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Abstract

Digital documents often contain images and scanned text.
Parsing such visually-rich documents is a core task for work-
flow automation, but it remains challenging since most docu-
ments do not encode explicit layout information, e.g., how
characters and words are grouped into boxes and ordered
into larger semantic entities. Current state-of-the-art layout
extraction methods are challenged by such documents as
they rely on word sequences to have correct reading order
and do not exploit their hierarchical structure. We propose
LayerDoc, an approach that uses visual features, textual
semantics, and spatial coordinates along with constraint
inference to extract the hierarchical layout structure of docu-
ments in a bottom-up layer-wise fashion. LayerDoc recur-
sively groups smaller regions into larger semantic elements
in 2D to infer complex nested hierarchies. Experiments
show that our approach outperforms competitive baselines
by 10-15% on three diverse datasets of forms and mobile
app screen layouts for the tasks of spatial region classifi-
cation, higher-order group identification, layout hierarchy
extraction, reading order detection, and word grouping.

1. Introduction

Structured documents such as forms, invoices, receipts,
resumes, contracts and web/app screen interfaces are ubiq-
uitously used in industry [16] and contain a rich variety of
components such as tables, check boxes, widgets, buttons,
input fields. Structured documents make use of spatial lay-
out to convey information through potentially nested spatial
grouping. However, digital documents (eg. PDF) generally
discard most structure and encode only low-level binary in-
formation, while document images produced by a scanner

*Work done during internship at Adobe Research

or mobile phone scan app are stored in rasterized format (as
pixels). Neither of these document formats encode spatial
structure explicitly to identify which pieces of text belong
together. This leads to challenges for state-of-the-art infor-
mation extraction techniques, which generally assume that
the reading order of text is known [46].

A number of techniques–e.g., LayoutLM [51], Lay-
outLMv2 [52], DocStruct[47], Form2Seq [1]–model the tex-
tual semantics, visual appearance, and spatial location of text
to solve sequence labeling and classification tasks. These
techniques are able to model spatial information implicitly
to assign semantic labels to words, classify a sequence of
words (or sub-word tokens), or predict relationships between
given regions. However, these methods do not infer the 2D
grouping of individual words into semantic elements (e.g.,
DocStruct assumes candidate regions are provided as pre-
processed inputs), nor do they produce the nested structure
of a document as output. While LayoutLM is capable of
grouping multiple word or sub-word tokens into semantic
elements via BIO encoding, the encoding assumes that the
reading order of input tokens is correct–but reading order
itself is dependent on the structure of the document and is
not known, and most OCR systems cannot infer it correctly
for complex spatial structure [7].

To illustrate the importance of modeling the structure of
a document, consider the example shown in Figure 1. For
the use case of digital form authoring, where the goal is to
convert a scanned form into a digital format, an algorithm
would need to extract characters/words, group them into
semantic elements (e.g., a choice label), and further group
them into larger elements (a label and the checkbox to its
left form a choice field element, multiple choice fields form
a choice group, etc). All of these nested group relationships
are important since the labels need to be displayed next to
the corresponding checkboxes, and the choice group must
consist of mutually exclusive choices that affect the UI, as
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Figure 1: Example of a scanned form document showing the true reading order using numbered black boxes; word grouping based on
spatial arrangement; spatial document hierarchy of elements. Reading order extracted naively in a linear fashion (top → down, left → right)
is incorrect (top-right). However, the document can be decomposed into a hierarchy, where text fragments group into choice group caption,
radio buttons and choice labels grouped into choice fields, etc. LayerDoc extracts this spatial hierarchy to group elements and assign them
correct semantic labels. The correct reading order is obtained by leaf node traversal of the hierarchy.

checking one box should cause the other boxes in the group
to be unchecked. Besides form authoring, other uses of this
type of structure include re-flowability across devices [14,
22], adaptive editing of user-interfaces [37], and improving
accessibility for user-interactions [54]

Even for other extraction tasks, where the structure it-
self is not of interest, an understanding of the hierarchical
arrangement of text regions is useful for the purpose of
producing sequences with accurate reading order. This is
important for modern Transformer based language models
such as BERT [12] and LayoutLM [51] which depend on
the correct order of the input text for downstream tasks and
are sensitive to incorrect order [19]. Once the hierarchical
structure is extracted as in Figure 1, a traversal of the struc-
ture can produce reading order that respects group structure
and avoids the errors that OCR algorithms would produce.

