
Token Pooling in Vision Transformers for Image Classification

Dmitrii Marin†, Jen-Hao Rick Chang?, Anurag Ranjan?, Anish Prabhu?

Mohammad Rastegari?, Oncel Tuzel?
†University of Waterloo, ?Apple

jenhao chang@apple.com

Abstract

Pooling is commonly used to improve the computation-
accuracy trade-off of convolutional networks. By aggregat-
ing neighboring feature values on the image grid, pooling
layers downsample feature maps while maintaining accu-
racy. In standard vision transformers, however, tokens are
processed individually and do not necessarily lie on reg-
ular grids. Utilizing pooling methods designed for image
grids (e.g., average pooling) thus can be sub-optimal for
transformers, as shown by our experiments. In this paper,
we propose Token Pooling to downsample token sets in vi-
sion transformers. We take a new perspective — instead
of assuming tokens form a regular grid, we treat them as
discrete (and irregular) samples of an implicit continuous
signal. Given a target number of tokens, Token Pooling
finds the set of tokens that best approximates the underly-
ing continuous signal. We rigorously evaluate the proposed
method on the standard transformer architecture (ViT/DeiT)
and on the image classification problem using ImageNet-
1k. Our experiments show that Token Pooling significantly
improves the computation-accuracy trade-off without any
further modifications to the architecture. Token Pooling en-
ables DeiT-Ti to achieve the same top-1 accuracy while us-
ing 42% fewer computations.

1. Introduction
Vision transformers [10, 14, 21, 43, 55] have demon-

strated strong results comparable to Convolutional Neural
Networks (CNN). However, the high computational cost
limits their use in resource-restricted, real-time, or low-
powered scenarios. In this paper, we aim to improve the
computational efficiency of standard vision transformers on
image classification by downsampling tokens, i.e., remov-
ing redundant tokens across transformer layers.

Downsampling is one of the main techniques used in
CNNs to improve computational efficiency. In CNNs, fea-
tures are explicitly designed to lie on regular xy-grids, due
to the repeated use of convolution with localized receptive

(a) Accuracy vs. computation

(b) Token Pooling via cluster analysis of token representations.

Figure 1: We propose Token Pooling, a novel token down-
sampling method, for standard vision transformers like ViT
[10] and DeiT [43]. (a) Inserting Token Pooling layers into
DeiT significantly improves the trade-off between accuracy
and computation on ImageNet-1k. (b) Token Pooling treats
tokens as discrete samples of a continuous signal. This mo-
tivates us to use cluster analysis to aggregate neighboring
token information automatically. We show the input images
and the token clusters at the 6-th layer of DeiT-S.

fields. The xy-grid structure allows downsampling tech-
niques like max/average pooling to aggregate neighboring
feature values on the grids and reduce grid dimensions.
However, the xy-grid structure is not maintained in standard
transformers. In transformers, the xy-location of a token is
only hinted as feature values via positional encoding at the
first (or a few) layer. Tokens are processed as a set by multi-

12

(a) Token Pooling (b) Transformer block

Figure 2: (a) We insert Token Pooling layer after every
transformer block without modifying any of the architec-
ture. This enables to study the effect solely caused due to
the downsampling layer. (b) shows a transformer block.

head attention, and each of them is processed separately by
Multi-Layer Perceptrons (MLP). In other words, in standard
transformers like ViT/DeiT [10, 43]1, besides the first layer
taking image patches as input, tokens do not lie on regular
grids. We need a dedicated downsampling technique.

We propose Token Pooling, a downsampling operator for
standard transformers, aiming to improve the computational
efficiency on image classification problems. Motivated by
nonuniform sampling and image compression [2, 23, 30,
44], we view tokens as discrete and irregular samples of
a continuous signal and formulate token downsampling as
an optimization problem that minimizes the reconstruction
error of the underlying continuous signal from the down-
sampled tokens. Surprisingly, we show that the solution to
this optimization problem can be easily found via clustering
analysis like K-Means and K-Medoids (see Figure 1b).

We conduct thorough study of the proposed and
various prior downsampling techniques, including ran-
dom/importance sampling the tokens, score-based token
pruning [13, 34], and the convolution-with-stride downsam-
pling method that generalizes average pooling and is widely
utilized in recent vision transformers [21, 25, 49]. We fo-
cus on studying the sole effect of the downsampling lay-
ers — we directly insert downsampling layers after each
transformer block without optimizing any other architec-
ture, e.g., feature dimension and the number of layers, as
shown in Figure 2a. Our results show that Token Pooling
outperforms baseline downsampling techniques (Figure 4)
and significantly improves the computation-accuracy trade-
off of vanilla vision transformers like ViT (Figure 1a).

Contributions. The paper makes these contributions:

1DeiT shares the same architecture as ViT but is trained with a refined
recipe to improve data efficiency. Thus, we conduct experiments on DeiT.

• We conduct an extensive study of prior downsampling
techniques for visual transformers by comparing their
computation-accuracy trade-offs.

