict the
Laplacian pyramid subbands of the ground truth image us-
ing a CNN model for each of the subbands as shown in Fig-
ure 1. Bandpass CNN restores the bandpass subbands and
consists of a sequence of convolutional layers with resid-
ual connections. Lowpass CNN restores the lowpass sub-
band and further consists of instance normalization layers
for effective low-light enhancement. We find that this sim-
ple architecture achieves a more robust performance across
different datasets. Please refer to the supplementary for
more details about the architecture, training of SMSNet and
comparisons against other popular LLIR methods. On ac-
count of the superior performance of SMSNet, we now ana-
lyze this model to leverage it effectively for semi-supervised
learning.
Analysis of SMSNet: We now analyze the performance of
SMSNet when very limited data is available for training.
We conduct experiments on datasets described in Section 5.
In Table 1, we evaluate the performance when SMSNet is
trained on 5% of the data. We note a significant drop in the
performance compared to the model trained on 100% of the

Figure 1. Architecture of SMSNet.

data. We also present the result of an interesting combina-
tion wherein Bandpass CNN is trained only with 5% data
and Lowpass CNN is trained on all the data. We note that
such a model performs almost as well as the model trained
on all the data. This shows that Bandpass CNNs can gen-
eralize well even when trained on significantly lesser data.
We also report the combination where Bandpass CNN is
trained on 100% data and Lowpass CNN is trained on 5%
data. The poor performance of this model implies that most
of the drop in performance of the model trained on 5% data
can be attributed to the Lowpass CNN not generalizing well.
The use of SMSNet simplifies the semi-supervised learning
of LLIR owing to the good performance of Bandpass CNNs.
Thus, in the rest of this paper, we focus on semi-supervised
learning for Lowpass CNN only and retain the Bandpass
CNNs trained on 5% data.

Table 1. Evaluation of Lowpass (LP) and Bandpass (BP) CNN of
SMSNet with 5% training data using SSIM/PSNR.

Training Data SONY FUJI LOLBP LP

5% 5% 0.58/19.73 0.54/18.65 0.71/19.04
100% 100% 0.74/23.05 0.69/22.63 0.78/21.91
5% 100% 0.72/22.72 0.67/22.13 0.77/21.72

100% 5% 0.59/19.92 0.56/18.94 0.72/19.20

4. Semi-Supervised Learning Approach

We now describe our approach to training Lowpass CNN
when only a small fraction of the low-light images have
the corresponding ground truth available. Let x and y de-
note the lowpass subbands of well-exposed and low-light
image pairs. Let DL denote the labeled dataset consist-
ing of N well-exposed and low-light lowpass subband pairs
{(x1,y1), ..., (xN ,yN )}. Also, let DU denote the unla-
beled data with M lowpass subbands {yN+1, ...,yN+M}.
Let xfr, yfr, Dfr

L and Dfr
U denote the corresponding full-

resolution versions. The goal of semi-supervised learning
for restoration of low-light lowpass subbands is to effec-
tively use the available unlabeled data DU in addition to
the labeled data DL. We address this by generating pseudo
labels {x̂N+1, ..., x̂N+M} for the unlabeled low-light low-
pass subbands and train with these labels. In the following
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Low-Light 5% Model Model 1 Model 2 Model 3 Ground Truth

Figure 2. Comparison of lowpass subbands obtained by restoring a low-light lowpass subband by the model trained on 5% data and three of
the models from the learnt ensemble of models. The three models are not chosen in any particular order. For visualization, we recompose
the restored lowpass subbands with the corresponding restored bandpass subbands to get the full resolution images. Note that at least one
of the three images obtained from the ensemble is perceptually better than the image from the 5% data model.