We propose LayerDoc, a model that uses multimodal
deep learning on visual features, textual semantics and spa-
tial geometry as well as constraint inference to generate a
complete bottom-up ordered hierarchical arrangement of
document layout structure. Within this hierarchy, each node
is a rectangular region which is assigned a semantic label,
with the leaf nodes consisting of OCR tokens or embedded
images. This structure is generated in a layer-wise fash-
ion: given an input set of regions, LayerDoc hypothe-
sizes candidate 2D groupings of these regions without the
need for IOB tagging, evaluates candidate parent-child links
between a child region and parent region (the group it be-
longs to), then commits to a global parent-child assignment
through constraint optimization. The multi-modal nature
of LayerDoc benefits not only those cases where spatial
signals are effective (e.g., where layout based models excel)

but also where visual and textual signals are needed, as evi-
dent from experiments on diverse datasets of semi-structured
forms and scanned user-interfaces. Our novel contributions:

1. We propose LayerDoc for extracting hierarchical docu-
ment layout in a layer-wise fashion, recursively grouping
smaller spatial regions into larger, semantic elements. We
are the first to formulate nested document hierarchy
extraction using transformers.

2. We propose a multimodal contextual encoder that maxi-
mizes use of context by simultaneously modeling all
possible parent-child pairs in a layer. For element
type classification and semantic grouping, this leads to a
relative improvement of 10-15% across several metrics.

3. We demonstrate how our extracted nested hierarchical
document structure can improve the inferred token
reading order and semantic word grouping by 8-12%.

2. Related Work
Document layout hierarchy extraction involves two main

tasks: spatial element detection and spatial region relation-
ship extraction. Early works [23, 43, 15] used heuristics
for both tasks independently, which were later replaced by
computer vision models (object detectors) [53, 17, 11, 29]
to detect lower-level elements and group them based on
spatial overlap. [26] utilized Faster-RCNN[42] for docu-
ment object detection. Recent 2D transformer-based object
detectors such as DETR [5] do not explicitly model the vi-
sual hierarchy or leverage multimodal (semantic, spatial and
visual) information or contextual modeling. Transformer-
based models such as LayoutLM[51], LayoutLMv2 [52],
LamBERT [13], DocFormer[3], BROS [18], and TILT [39],
have been used for sequence labeling and classification of
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spatial regions in documents. However, they do not rea-
son about hierarchy or grouping in an end-to-end fashion.
Form2Seq [1] and MMPAN [2] extracted limited types of
higher-order structures (Choice Groups, Text Fields and
Choice Fields) in form documents. Although Form2Seq uti-
lized a seq2seq network to leverage context, it could not be
applied in general settings for end-to-end document spatial
hierarchy construction. Recently, DocStruct [47] proposed a
multimodal model for extracting parent-child relationships
between regions. However, it does not utilize the context of
neighboring spatial regions for link prediction, nor does it
predict the parent element type, as it is designed for naive
key-value pair extraction. Our method uses Transformers
to analyze multimodal contextual input from lower-level
elements to detect and classify higher-level elements, and
reconstruct all layers of the layout hierarchy.

3. Methodology
The document hierarchy is constructed by iteratively

grouping elements (“child-boxes") in the current layer into
larger regions (“parent-boxes") in the next layer. The child-
boxes in the first layer consist of elementary tokens extracted
directly from a document page image: textual tokens are
extracted by an off-the-shelf OCR system and visual regions
(e.g., widgets, radio-buttons, and embedded images in the
form use case) predicted by a high-precision object detec-
tor. For intermediate layers, our approach hypothesizes a
high-recall set of geometrically feasible “potential parent-
boxes” directly from the child-boxes, such that each box can
group one or more child-boxes and form the next layer in
the hierarchy. At the core of our approach is a multimodal
model (illustrated in Fig 2 and described in Sec 3.1) that
predicts links between a potential parent-box and all of its
child-boxes in consecutive layers and jointly predicts the
semantic label of the parent box. Not all potential parent-
boxes are actual elements, so we use constraint inference to
keep the parent-boxes that maximize the child-box link prob-
abilities and satisfy hierarchical constraints. This process is
repeated one layer at a time, starting from the lowest layer of
elementary tokens and recursively grouping the lower-level
elements into higher-level constructs to form a hierarchi-
cal arrangement of spatial boxes (see Sec 3.3). We next
formalize the problem and provide model details.
Problem Statement: Let ID represent the input document
page of which elementary tokens (OCR, embedded widgets,
and icons) and their rectangular bounding boxes are extracted
by OCR and a high precision object detector, respectively.
The ground truth document hierarchy for a scanned docu-
ment comprises of spatial boxes bi, each represented by its
coordinates (x1, y1, x2, y2), where (x1, y1) and (x2, y2) are
the top-left and bottom-right coordinates, respectively. Each
box has a predefined type label ti. The textual content (wi)
present in a box is acquired by linearly serializing OCR text