• We analyze the computational cost of vision-transformer
components and limitations of prior score-based down-
sampling methods. We show that softmax attention lay-
ers perform low-pass filtering on the tokens and thus pro-
duce redundant tokens by construction.

• We propose a novel token downsampling technique, To-
ken Pooling, which achieves a significant improvement
in the computation-accuracy trade-off on ImageNet-1k.

2. Related work
In this section, we introduce vision transformers, and re-

view existing methods that improve the efficiency of trans-
formers including existing token-downsampling methods.

2.1. Vision transformers

Vision transformers [10, 14, 21, 21, 25, 43] utilize the
transformer architecture that is originally designed for Nat-
ural Language Processing (NLP) by Vaswani et al. [45] and
further popularized by Radford et al. [31] and Devlin et
al. [9]. A standard vision transformer is a composition of
L transformer blocks that take a set of input tokens and
return another set of tokens. The input tokens of the first
transformer block are features representing image patches.
In standard transformer architecture [45], the number of
tokens remains the same across the whole network. To
perform classification, a separate classification token is in-
serted to estimate the probabilities of individual classes.

Let the set of N tokens at depth l be F l = {f l0, . . . ,f lN}
where f li ∈ RM is the feature of the i-th token. A trans-
former block φ at depth l processesF l by a Multi-head Self-
Attention (MSA) layer and a point-wise Multi-Layer Per-
ceptron (MLP) shown in Figure 2b. Let matrix F ∈ RN×M
be a row-wise concatenation of tokens F l. Then2,

φ(F) = MLP(MSA(F)), such that (1)

MSA(F) = [O1,O2, . . . ,OH]WO, (2)

where H is the number of heads, matrix WO ∈ RM×M is
a learnable parameter of the block, [,] is column-wise con-
catenation and Oh ∈ RN×d is the output of h-th attention
head for d =M/H:

Oh = AhVh, such that

Ah = softmax(QhK
>
h

/√
d) ∈ RN×N . (3)

Keys Kh, queries Qh and values Vh are linear projections
of the input tokens (QKV projections):

Qh = FWQ
h , Kh = FWK

h , Vh = FW V
h , (4)

2For compactness, we omit layer norm and skip-connections, see [45].

13

where WQ
h ∈ RM×d, WK

h ∈ RM×d, W V
h ∈ RM×d are

learnable linear transformations. Note that the token fea-
ture dimension remains the same across the entire network.
Moreover, the numbers of input and output tokens are the
same, i.e., |F l+1| = |F l| = N .

By inserting a token downsampling layer between trans-
former blocks, we reduce the number of tokens and thereby
decreases the computational cost. Since downsampling in-
evitably loses information, the question is: how do we
downsample/select tokens such that the performance of the
model is not significantly degraded?

2.2. Efficient transformers

Similar to many machine learning models, the efficiency
of transformers can be improved via meta-parameter search
[15, 39], automated neural architecture search [11, 38, 50],
manipulating the input size and resolution of feature maps
[15, 27, 54], pruning [19], quantization [16], and sparsifi-
cation [12], etc. For example, Dosovitskiy et al. [10] and
Touvron et al. [43] obtain a family of ViT and DeiT mod-
els, respectively, by varying the input resolution, the num-
ber of heads H , and the feature dimensionality M . Each of
the models operates with a different computational require-
ment and accuracy. In the following, we review techniques
developed to improve the efficiency of transformers.

2.2.1 Efficient self-attention

The softmax-attention layer (3) has a quadratic time com-
plexity w.r.t. the number of tokens, i.e., O(N2). In many
NLP applications where every token represents a word or
a character, N can be large, making attention a computa-
tion bottleneck [7, 32]. While many works improve the time
complexity of attention layers, as we will see in Section 3.1,
they are not the bottleneck in most vision transformers.

The time complexity of an attention layer can be reduced
by restricting the attention field-of-view and thus impos-
ing sparsity on Ah in (3). This can be achieved using the
spatial relationship between tokens in the image/text do-
main [3, 4, 26, 29, 33, 53] or based on token values us-
ing locality-sensitive hashing, sorting, compression, clus-
tering etc. [18, 20, 40, 41, 46–48]. Prior works have also
proposed attention mechanisms with lower time complex-
ity, e.g., O(N) or O(N logN) [5, 17, 28, 40]. Note that
the goal of these above methods is to reduce the time com-
plexity of the attention layer — the number of tokens re-
mains the same across the transformer blocks. In contrast,
our method reduces the number of tokens after attention has
been computed. Thereby, we can utilize these methods to
further improve the overall efficiency of transformers.

Recently, Wu et al. [51] proposed a new attention-based
layer that learns a small number of query vectors to extract
information from the input feature map. Roy et al. [35]

cluster queries and keys to sparsify attention matrices and
speed-up attention. Similarly, Wu et al. [52] proposed cen-
triod transformer that unrolls a custom soft K-means as
a special learnable attention layer. The effect is akin to
PoWER-BERT [13] (with static strategy), which will be
compared to extensively in Section 5. In comparison, our
method has no learnable parameters, and it directly mini-
mizes the reconstruction error due to token downsampling,
by treating tokens as irregular samples of an underlying
continuous signal.