Figure 3. Block diagram for our pseudo label generation method.

discussion, we refer to lowpass subbands as just subbands
Our method to generate pseudo-labels involves two steps

as shown in Figure 3. First, we generate a set of potential
pseudo-labels for the low-light subbands through a variety
of restoration models. The resulting restored subbands span
a wide range of quality. In the second step, we select a good
quality subband from the multiple restored versions to serve
as a pseudo-label for the distorted subband. We then train
Lowpass CNN from scratch using the labeled low-light and
ground truth subband pairs along with the unlabeled low-
light subbands with their pseudo-labels. Note that in our
approach the pseudo-labels are generated just once before
training Lowpass CNN from scratch.

4.1. Training model ensemble

We adopt an ensemble approach of training multiple
restoration networks to generate potential pseudo-labels for
each unlabeled low-light subband. Our ensemble should be
able to generate subbands with good quality so that one of
these can serve as a pseudo-label. We design the ensemble
of models as follows. We observe that low-light subbands
in the labeled set DL can have different contrast distortions
such as poor lighting, poor contrast and color casts corre-
sponding to different labeled pairs. We generate multiple
expert models for restoration by training a model tuned to
different contrast distortions in DL. A model trained on a
contrast distortion is expected to produce good quality im-

ages when it encounters similar contrast distortions. Fur-
ther, we believe that the inclusion of Instance Normaliza-
tion layers in Lowpass CNN of our SMSNet makes our en-
semble robust and relevant to the contrast distortions in the
unlabeled data which may be slightly different from the la-
beled data. This is because the normalization layers may
normalize for some of the variations in contrast distortions
across different images. Thus, due to these normalizations,
the network may perceive even slightly different contrast
distortions as being similar.

Since we have only one labeled pair corresponding to
each distortion in DL, we create a training dataset having
multiple subband pairs with the corresponding contrast dis-
tortion as follows. We estimate a contrast distortion model
for each pair of subbands in DL and generate the training
dataset by using this model on the well-exposed subbands
available in DL. Thus, we generate N training datasets
to train N restoration models. To generate the training
datasets, we employ the contrast distortion model proposed
in [21] for full resolution images. Thus, we model the dis-
tortions in the full resolution image and then downsample
them to obtain the distorted lowpass subbands.

Given a pair of low-light and well-exposed images yfr

and xfr, the low-light image is written as [21]

yfr = f(xfr) +w, (1)

where f(.) is a global point-wise function that models the
contrast distortion and w represents the noise. f(.) in turn
is modeled as a polynomial function with coefficients as
its parameters. The parameters, denoted by θf , are esti-
mated by minimizing the mean squared error between yfr

and f(xfr). We apply this contrast distortion function f
along with simulated noise to other well-exposed images.
Note that given the complex nature of noise in RGB im-
ages, often GANs are used for noise modeling [2,12]. How-
ever, the use of GAN here is challenging due to the lack of
sufficient data. Further, due to aggressive smoothing over
several scales, lowpass subbands will not have significant
amounts of noise [25, 26]. Due to these reasons, we dis-
pense with very accurate noise modeling. Specifically, we
just add zero mean white Gaussian noise with standard de-
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viation equal to that of the error between yfr and f(xfr), to
the generated low-light images f(xfr) and obtain the low-
pass subbands from these to create the training datasets.

Mathematically, let the contrast distortion functions es-
timated from each of the N labeled pairs of images be
f1, f2, ...fN . Let n ∈ {1, 2, . . . , N} and Dfr,n

L be the nth

training dataset created using fn(·) and represented as

Dfr,n
L = {(xfr

1 , fn(x
fr
1 )+w1), ..., (x

fr
N , fn(x

fr
N )+wN )}.

(2)
Now, we train Lowpass CNN hn using the lowpass subband
pairs of Dn

L obtained from Dfr,n
L to create an ensemble of

models {hn}Nn=1. We then apply these models on a low-
light subband y ∈ DU to generate a set of potential pseudo-
labels {h1(y), ..., hN (y)}. In Figure 2, we show a low-light
image and some of its restored versions produced using the
ensemble.