tokens lying within the box boundaries. The constituent
bounding boxes are arranged in a tree-like format where a
box in a higher layer may be a parent of one or more boxes
in the layer immediately below it. Thus, each box of the doc-
ument hierarchy tree contains the list of nested child boxes
contained within such that: (i) each child-box is grouped
into one and only one parent box i.e. the parent-boxes do not
mutually overlap, and (ii) each parent-box groups together
all geometrically possible child-boxes within its bounds. Un-
like previous works [47, 48], this task does not assume the
ground truth parent bounding boxes in each layer to be pre-
viously known as part of the input at test time.

3.1. LayerDoc Model

We denote the set of n child boxes serialized in a left-
to-right and top-to-bottom fashion in the kth layer as ci ∈
{c1, c2 · · · cn} and the jth potential parent box candidate
under consideration as pj . We represent each box with three
input modalities: (i) Semantic Cues, (ii) Spatial Cues, and
(iii) Structural Cues. We also utilize the visual encoding of
the entire scanned document image to augment the spatial
and semantic signals with visual cues.
Semantic Cues: Using an off-the-shelf pre-trained language
model (SBert), we encode the textual content of each box
(wi) into a sentence embedding s = SBert([[CLS], wi])
of dimension 1× dS , where dS is the hidden states of pre-
trained language model. We concatenate the sentence em-
bedding of the potential parent box spj with the sequence of
sentence embeddings of child boxes (sc1 , sc2 , · · · scn) and
pass them through a fully connected layer to form the seman-
tic input sequence Sn

j = σ(W1([spj
⊕sc1sc2 · · · scn ])+δ1),

where W1, δ1, σ(·), and ⊕ denote the weight matrices, bias,
Sigmoid activation function, and concatenation, respectively.
Spatial Cues: We extract the bounding box coordinates
to derive the relative layout information of each box. Each
bounding box b is represented through its upper-left ([x1, y1])
and bottom-right ([x2, y2]) co-ordinates that are normalized,
b = [x1

W , y1

H , x2

W , y2

H ], where H and W are the height and
width of the scanned document page. The normalized par-
ent bounding box bpj is concatenated with the sequence of
normalized child bounding boxes (bc1bc2 · · · bcn ) to form the
spatial input sequence Bj

n = [bpj
⊕ bc1bc2 · · · bcn ].

Structural Cues: Each child box has a box type t. The par-
ent box type is not known at input. Hence, it is represented
by a dummy value of < PBOX > in the input sequence. We
concatenate the category types of the parent box followed
by the linearly serialized child boxes to obtain the structural
input sequence Tn

j = [< PBOX >: tc1tc2 · · · tcn ].
Visual Cues: Given the document image ID, we resize it to
a fixed size (h,w,3). It is passed through a visual encoder
(VE) to obtain the visual feature map η = V E(ID). We
utilize the same input visual feature map across all layers
and parent box configurations in a given document.
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Figure 2: LayerDoc takes raw documents and OCR’ed text as inputs and outputs the spatial hierarchy by grouping lower-level elements
into parent boxes, predicting parent-child links and the element type of the parent boxes. The model operates on one layer at a time,
considering all child boxes Ci in one layer and candidate parent-boxes Pj in the next layer. The model encodes the visual, textual, and spatial
features of each element into a sequence to compute an encoding, which is then used for link prediction and element type classification.
Candidate parents are generated using the child-boxes Ci, the final parent set is selected via constraint optimization, and the model is applied
recursively to build the hierarchy bottom-up.