2.2.2 Existing token downsampling methods

Grid-downsampling. Grid-downsampling techniques as-
sume tokens to lie on a regular grid, which is usually
achieved by arranging tokens using their initial locations on
the image. The regular grid structure allows typical down-
sampling methods, such as max/average pooling or uniform
sub-sampling to be used. For example, Liu et al. [21], Heo
et al. [14], and Wang et al. [49] use convolutions with stride
(i.e., subsampling after convolution) to downsample the fea-
ture maps formed by the tokens; similarly, Dai et al. [6] use
average pooling. Note that as we have discussed in Sec-
tion 1, standard transformer blocks do not retain the im-
age grid structure and treat tokens as unordered sets. To
encourage tokens to form a grid structure, Liu et al. [21]
modify the transformer block and restrain the attention span
of MSA to neighboring tokens on the input image grid.
This inductive bias in the architecture — trading attention
span for computation efficiency — enables their method to
achieve state-of-the-art results in various applications.

In this paper, we focus on understanding the sole effect
of token downsampling layers — we retain the standard
transformer block architecture, without modifying the trans-
former block like Liu et al. [21]. As our analysis will show,
without any modification to the transformer blocks, down-
sampling tokens via convolution with stride (or equivalently
average pooling) actually performs worse than a simple al-
gorithm that randomly select/remove tokens, verifying our
hypothesis about the grid structure.

Score-based token downsampling. In the area of NLP,
Goyal et al. [13] introduce PoWER-BERT to drop tokens
based on a measure of significance score, which is defined
as the total attention given to a token from all other tokens.
Specifically, the significance scores of all tokens in the l-th
transformer block, sl ∈ RN , is computed by

sl =

H∑
h=1

Al
h

>
1, (5)

where Al
h is the attention weights of head h defined in (3).

They only passKl tokens with the highest scores in sl to the

14

next transformer block. Similar to our setting, the pruning
is performed on all blocks.

PoWER-BERT is trained using a three-stage process.
First, given a base architecture, they pretrain a model with-
out pruning. In the second stage, a soft-selection layer is
inserted after each transformer block, and the model is fine-
tuned for a small number of epochs. Once learned, the num-
ber of tokens to keep, Kl, for each layer is computed from
the soft-selection layers. Last, the model is finetuned again
with the less significant tokens pruned. See [13] for details.

Recently, Rao et al. [34] proposed Dynamic-ViT that
also uses scores to prune tokens. Unlike PoWER-BERT,
which computes significance scores from attention weights,
Rao et al. use a dedicated sub-network with learned param-
eters. The method requires knowledge distillation, Gumbel-
Softmax, and straight-through estimators on top of the DeiT
training and architecture.

We will analyze score-based methods in Section 3.2 and
compare with them in Section 5.

3. Analysis
This section addresses three questions. First, we identify

the computational bottleneck of vision transformers. Sec-
ond, we discuss the limitations of score-based downsam-
pling. Finally, we analyze how softmax-attention affects
the redundancy of tokens in a transformer. The finding is
important for designing downsampling algorithms.

3.1. Computation analysis of vision transformers

We analyze the time complexity and computational costs
(measured in flops) of vision transformers (ViT/DeiT). We
breakdown the computation into four categories: softmax-
attention (3), QKV projections (4), O projection (2) and
MLP (1). As shown in Table 1, in all these vision trans-
formers, the main computational bottleneck is the fully-
connected layers that spend over 80% of the total computa-
tion. In comparison, softmax-attention only takes less than
15%. Note that we explicitly break down the multi-head at-
tention into the softmax-attention, QKV and O projections,
as they have different time complexity. This decomposi-
tion reveals that the QKV and O projections spend most of
the computations of the multi-head self-attention. The fully
connected layers have a time complexity ofO(LNM2). By
downsampling tokens (i.e., reducing N), we improve the
time complexity without significantly reducing their capac-
ity (i.e., the feature dimension M and number of layers L).

3.2. Limitations of score-based downsampling

Existing score-based token downsampling methods like
PoWER-BERT and Dynamic-ViT utilize scoring functions
to determine the tokens to keep (or prune). They keep
tokens with the top-K scores and discard the rest. Since

(a) Score-based (b) Proposed

Figure 3: Score-based downsampling methods [13, 34] vs.
the proposed method. In the figure, the x-axis represents
the token values (in one dimension), and the y-axis repre-
sents their scores. Suppose four tokens are to be selected.
(a) Score-based methods select tokens with higher scores.
Since the scoring function is continuous, all tokens in the
left lobe will be selected, resulting in redundancy and in-
formation loss in the right lobe. (b) The proposed method
first forms four clusters to approximate the set of tokens,
then selects the cluster centers. Thus, the output tokens are
a more accurate representation of the original token set than
the score-based methods.

these scoring functions are continuous with limited Lips-
chitz constants, tokens that are close in the feature space
will be assigned similar scores. Therefore, similar tokens
will likely either be all kept or discarded, as illustrated in
Figure 3a. As our experiments show, this redundancy (in the
kept tokens) and severe information loss (in the pruned to-
kens) deteriorate the computation-accuracy trade-off of the
score-based downsampling methods.