4.2. Quality assessment for pseudo-label selection

Selecting a good quality subband from multiple restored
versions of a low-light subband is quite challenging due to
the lack of ground truth. Pre-trained NR QA algorithms
may not capture the distortions that arise during LLIR.
Since there are no labels for training a QA algorithm, we
adopt a self-supervised learning approach to design a qual-
ity index. We design our QA method by training a CNN
model, referred to as Quality Feature CNN (or QFCNN), to
extract quality relevant features from any restored lowpass
subband. The goal is to design features that can capture var-
ious distortions that arise during low-light subband restora-
tion. We then compute the quality of a restored subband
by computing the cosine similarity between the features of
the restored subband and the mean of the features of the
well-exposed subbands. Note that well-exposed subbands
are not corresponding pairs of the restored subbands, since
the restored subbands are obtained for the unlabeled data.

We adopt a contrastive learning approach popularly used
for self-supervised feature learning [4, 5, 8, 29] in image
classification. In contrastive learning, for a given image,
its positive and negative augmentations are generated. The
contrastive loss then, increases the similarity between fea-
tures of the positive pairs and decreases the similarity be-
tween features of the negative pairs. In order to enable
the QFCNN to learn distortion aware features, we design
the positive pairs with similar distortions and negative pairs
with different distortions.

To generate such positive and negative pairs, we use the
multiple restored versions of a low-light lowpass subband
produced by the ensemble. Note that these multiple restored
versions have the same content and only differ in distor-
tions. Specifically, at a given training iteration, we con-
struct a batch using the patches extracted from the multiple
restored versions. To extract the patches, we split each of

these restored subbands into four quadrants resulting in four
non-overlapping patches for each of the subbands. Since,
lowpass subbands mainly consist of global distortions such
as over and under enhancement and color casts, these distor-
tions do not vary much across the large sized patches from
the same subband. Thus, for a given anchor patch from one
of the restored versions, we take the patches from the same
version as positive pairs while the patches from other re-
stored versions as negative pairs.

More formally, let Vn for n ∈ {1, · · · , N} denote the set
of all 4 non-overlapping patches from the nth restored ver-
sion of an unlabelled low-light lowpass subband. Our batch
consists of 4N patches extracted from the N restored ver-
sions of a given low-light subband. Now, a pair of patches
p and q is similar if p, q ∈ Vn for any n ∈ {1, 2, · · · , N}. If
the patches belong to different lowpass subbands, they are
dissimilar. Let zp denote the normalized (to unit norm) fea-
tures obtained from patch p. The contrastive loss for p and
q where p, q ∈ Vn is given by

L(Vn) = − log
s(p, q)

s(p, q) +
∑N

n′=1 I[n′ ̸=n]

∑
q′∈Vn′ s(p, q

′)
,

(3)
where, I[n′ ̸=n] is equal to 1 when n′ ̸= n and 0 otherwise
and s(p, q) = exp(zTp zq/τ). Here τ is the temperature pa-
rameter which we set to 0.07. The overall loss in a batch is
given by L =

∑N
n=1 L(Vn).

Note that since QFCNN is fully convolutional, although
it is trained on subband patches, we apply it on the entire
subband during test time to finally evaluate the quality. Let
the normalized features extracted by the trained QFCNN
from a restored subband hn(y), n = 1, 2, . . . , N , y ∈ DU

be zn(y). Let the features of the well exposed subbands
in the dataset xn, n = 1, 2, . . . , N , be denoted as z(xn).
Let ẑ denote the average of the features of xn obtained as
ẑ = 1

N

∑N
n=1 z(xn). The quality of hn(y) is obtained as

q(hn(y)) = (zn(y))
T ẑ. (4)

While the above approach can help assess global contrast
and color distortions, we also employ a reference based ap-
proximate measure to capture local distortions. Let h0 be
a CNN model trained to restore subbands using the entire
limited labeled data DL. We observe that this model pro-
vides a reasonably restored subband h0(y) which we ob-
serve to be mostly devoid of local artifacts but could suf-
fer from global contrast distortions. Although this may be
imperfect, we compare the ensemble of restored subbands
hn(y) with h0(y) through the structural similarity (SSIM)
index [35] to estimate local artifacts. We observe that such
a model when combined with our quality index in Equa-
tion (4) to estimate global contrast distortions is effective.
Our combined quality model for selecting the pseudo-label