Multimodal Contextual Encoder (Λ) combines the struc-
tural, spatial and visual cues extracted from the input poten-
tial parent box and the sequence of child-boxes through a
Transformer-based language model. The semantic cues are
concatenated with the embedding of each input box using
late fusion as denoted by

⊕
due to the limitation dictated

by the LayoutLM backbone. The final box embedding se-
quence is Xn

j = Λ([Bn
j ;T

n
j ; η]

⊕
Sn
j ). The box embedding

sequence Xn
j is matrix multiplied with the parent box em-

bedding Xn
j [: pj ] as Xn

j [: pj ]⊗Xn
j vector, where ⊗ means

matrix multiplication. This results in a dot product of each
child box embedding with parent box embedding to obtain
[p̂j ; ĉ1, ĉ2, · · · ĉn].
Link Prediction and Element Type Classification: The
child box representations ([ĉ1, ĉ2, · · · ĉn]) are passed through
a dense fully-connected layer followed by a Sigmoid
layer to generate the link probabilities between each child
box ci and a potential parent box pj : αj1, · · ·αjn =
σ(W2([ĉ1, · · · ĉn]) + δ2), where W2, δ2 and σ(·) are the
weight matrices, bias and Sigmoid activation function, re-
spectively. The parent box representation (p̂j) is passed
through a dense fully-connected layer followed by a softmax
to predict element type φj = σ(W3(p̂j) + δ3).

3.2. Training LayerDoc

Negative Parent Sampling: Most potential parent-boxes
will be false positives, so to deal with the sparsity of positive
samples at test time, we introduce negative sampling [36] in
the training regime inspired by [48, 47]. For each training
sample having at least one positive link between the potential
parent-box and any of the input child-boxes, we add an
unrelated parent-box example to the training set for the same
setting to make the training robust to negative samples.

Multi-task Training: Element type classification uses a
weighted cross-entropy loss to adjust for class imbalance,
while link prediction uses a negative sample cross-entropy
loss [48] to account for negative data augmentation. Both
tasks are correlated and reinforce each other, so we use multi-
task training to optimize both tasks simultaneously. The final
optimization uses a weighted sum of the link prediction loss
and element classification loss L = λLLink+(1−λ)LClass,
where the weighting factor λ is a hyperparameter.

3.3. Inferring Document Layout Hierarchy

We recursively group child-boxes into parent-boxes such
that the parent-boxes of the kth layer become child-boxes of
the k+1th layer, iterating until only one parent-box remains.
Each iteration involves three steps: (i) parent-box candidate
generation, (ii) candidate link prediction and type classifica-
tion, and (iii) constraint inference. The first iteration uses
elementary token boxes ti (OCR text, widgets, icons, etc)
as child-boxes. Step (i) hypothesizes geometrically feasible
potential parent-boxes (m candidates with an upper limit of
O(n4) due to all relevant combinations of box co-ordinates)
ensuring a high-recall collection of potential parent-boxes.
Step (ii) predicts parent-child links and element types for
each candidate parent-box with all the child-boxes as in-
put, returning link probabilities αji∀i ≤ n; j ≤ m. Step
(iii) selects the subset of parent boxes that are mutually
non-overlapping, cover all child-boxes, and maximize the
constraint optimization function described next.
Parent Box Proposal are created by utilizing the geometric
constraints of the child boxes. We obtain sets of horizontal
(xmin, xmax) and vertical (ymin, ymax) coordinates from
the child box coordinates and merge them if lying within
a threshold distance of each other to cluster closely placed
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coordinates and reduce the search space of coordinates. We
choose two coordinate points from both x and y sets to form
one rectangular parent box.
Constraint Inference: For the kth layer, LayerDoc predicts
link probabilities αij between each pair of potential parent
box pi and child box cj . The best set of parent boxes is
selected by solving a constraint optimization problem, max-
imizing the cost function Ŷ = maxyi∈Υ

∑m
i ωiyi, where

ωi = κ+
∑

j α̂ij

Ar(pi)k/Ar(∪n
j=0cj)