3.3. Attention as a low-pass filter

Given a query vector q, a set of key vectors K =
{k1, . . . ,kN}, the corresponding value vectors V =
{v1, . . . ,vN} and a scalar α > 0, softmax-attention com-
putes the output via

o(q) =
1

z(q)

N∑
i=1

exp(α q · ki)vi, (6)

where z(q) =
∑N
i=1 exp(α q · ki). Note that we write o(q)

to indicate that the output vector o is a function of the query
q. If the query vector and all key vectors are normalized to
have a fixed `2 norm, we can rewrite (6) as

o(q) =
1

z′(q)

N∑
i=1

exp
(
−α
2
‖q − ki‖2

)
vi

=
1

z′(q)

∫
exp
(
−α
2
‖q − k‖2

)(N∑
i=1

δ(k − ki)vi

)
dk

=
1

z′(q)
G

(
q;

1

α

)
∗ S(q;K,V), (7)

where ∗ represents high-dimensional convolution, z′(q) =∑
i exp

(
−α2 ‖q − ki‖2

)
= G

(
q; 1

α

)
∗S(q;K, 1) is the nor-

15

Layer Complexity Computation (109 Flops)
ViT-B/384
(N=577)

ViT-B
(N=197)

DeiT-S
(N=197)

DeiT-Ti
(N=197)

softmax-attn. O(LN2M) 6.18 0.72 0.36 0.18
QKV proj. O(LNM2) 12.25 4.18 1.05 0.26
O proj. O(LNM2) 4.08 1.39 0.35 0.09
MLP O(LNM2) 32.67 11.15 2.79 0.70
Total O(LNM(M+N)) 55.5 17.6 4.6 1.3

Table 1: Time complexity and computation breakdown of ViT [10] and DeiT [43]. L is the number of transformer blocks, N
is the number of input tokens, and M is the feature dimensionality. All models take input images of size 224 × 224 except
ViT-B/384, which uses 384 × 384. The softmax-attention layers constitute a fraction (15% or less) of the total compute,
whereas fully-connected layers (MLP and projections) spend over 80%.

malization scalar function, G
(
q;σ2

)
= exp

(
−‖q‖2

/
2σ2
)

is an isometric Gaussian kernel, and S(q;K,V) =∑N
i=1 δ(q − ki)vi is a high-dimensional sparse signal,

which is composed of N delta functions located at ki
with value vi. According to (7), given query vectors
q1, . . . , qN , there are two conceptual steps to compute
softmax-attention:

1. filter S(q;K,V) with a Gaussian kernel to get o(q),
which is a high-dimensional continuous signal, and

2. sample o(q) at coordinates q1, . . . , qN to get the out-
put vectors o1, . . . ,oN .

Since Gaussian filtering is low-pass, o(q) is a smooth sig-
nal. Therefore, the output tokens of the attention layer, i.e.,
discrete samples of o(q), contain similar feature values. In
other words, there exists redundant information in the out-
put tokens, and we can prune this redundancy to without
losing much of the important information [37].

Note that our analysis is based on the normalized query
and key vectors, which can be achieved by inserting a nor-
malizing layer before the softmax-attention layer without
significantly affecting the performance of a transformer, as
demonstrated by Kitaev et al. [18]. It has also been em-
pirically observed by Goyal et al. [13] and Rao et al. [34]
that even without the normalization, transformers produce
tokens with similar values. To demonstrate this, in all our
experiments, we use standard multi-head attention without
normalizing keys and queries. We conduct an ablation study
with normalized keys and queries in Appendix F.

4. Token pooling
Pruning tokens inevitably loses information. In this sec-

tion, we formulate a new token downsampling principle en-
abling strategical tokens selection that preserves the most
information. Based on this principle, we formulate and dis-
cuss several Token Pooling algorithms.

Given a set of output tokens F = {f1, . . . ,fN} of a
transformer block, our goal is to find a smaller set of to-

kens F̂ = {f̂1, . . . , f̂K} that minimizes the reconstruction
error of F due to the downsampling. As we have shown in
Section 3.3, we view F as discrete samples of a continuous
signal u(f). Similarly, F̂ represents another signal û(f).
Since K < N , û has fewer degree of freedom (e.g., lower
frequency) than u and thereby may not recover individual
values ofF exactly when we sample û(f) at {f1, . . . ,fN}.