4109



is given by

Q(hn(y)) = q(hn(y)) + SSIM(hn(y), h0(y)). (5)

We select the pseudo-label for y as hn∗(y), where

n∗ = argmax
n=1,2,...,N

Q(hn(y)). (6)

5. Experiments
Datasets We conduct our experiments on the See-In-the-
Dark (SID) [1] and LOw-Light (LOL) [36] datasets. We
preprocess the raw images in the SID dataset using the
python library rawpy to get sRGB images. We further
downsample them to the resolution of 832× 1248.
Experimental Setting On each dataset, we randomly pick
5% and 10% of the ground truth training images along with
the corresponding low-light versions as labeled pairs. The
rest of the training set is used without ground truth labels
as the unlabeled dataset. We report the mean restoration
performance in terms of SSIM, peak signal to noise ratio
(PSNR) and a colorfulness measure [7] across 10 random
choices of the 5% or 10% labeled pairs. We note that low-
light restored images often suffer from poorly saturated col-
ors and evaluating the colorfulness of the restored images in
conjunction with other metrics is important.
Training Details We use SMSNet with 5 levels including 4
bandpass subbands and a lowpass subband. We use a batch-
size of 16. For the 100% training data case, we train the
CNN models in SMSNet for 90 epochs and 450 epochs on
the SID and LOL datasets respectively. We use Adam op-
timizer with a learning (LR) of 10−3 which is reduced to
10−4 and 10−5 after 50 and 70 epochs respectively for the
SID dataset and 250 and 350 epochs respectively for the
LOL dataset. For training Lowpass CNN, we use a patch
of size 48 cropped randomly at every iteration. For training
the 4 Bandpass CNNs, we use patches of size 256, 128, 64
and 64 at different levels. For the 5% and 10% labelled data
cases, we scale the number of epochs and LR milestones by
20 and 10 respectively. We train QFCNN with a LR of 1e-4
for 11 epochs and choose τ=0.07 in Equation (3). Please
refer the supplementary Section 4.2 for a discussion on how
we chose these hyperparameters.
Comparison Methods We benchmark our semi-supervised
method with the following methods.

1. Baseline: Our baseline is SMSNet discussed earlier
trained only on the labelled dataset DL. The unla-
belled dataset is not used in anyway for the baseline.

2. Augmented Data: We train the model on an aug-
mented labelled data. The labelled dataset DL is aug-
mented with the low light images from the syntheti-
cally generated datasets {D1

L, . . . , D
N
L }.

3. Mean-Teacher: We compare with the Mean-Teacher
model [28], a popular semi-supervised learning ap-
proach adapted for low light restoration. The Lowpass

CNN for the student model is trained with the labelled
pairs along with the image output by the teacher model
as the target for the unlabelled low light images.

4. Adversarial loss: Instead of pseudo-labels, we use an
adversarial loss to train Lowpass CNN. The discrimi-
nator for the adversarial loss is trained to distinguish
between ground truth images from the labelled set and
the images output by Lowpass CNN.

5. Transformation Consistency Regularization
(TCR): We compare with a consistency based SSL
approach used earlier for low level vision tasks of
image denoising and image colorization [24]. We use
this approach for training only the Lowpass CNN of
SMSNet.

6. EnlightenGAN: We train and evaluate an unpaired
learning method for low light image restoration [10]
by treating the unlabelled images as distorted and the
ground truth labels as clean.

Performance Evaluation We present the numerical results
of our proposed approach in Table 2 and 3. We see signif-
icant improvements of our method over the other methods
in terms of SSIM and colorfulness. While PSNR values are
roughly similar, we observe that PSNR is very sensitive to
small variations in brightness and colors that are otherwise
not perceivable [34]. The colorfulness measure has to be
interpreted along with the SSIM index. While the output
of EnlightenGAN looks colorful, it contains a lot of spatial
artifacts leading to its poor SSIM performance. We also
report the variance analysis in the supplementary where we
note that our method mostly outperforms Mean-Teacher
by achieving a higher SSIM score with a smaller variance
across the splits. We also show some examples of low-light
images enhanced by various methods in Figure 4.