, α̂ij is the adjusted link prob-
ability between pi and cj such that α̂ij = αij − 1. κ is a
large constant added to make all parent scores positive to
avoid trivial solution of all weights as zero. Ar(.) defines
area of a box and (∪n

j=0cj) is the union of all n child boxes.
yi → 1 represents the case where the potential parent box pi
is accepted as a valid parent box. The optimization is subject
to constraint space Υ = Υ1 ∩Υ2 defined over the set of all
pairs of potential parent boxes ℜm, where Υ1 : yi ∈ {0, 1}
and Υ2 : ya + yb ≤ 1 | ∀ a, b ∈ ℜ × ℜ, Ar(pa ∩ pb) > 0.
This is a typical Maximum Independent Set Problem [45]
when reduced to a simple linear-programming relaxation by
constraining yi to be binary. It can be solved using Integer
Linear Programming (ILP). However, the number of parent
boxes grow exponentially, forcing us to further relax the ILP
solution by greedily selecting one parent with highest ωi at
a time, leaving improved solutions to future work.

4. Experiments

Datasets: We train and test the LayerDoc model on three
datasets, Hierarchical Forms, RICO and FUNSD, which pro-
vide scanned document images as input. The data statistics
and class labels are given in Appendix B Table 6 and 7.
(1)Hierarchical Forms [1] is a rich corpus of scanned form
documents from diverse domains like insurance, finance, and
government agencies. The documents are human-annotated
with labelled bounding boxes, element type, and element
relations for a set of 14 constituent elements such as Text
Fields, Checkboxes, Choice Groups, Widgets, Tables, Image,
Header, Footer, etc. (2) RICO[10] is a dataset of more than
66k layout hierarchies of mobile app screens augmented
with semantic annotations of UI components. The bounding
boxes, element labels and nested hierarchies are from app
source code. (3) FUNSD [21] is a dataset of noisy scanned
forms with shallow hierarchies and filled form fields.
Training: We experiment with four ablation settings
using LayoutLM [51] (LayerDocLLM ) or LayoutLMv2
[52] (LayerDocLLMv2) in multimodal context encoder.
LayoutLMv2 extracts visual cues via Detectron2 [50].
We experiment with and without SentenceBERT [41]
for extracting semantic cues (LayerDocLLM+SBERT and
LayerDocLLMv2+SBERT ). We use an equally balanced
train-validation split. Object detector: We utilize Faster-
RCNN trained on the training set of Forms/RICO/FUNSD

dataset to infer lower-level elementary tokens such as wid-
gets, images, etc. Box Types of elementary boxes are ob-
tained object detector predictions.(See Appendix F).
Evaluation Tasks: We evaluate LayerDoc on five tasks:
Element Type Classification and Group Identification for
specific components of the architecture; Element Detection,
Reading Order and Grouping for full hierarchy. Element
Type Classification: Evaluates the parent-box type classifi-
cation using weighted F1-score for each type, using ground
truth child-boxes as input at test time. Group Identification:
Evaluates link prediction between the candidate parent-box
and child-boxes using macro F1 score using ground-truth
child-boxes as input at test time. Hierarchy Reconstruc-
tion: Elementary tokens (words+bounding boxes) are given
as input and all other layers use the predictions from the
previous layer. We evaluate document layout hierarchy pre-
dicted in Sec 3.3 using Mean Average Precision (mAP) (0.5
IoU threshold) between ground truth and predicted bounding
boxes using the standard teacher forcing technique [49]. We
also utilize the Adjusted Rand-index [40] to measure the sim-
ilarity between two hierarchies in each layer as well as for the
whole layout hierarchy in aggregate. We consider the child-
boxes in a given layer linked to the same parent-box as one
cluster and consider the predicted parent-boxes to match if
the ground truth if IoU > 0.5. Reading Order Comparison:
Following [48], we sort the predicted layout hierarchy and
traverse the bounding boxes in-order to recover the sequence
of OCR tokens. We then compare the predicted reading
order sequence against the ground truth reading order using
Average Page-level BLEU (p-BLEU) and Average Relative
Distance (ARD) [46]. Additional details can be found in
the Appendix C. Grouping Comparison: We evaluate the
word and element grouping. Similar to [24, 46], we utilize
the word grouping metric to calculate the F1, precision and
recall of intervals in the predicted word sequence belonging
to an element compared to the ground truth sequence.

5. Results and Analysis
We present our experimental results, where bold in tables

denotes the best performing model. Colored text represents
the proposed LayerDoc with LayoutLMv2 backbone and
SentenceBERT for semantic cues. Values not reported by
the baseline models are indicated by (–) dashes.