To measure the reconstruction loss, we can construct a
continuous signal û(f ; F̂) by interpolating F̂ . The recon-
struction error is computed via

`(F , F̂) =
∑
fi∈F

‖fi − û(fi; F̂)‖2. (8)

Note that similar reconstruction errors are used in nonuni-
form sampling literature [2, 23, 44]. To simplify our for-
mulation and reduce computation, we use nearest-neighbor
interpolation to construct û. As a consequence, the recon-
struction error (8) becomes

`(F , F̂) =
∑
fi∈F

min
f̂j∈F̂

‖fi − f̂j‖2, (9)

which is the asymmetric Chamfer divergence between F
and F̂ [1, 24] and can be minimized by the K-Means algo-
rithm, i.e., clustering the tokens in F into K clusters.

The proposed Token Pooling layer is defined in Algo-
rithm 1. It downsamples input tokens via clustering the
tokens and returns the cluster centers (the average of the
tokens in a cluster). As we have shown above, the algo-
rithm directly minimizes the reconstruction error (9) caused
by the downsampling. Intuitively, clustering the tokens pro-
vides an accurate and diverse approximation of the origi-
nal set of tokens, compared to the top-K selection used by
score-based downsampling methods, as shown in Figure 3b.
Note that Token Pooling is robust to the initialization of
cluster centers, as shown in Appendix B. Below, we pro-
vide details of the clustering algorithms.

16

K-Means. We use the K-Means algorithm to minimize
(9) via the following iterations:

a(i)← argmin
j
‖fi − f̂j‖,∀i ∈ {1, . . ., N} (10)

f̂j ←
N∑
i=1

[a(i) = j]fi

/
N∑
i=1

[a(i) = j],∀j ∈ {1, . . .,K}

(11)

where [] is the Iverson bracket and a is the cluster as-
signment function. The overall algorithm complexity is
O(TKNM) where T is the number of iterations. The ma-
jority of the computation is spent on the repetitive evalua-
tion of the distances between tokens and centroids in (10).

K-Medoids. The high complexity of K − Means can
over-shadow the benefit of carefully curating a smaller set
of more informative tokens. Thus, we use the more efficient
K-Medoids algorithm by replacing (11) with:

n(j)← arg min
i:a(i)=j

∑
i′:a(i′)=j

‖fi − fi′‖2 and f̂j ← fn(j).

(12)

These steps minimize objective (9) under the medoid con-
straint: F̂ ⊆ F .

The time complexity of the K-Medoids algorithm is
O(TKN +N2M), which is substantially lower in practice
than K-means as the distances between tokens are computed
once. Empirically, it converges within 5 iterations. Apart
from the distance matrix computation, the cost is negligi-
ble w.r.t. the cost of the other layers. The complexity can
be further improved using techniques proposed by Tiwari
et al. [42]. In Table 3, 4 & 5 of the supplementary, we
empirically compare the computation (measured in flops)
of K-means and K-Medoids. As we will see in Section 5,
utilizing a low-complexity algorithm to solve Equation (8)
reveals the benefits of information preservation during to-
ken downsampling and significantly improves computation-
accuracy tradeoff of standard transformers.

Weighted clustering. Reconstruction error (9) treats ev-
ery token equally; however, each token contributes differ-
ently to the final output of an attention layer. Thus, we also
consider a weighted reconstruction error: `(F , F̂ ;w) =∑

fi∈F minf̂j∈F̂ wi‖fi − f̂j‖2 where w = [w1, . . . , wN]

are the positive weights corresponding to the individual to-
kens in F . Appendix A details the clustering algorithms
for the weighted case. A good choice of the weights is the
significance scores (5), i.e., wi = si. The significance score
identifies tokens that influence the current transformer block
most and thus should be approximated more precisely.

Note that when applying Token Pooling, it is important
to separate special tokens like the classification token (and
always keep them).

Algorithm 1: Token Pooling
input : tokens F = {f1, . . . ,fN}; target set size

K; (optional) weightsW = {w1, . . . , wN}
output: downsampled set F̂ = {f̂1, . . . , f̂K}

1 if k ≥ N then return F;
2 initialize cluster centers F̂ to be the K tokens from
F with the highest weights ;

3 while not converged and max number of iterations is
not reached do

4 for i ∈ {1, ..., N} do update cluster
assignment z(i)← argminKj=1 ‖fi − f̂j‖ ;

5 for j ∈ {1, ...,K} do update cluster center f̂j
according to the chosen clustering algorithm,
that is either (11), (12), (15) or (18) ;

6 return weighted means of tokens in each cluster

5. Experiments
Our implementation is based on DeiT [43], which uses

the vanilla transformer architecture as ViT [10, 45] with
a refined training recipe to improve data efficiency. We
use the official DeiT implementation since it is a well-
established baseline for vision transformer and has a well
understood training pipeline. We insert downsampling lay-
ers after each transformer block. To evaluate the pure effect
of downsampling, we keep the same all meta-parameters of
DeiT, including the feature dimensionality, network depth,
learning rate schedule, etc. We also do not use knowledge
distillation. We conduct evaluation on ImageNet-1k [36],
and our cost and performance metrics are flops and top-1
accuracy. Appendix H reports throughput of our models.