Analysis of Quality Index: We experiment with different
variations of the quality index in Equation (5) to pick the
pseudo-label. We refer to the use of the SSIM index in
Equation (5) as SSIM-0. We consider the unsupervised QA
model NIQE [23] in place of our quality terms based on
QFCNN. We evaluate these NR QA methods with and with-
out the SSIM-0 terms. We compare these QA models in Ta-
ble 4 in terms of the restoration performance achieved when
trained with pseudo-labels selected according to Equation
(6). Further, we also compare the performance of the QA
models in terms of the median Spearman Rank Order Cor-
relation Coefficient (SROCC) with the ground truth SSIM
of the restored versions of a given low-light image in Table
5. While our QFCNN based model achieves the best perfor-
mance, we see that both the SSIM-0 term and the NR QA
terms are important and neither of these alone achieves the
best performance.

In Table 4, we also evaluate the performance achieved
when the ground truth SSIM of the ensemble of restored
images is used to pick the pseudo-label. This serves as
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Low-light Baseline EG Mean-Teacher Proposed Ground Truth

Figure 4. Examples of images enhanced by different methods when only 5% labeled data is available. Note that EG stands for Enlighten-
GAN. The images enhanced by the proposed method have better perceptual quality than others.

Table 2. Objective evaluation on 5% labeled data case with SSIM, colorfulness [7] and PSNR on multiple datasets. For all metrics higher
value is better. Red and blue indicate best and second best scores respectively. 100% data refers to the model trained on all the labeled
data. Note that we do not highlight colorfulness results of EnlightenGAN since its SSIM and PSNR scores are very low.

SONY FUJI LOLMethods SSIM Colorfulness PSNR SSIM Colorfulness PSNR SSIM Colorfulness PSNR
Baseline 0.58 22.48 19.73 0.54 21.59 18.65 0.71 19.02 19.09
Proposed 0.63 24.97 19.92 0.58 22.38 18.84 0.74 21.17 19.42

Augmented 0.58 21.68 19.72 0.55 21.93 18.58 0.72 19.85 18.94
Mean-Teacher 0.57 21.76 19.75 0.55 21.82 18.63 0.73 18.62 19.51

TCR 0.59 18.49 18.53 0.51 14.60 16.97 0.67 14.50 18.62
Adversarial 0.56 24.66 19.21 0.49 24.09 17.83 0.74 19.86 19.45

EnlightenGAN 0.31 32.08 15.46 0.33 31.11 13.62 0.57 33.34 16.77
100% Data 0.74 27.42 23.05 0.69 23.68 22.63 0.78 19.31 21.91

an upper bound on the restoration performance that can
be achieved using our ensemble of restored images. We
see that the QA models approach the performance of the
ground truth SSIM based model and the gap is quite small.

Analysis of Model Ensemble: We first show how fre-
quently each of the models in the ensemble produces the
best quality image for each of the unlabeled low-light data.
We show these results for one of the splits of the SONY
dataset in Figure 5. The best quality image is in terms of
the SSIM index.

For a given low-light image, since the models trained on
similar contrast distortions are expected to produce good
quality images, the corresponding contrast distortion pa-
rameters are expected to cluster together in the parameter
space. Specifically, the parameters of low-light images for
which a given model produces the best quality image could
cluster together. However, the instance normalization lay-
ers may make the network robust to minor variations in
some aspects of distortions such as brightness and color-
cast. This motivates learning transformed versions of the

parameters of the contrast distortion function f(·) that the
restoration network perceives as being similar and then an-
alyze the transformed features.