5.1. Element Type Classification

Hierarchical Forms: Table 1a shows element classification
where we compare LayerDoc with MFCN [53], DLV3+
[38], Form2Seq [1] as they report strong baseline perfor-
mance for this task. Form2Seq is a competitive baseline that
uses seq2seq modeling of spatial regions for element classi-
fication and extraction. However, it struggles to handle long-
range dependencies in dense forms with large sequences of
tokens. MFCN and DLV3+ are strong convolution based
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Modality Model TableRow ChoiceGroup Footer Section ListItem Table TextRun TableCell TextBlock List Field Header Overall

B
as

el
in

e Visual MFCN [53] – 0.0 – 0.71 0.54 – 0.11 – 0.46 0.90 – 0.69 –
Visual DLV3+ [38] – 0.57 – 0.55 0.75 – 0.69 – 0.86 0.48 – 0.83 –

Spatial + Text Form2Seq [1] – 0.78 – 0.67 0.90 – 0.85 – 0.91 0.93 – 0.85 –

A
bl

at
io

n Spatial LayerDocLLM 0.36 0.74 0.65 0.57 0.74 0.20 0.61 0.57 0.41 0.35 0.42 0.15 0.43
Spatial + Text LayerDocLLM+SBERT 0.48 0.68 0.75 0.67 0.79 0.29 0.74 0.89 0.84 0.41 0.80 0.72 0.76

Spatial + Visual LayerDocLLMv2 0.69 0.89 0.90 0.76 0.94 0.96 0.82 0.97 0.97 0.93 0.94 0.35 0.89
Spatial + Visual + Text LayerDocLLMv2+SBERT 0.92 0.90 0.92 0.86 0.96 0.94 0.88 0.98 0.98 0.95 0.94 0.67 0.90

(a) Hierarchical Forms Dataset

Modality Model List Item Text Checkbox TextButton Modal Toolbar Card Drawer Multi-Tab WebView Input Button Bar Tile Overall

B
as

el
in

e
Visual Faster-RCNN [42] 0.55 0.54 0.29 0.36 0.48 0.63 0.18 0.61 0.45 0.45 0.11 0.03 0.48 0.48
Visual UIED [6] 0.62 0.61 0.35 0.41 0.62 0.83 0.27 0.74 0.51 0.45 0.19 0.10 0.60 0.71
Visual DETR [5] 0.67 0.65 0.39 0.46 0.67 0.86 0.30 0.75 0.52 0.48 0.20 0.12 0.63 0.72

Spatial + Visual + Textual LayoutLMv2 [52] 0.82 0.72 0.39 0.50 0.73 0.88 0.42 0.78 0.55 0.61 0.16 0.18 0.67 0.75

A
bl

at
io

n Spatial LayerDocLLM 0.80 0.74 0.42 0.51 0.69 0.94 0.35 0.81 0.60 0.53 0.22 0.18 0.68 0.76
Spatial + Text LayerDocLLM+SBERT 0.82 0.74 0.46 0.53 0.59 0.94 0.45 0.83 0.61 0.56 0.20 0.70 0.68 0.78

Spatial + Visual LayerDocLLMv2 0.87 0.77 0.46 0.53 0.78 0.93 0.46 0.86 0.59 0.65 0.28 0.2 0.68 0.79
Spatial + Visual + Text LayerDocLLMv2+SBERT 0.88 0.76 0.47 0.55 0.65 0.96 0.49 0.87 0.71 0.68 0.20 0.78 0.73 0.80

(b) RICO Dataset

Table 1: Results comparing F1 scores of LayerDoc with baselines and ablative components for element classification task for label-wise
and overall spatial elements in (a) Hierarchical Forms and (b) RICO dataset. Our proposed approach outperforms the baselines, and
ablation analysis shows that each individual component contributes to the overall performance.