Methods. We study the effect of the following token
downsampling methods:
1. Convolution downsampling (generalized average pool-

ing). We implement grid-downsampling via convolution
with stride 2, i.e., the tokens corresponding to the adja-
cent image patches are concatenated and mapped to RM .
This design is widely used in many recent vision trans-
formers [14, 21]. See details in Appendix D.

2. PoWER-BERT. We implement PoWER-BERT on DeiT,
following [13].

3. Random selection, a simple baseline randomly selecting
K tokens without replacement.

4. Importance selection choosesK tokens by drawing from
a categorical distribution without replacement with prob-
abilities proportional to the significance score (5).

5. Token Pooling with K-Means or K-Medoids algorithms,
or their weighted versions, WK-Means or WK-Medoids,
respectively. The weights are the significance scores (5).

17

Selection of K = [K1, . . . ,KL]. To fairly compare our
Token Pooling with PoWER-BERT and other baselines, all
methods (except convolution downsampling for which we
enumerate downsampling configurations, see Appendix D)
use the same number of retained tokens for downsampling
layers. Appendix C details the selection of K.

Training protocol. (1) A base DeiT model (e.g., DeiT-
S) is trained using the original training [43]. (2) We insert
soft-selection layers to the base DeiT model and finetune the
model to automatically determine the number of tokens, K.
(3) We further finetune the model with individual downsam-
pling methods using K. Note that in the comparison, we
also finetune the base DeiT model to ensure a fair compar-
ison such that all models are trained with the same number
of iterations, learning rate schedule, and optimizer, etc.

5.1. Main results

First, we apply different downsampling methods on
DeiT-S. As a reference, we also show the results of var-
ious DeiT architectures (DeiT-Ti → S) formed by chang-
ing the feature dimension M . As shown in Figure 4a,
random selection achieves a similar trade-off as lowering
feature dimensionality M . While convolution with stride
is better than adjusting M at the low-compute regime, it
fails in high-compute regimes. Importance selection im-
proves upon random selection but is still outperformed
by PoWER-BERT. Our Token Pooling (with weighted K-
Medoids) achieves the best trade-off in all regimes.

One interesting finding is that without any modifications
to the transformer block, convolution with stride is out-
performed by all other downsampling methods in the high
compute regime, including the naive random selection , in-
dicating loss of valuable information when aggregating to-
kens at intermediate layers using image grid.

Next, we apply Token Pooling to DeiT models with dif-
ferent M (DeiT-e252, DeiT-e318, and DeiT-S). Figure 4b
shows trade-off curves for each DeiT model. Token Pooling
enables each of the models to achieve a better computation-
accuracy trade-off than simply varying the feature dimen-
sionality M . For each computational budget, we improve
accuracy by increasingM (to increase model capacity) with
smaller K (to remove redundant computation). In other
words, using Token Pooling enables us to use a larger model
without increasing computational cost.

For the sake of completeness, Figure 5 shows the results
of the proposed Token Pooling and state-of-the-art meth-
ods. Comparing with current state-of-the-art is not the main
purpose of the paper. Thus we directly cite the results of
[8, 25, 34, 49] without optimizing the training recipe (e.g.,
total epochs, learning rate schedule, optimizer) for individ-
ual methods. Despite using the vanilla transformer block
(DeiT), our results are comparable with or outperform re-
cent vision transformers incorporated with modified trans-

1 2 3 4

Gflops

70

72

74

76

78

80

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

PoWER-BERT

Importance Selection

Random Selection

Convolution

(a) Models based on DeiT-S

1 2 3 4

Gflops

72

74

76

78

80

ac
cu

ra
cy

 (
%

)
DeiT-e252

DeiT-e318
DeiT-S

Ours (on DeiT-S)

Ours (on DeiT-e318)

Ours (on DeiT-e252)

(b) Token Pooling on various DeiT architectures

Figure 4: Main results. (a) shows the accuracy when we
apply different downsampling methods to DeiT-S. More is
in Appendix G. (b) Token Pooling improves the trade-off
of DeiT-S, DeiT-e318, DeiT-e252 (different feature dimen-
sions M). At 1.2 Gflops, we should use Token Pooling +
DeiT-e318 instead of DeiT-Ti.

former blocks. For example, PVT-Tiny is 75.5 % at 1.9
GFlops, and ours is 79.4 % at 1.9 GFlops; PVT-Small is
79.8 % at 3.8 GFlops, and ours is 80.7 % at 3 GFlops [49].
Our results (based on DeiT-S) are also on par with Swin:
Swin-T is 81.3 % at 4.5 GFlops, ours is 81.4 % at 4.4
GFlops [21].

Finally, we compare the best computation-accuracy
trade-off achieved by Token Pooling (with WK-Medoids
and varying M) with DeiT models in Figure 1a. As can
be seen, utilizing Token Pooling, we significantly improve
the computation costs of DeiT-Ti by 42% and improve the
top-1 accuracy by 3.3 points at the same flops. Similar ben-
efits can be seen on DeiT-e252 and DeiT-e318 in Figure 12
in the supplementary.