We learn the transformation through a classification net-
work that takes the contrast distortion features θf of the un-
labelled images as input and is trained on these images to
predict the model from the ensemble that produces the best
quality image according to the ground truth SSIM index.
This network is a single hidden layer fully connected net-
work from which we use the hidden layer features as the
transformed features for analysis. Let the hidden layer fea-
tures for input θf be g(θf ). Then g(θf ) are expected to
be more informative to understand which model from the
ensemble produces the best quality image for a given low-
light image. We visualize these learnt features g(θf ) using
t-SNE [30] in a two-dimensional space. In Figure 5, we
show the scatter plot for one of the splits from the SONY
dataset for the top 4 most frequently chosen models. Here
large dots represent the hidden layer features of contrast dis-
tortion functions on which the models from the ensemble
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Table 3. Objective evaluation on 10% labeled data case. Red and blue indicate best and second best scores respectively.
SONY FUJI LOLMethods SSIM Colorfulness PSNR SSIM Colorfulness PSNR SSIM Colorfulness PSNR

Baseline 0.64 24.09 20.60 0.58 20.83 19.49 0.73 19.85 19.59
Proposed 0.66 26.07 20.50 0.60 22.36 19.36 0.75 21.88 19.48

Augmented 0.58 21.68 19.72 0.55 21.93 18.58 0.72 19.85 18.94
Mean-Teacher 0.63 24.06 20.61 0.59 20.84 19.64 0.74 18.88 19.56

TCR 0.65 19.96 19.95 0.54 15.32 16.97 0.70 14.24 19.39
Adversarial 0.60 23.35 20.41 0.59 23.95 19.55 0.74 20.15 19.22

EnlightenGAN 0.31 32.08 15.46 0.33 31.11 13.62 0.57 33.34 16.77

Table 4. SSIM scores for ablation of our QA method by replacing
it with other methods.

Methods SONY FUJI LOL
SSIM-0 0.56 0.57 0.66
NIQE 0.50 0.46 0.72

QFCNN 0.61 0.55 0.70
NIQE with SSIM-0 0.61 0.56 0.73

QFCNN with SSIM-0 0.63 0.58 0.74
Ground Truth SSIM 0.66 0.60 0.75

Table 5. SROCC for various QA methods with respect to ground
truth SSIM on unlabeled data.

Methods SONY FUJI LOL
NIQE 0.16 0.14 0.24

QFCNN 0.59 0.50 0.61
NIQE with SSIM-0 0.48 0.60 0.60

QFCNN with SSIM-0 0.74 0.75 0.71

were trained on. The smaller dots correspond to the unla-
beled image features. We see that distortion features of the
unlabeled low-light subbands are often close to the models
from the ensemble which produce the best quality restored
subband. Note that the method depends on the presence
of diverse distortions in the labeled dataset. If no labeled
datapoint has distortions similar to an unlabeled subband,
this method may not produce a good quality pseudo-label.
Please refer to the supplementary for a more detailed dis-
cussion about the limitations of the proposed approach.

6. Conclusion
We observed that a multi-scale subband learning archi-

tecture for LLIR lends itself naturally for semi-supervised
low-light image restoration. While the bandpass subbands
generalize quite well although trained on very limited data,
our semi-supervised learning of lowpass subbands can im-
prove performance. We showed an ensemble based ap-
proach of generating multiple restored images can be used
to select pseudo-labels for the unlabeled low-light images.
We create an ensemble of restoration networks by train-
ing them on different kinds of distorted images we create
from the labeled pairs. Further, we also proposed a self-

Figure 5. Bar plot shows how frequently models from ensemble
produces the best quality image according to the SSIM index. The
scatter plot is of features obtained from applying t-SNE to learnt
features. Please refer text for more details. Note that both these
plots are for one of the splits from the SONY dataset.

supervised QA measure which when used along with SSIM-
0 helps select a pseudo-label for effective training. We
showed that our approach achieves superior performance
across datasets although trained with limited labeled data.
Acknowledgement: This work was supported in part by
a grant from the Department of Science and Technology,
Government of India under grant CRG/2020/003516.
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