18

Figure 5: Comparison with current state-of-the-art meth-
ods. Note that this plot is for the sake of completeness —
the goal of the paper is to study the effect of token down-
sampling, not competing with the state of the arts. Besides
PoWER-BERT and DeiT, which are trained with similar
recipe (epoch, learning rate schedule, optimizer) as ours, for
other methods, we directly cite numbers from their papers.

5.2. Ablation studies

Figure 6a compares methods utilizing significance
scores. As can be seen, using importance selection im-
proves upon the simple random selection. By minimiz-
ing the reconstruction error (9), our method achieves better
cost-accuracy trade-off. Figure 6b evaluates Token Pooling
with different clustering algorithms. Weighted versions out-
perform regular versions of K-Means and K-Medoids. Due
to the higher time complexity, K-Means is outperformed by
K-Medoids (the curves are shifted toward the right). See the
metrics and flops used by clustering in table format in Ap-
pendix G. All Token Pooling variants outperform the base-
line, demonstrating the effectiveness of our method.

More ablation studies are in the appendices: clus-
tering initialization (Appendix B), convolution downsam-
pling/generalized average pooling (D), directly adding To-
ken Pooling to a pretrained transformer (E), results with
normalized keys and queries (F), detailed information (K,
flops, accuracy, clustering cost) of our models (G), and
computation-accuracy trade-off measured by throughput on
non-optimized implementation (H).

6. Conclusions
This paper provides two insights of standard vision trans-

formers: first, their computational bottleneck is the fully-
connected layers, and second, attention layers generate re-
dundant representations due to the connection to Gaussian
filtering. Token Pooling utilizes both insights and sig-
nificantly improves the computation-accuracy balance of

1 1.5 2 2.5 3 3.5 4

Gflops

74

76

78

80

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

PoWER-BERT

Importance Selection

Random Selection

(a) Ours vs. methods using significance score

1 2 3 4

Gflops

74

76

78

80

ac
cu

ra
cy

 (
%

)

(Ours) WK-Medoids

(Ours) K-Medoids

(Ours) WK-Means

(Ours) K-Means

PoWER-BERT

(b) Variants of Token Pooling

Figure 6: Ablation studies of (a) downsampling methods
using significance score, and (b) proposed Token Pooling
using different clustering algorithms. The base model is
DeiT-S for all methods.

DeiT, compared to existing downsampling techniques, on
ImageNet-1k. With the increasing use of vision transform-
ers, we believe our analyses, the proposed Token Pooling,
and thorough evaluations are valuable and of interest to the
vision community.

Limitations. As standard transformers, Token Pooling
treats tokens as unordered sets. Thereby, even though the
xy information of a token is embedded in feature values
(via initial positional encoding), it is not immediately ac-
cessible at the output and can complicate downstream tasks
like semantic segmentation and pose estimation where xy
information is needed. This property is shared by all com-
pared downsampling methods (except for the convolution
downsampling). When xy information is required, tech-
niques proposed by Wu et al. [51] and Marin et al. [22] can
be utilized. For example, we can query the output tokens at
individual xy locations to fill in a regular image grid [51].

The paper studies the effect of Token Pooling and var-
ious downsampling methods on the standard transformer
architecture. It is left as future work to analyze them on
modified/new transformers and on other applications.

19

References
[1] Harry G Barrow, Jay M Tenenbaum, Robert C Bolles, and

Helen C Wolf. Parametric correspondence and chamfer
matching: Two new techniques for image matching. Techni-
cal report, SRI International Menlo Park CA Artificial Intel-
ligence Center, 1977.

[2] Ricardo AF Belfor, Marc PA Hesp, Reginald L Lagendijk,
and Jan Biemond. Spatially adaptive subsampling of image
sequences. Transactions on Image Processing, 3:492–500,
1994.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv:2004.05150,
2020.

[4] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

[5] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. International
Conference on Learning Representations (ICLR), 2021.

[6] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
Funnel-transformer: Filtering out sequential redundancy for
efficient language processing. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 33:4271–4282, 2020.

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell,
Quoc Le, and Ruslan Salakhutdinov. Transformer-XL: At-
tentive language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2978–2988, 2019.

[8] Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari
Morcos, Giulio Biroli, and Levent Sagun. ConViT: Im-
proving vision transformers with soft convolutional induc-
tive biases. International Conference on Machine Learning
(ICML), 2021.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, 2019.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations (ICLR), 2020.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of Ma-
chine Learning Research, 20(1):1997–2017, 2019.

[12] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[13] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje,
Venkatesan Chakaravarthy, Yogish Sabharwal, and Ashish
Verma. PoWER-BERT: Accelerating BERT inference via
progressive word-vector elimination. In International Con-

ference on Machine Learning (ICML), pages 3690–3699,
2020.

[14] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spatial
dimensions of vision transformers. In IEEE International
Conference on Computer Vision (ICCV), 2021.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural net-
works for efficient integer-arithmetic-only inference. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2704–2713, 2018.

[17] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are RNNs: Fast autoregres-
sive transformers with linear attention. In International Con-
ference on Machine Learning (ICML), pages 5156–5165,
2020.

[18] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations (ICLR), 2020.

[19] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 598–605, 1990.

[20] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich,
Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. Gener-
ating wikipedia by summarizing long sequences. In Inter-
national Conference on Learning Representations (ICLR),
2018.

[21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows, Oc-
tober 2021.

[22] Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee,
Sam Tsai, Fei Yang, and Yuri Boykov. Efficient segmenta-
tion: Learning downsampling near semantic boundaries. In
IEEE International Conference on Computer Vision (ICCV),
pages 2131–2141, 2019.

[23] Farokh Marvasti. Nonuniform Sampling: Theory and Prac-
tice. Springer Science & Business Media, 2012.

[24] Roey Mechrez, Itamar Talmi, Firas Shama, and Lihi Zelnik-
Manor. Maintaining natural image statistics with the contex-
tual loss. In Asian Conference on Computer Vision (ACCV),
pages 427–443, 2018.

[25] Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jian-
fei Cai. Scalable visual transformers with hierarchical pool-
ing. IEEE International Conference on Computer Vision
(ICCV), 2021.

[26] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International Conference on Machine
Learning (ICML), pages 4055–4064. PMLR, 2018.

[27] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-
genio Culurciello. ENet: A deep neural network architec-
ture for real-time semantic segmentation. arXiv preprint

20

arXiv:1606.02147, 2016.
[28] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz,

Noah Smith, and Lingpeng Kong. Random feature atten-
tion. In International Conference on Learning Representa-
tions (ICLR), 2021.

[29] Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong
Wang, and Jie Tang. Blockwise self-attention for long doc-
ument understanding. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Process-
ing: Findings, pages 2555–2565, 2020.

[30] Majid Rabbani. JPEG2000: Image compression fundamen-
tals, standards and practice. Journal of Electronic Imaging,
11(2):286, 2002.

[31] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018.

[32] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe
Hillier, and Timothy P Lillicrap. Compressive transformers
for long-range sequence modelling. In International Confer-
ence on Learning Representations (ICLR), 2019.

[33] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. 32, 2019.

[34] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. DynamicViT: Efficient vi-
sion transformers with dynamic token sparsification. ArXiv,
abs/2106.02034, 2021.

[35] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
Grangier. Efficient content-based sparse attention with rout-
ing transformers. Transactions of the Association for Com-
putational Linguistics, 9:53–68, 2021.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet large
scale visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[37] Claude E Shannon. Communication in the presence of noise.
Proceedings of the IRE, 37(1):10–21, jan 1949.

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
Net: Platform-aware neural architecture search for mobile.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2820–2828, 2019.

[39] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In Inter-
national Conference on Machine Learning (ICML), pages
6105–6114, 2019.

[40] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe
Zhao, and Che Zheng. Synthesizer: Rethinking self-attention
in transformer models. International Conference on Machine
Learning (ICML), 2021.

[41] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-
Cheng Juan. Sparse sinkhorn attention. In International
Conference on Machine Learning (ICML), pages 9438–
9447, 2020.

[42] Mo Tiwari, Martin Jinye Zhang, James Mayclin, Sebastian
Thrun, Chris Piech, and Ilan Shomorony. Banditpam: Al-
most linear time k-medoids clustering via multi-armed ban-
dits. In Advances in Neural Information Processing Systems

(NeurIPS), 2020.
[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. pages 10347–10357, 2021.

[44] Didem Unat, Theodore Hromadka, and Scott B Baden. An
adaptive sub-sampling method for in-memory compression
of scientific data. In Data Compression Conference, pages
262–271. IEEE, 2009.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems (NeurIPS), 30:5998–6008,
2017.

[46] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret.
Fast transformers with clustered attention. Advances in Neu-
ral Information Processing Systems (NeurIPS), 33, 2020.

[47] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020.

[48] Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen,
Siqi Sun, Yuwei Fang, Yu Cheng, and Jingjing Liu. Cluster-
former: Clustering-based sparse transformer for long-range
dependency encoding. In ACL-IJCNLP 2021, 2021.

[49] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE International Confer-
ence on Computer Vision (ICCV), pages 568–578, October
2021.

[50] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBNet: Hardware-aware efficient
ConvNet design via differentiable neural architecture search.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 10734–10742, 2019.

[51] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan,
Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph
Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transform-
ers: Token-based image representation and processing for
computer vision. arXiv preprint arXiv:2006.03677, 2020.

[52] Lemeng Wu, Xingchao Liu, and Qiang Liu. Centroid trans-
formers: Learning to abstract with attention. arXiv preprint
arXiv:2102.08606, 2021.

[53] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham,
Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Trans-
formers for longer sequences. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[54] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping
Shi, and Jiaya Jia. ICNet for real-time semantic segmenta-
tion on high-resolution images. In European Conference on
Computer Vision (ECCV), pages 405–420, 2018.

[55] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with trans-
formers. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6881–6890, 2021.

21