Modality Model TableRow ChoiceGroup Footer Section ListItem Table TextRun TableCell TextBlock List Field Header Overall

B
as

el
in

e Visual MFCN [53] – 0.28 – – – – – – – – 0.19 – –
Visual DLV3+ [38] – 0.47 – – – – – – – – 0.51 – –

Spatial + Text Form2Seq [1] – 0.61 – – – – – – – – 0.86 – –
Spatial + Text + Visual MMPAN [2] – 0.63 – – – – – – 0.88 – 0.90 – –
Spatial + Text + Visual DocStruct [47] 0.39 0.20 0.18 0.21 0.16 0.09 0.28 0.40 0.27 0.14 0.30 0.07 0.36

A
bl

at
io

n Spatial LayerDocLLM 0.36 0.64 0.45 0.28 0.20 0.14 0.44 0.41 0.51 0.22 0.38 0.38 0.41
Spatial + Text LayerDocLLM+SBERT 0.38 0.68 0.51 0.48 0.33 0.68 0.52 0.78 0.65 0.45 0.56 0.45 0.55

Spatial + Visual LayerDocLLMv2 0.90 0.75 0.75 0.78 0.82 0.83 0.49 0.76 0.90 0.75 0.85 0.15 0.79
Spatial + Visual + Text LayerDocLLMv2+SBERT 0.85 0.78 0.80 0.67 0.85 0.70 0.79 0.82 0.92 0.77 0.92 0.49 0.81

(a) Hierarchical Forms Dataset

Modality Model List Item Text Checkbox TextButton Modal Toolbar Card Drawer Multi-Tab WebView Input Button Bar Tile Overall

B
as

el
in

e Visual Faster-RCNN [42] 0.20 0.24 0.29 0.36 0.28 0.31 0.15 0.21 0.25 0.18 0.21 0.15 0.35 0.27
Visual UIED [6] 0.24 0.35 0.45 0.40 0.32 0.48 0.27 0.56 0.49 0.55 0.69 0.50 0.56 0.52
Visual DETR [5] 0.32 0.39 0.49 0.45 0.38 0.54 0.33 0.61 0.55 0.62 0.72 0.54 0.59 0.55

Spatial + Visual + Textual LayoutLMv2 [52] 0.77 0.80 0.69 0.75 0.42 0.83 0.72 0.69 0.81 0.82 0.81 0.74 0.69 0.72

A
bl

at
io

n Spatial LayerDocLLM 0.25 0.40 0.52 0.40 0.44 0.52 0.25 0.33 0.40 0.63 0.36 0.53 0.40 0.50
Spatial + Text LayerDocLLM+SBERT 0.26 0.41 0.54 0.42 0.44 0.68 0.28 0.35 0.45 0.81 0.39 0.55 0.58 0.55

Spatial + Visual LayerDocLLMv2 0.81 0.86 0.75 0.80 0.45 0.88 0.77 0.76 0.86 0.86 0.87 0.81 0.74 0.86
Spatial + Visual + Text LayerDocLLMv2+SBERT 0.83 0.88 0.77 0.82 0.47 0.90 0.79 0.77 0.88 0.88 0.96 0.84 0.76 0.89

(b) RICO Dataset

Table 2: Results comparing F1 scores of LayerDoc with baselines and ablative components for group identification task for label-wise
and overall spatial elements in (a) Hierarchical Forms and (b) RICO dataset. Our proposed approach outperforms the baselines, and
ablation analysis shows that each individual component contributes to the overall performance.

Model Element Classification (F1) Group Identification (F1)
BERT [21] 0.64 0.29
GNN + MLP [4] 0.64 0.39
UniLMv2-large [3] 0.70 –
SPADE [20] 0.71 0.41
StrucTexT [28] 0.83 0.44
LayoutLMv1-large [51] 0.78 0.42
FUDGE [9] 0.66 0.56
SERA [55] – 0.65
BROS [18] 0.81 0.66
MSAU-PAF [8] 0.83 0.75
LayoutLMv2-large [52] 0.84 –
DocFormer-large [3] 0.84 –
LayerDocLLMv2+SBERT (Ours) 0.86 0.78

Table 3: Comparison of LayerDoc (w/ LayoutLMv2 and Sen-
tenceBert) with baseline models for element type classification
(entity labeling) and group identification (linking) on the FUNSD
dataset. LayerDoc outperforms all recent top-performing systems
in terms of F1 score.

baselines utilized specifically in the document understand-
ing domain. All three baselines were designed to work for
a limited set of elements found in the lowest layers of the
hierarchy, preventing comparison between all element types.
RICO: Table 1b reports results for RICO dataset. We estab-
lish a strong baseline UEID [6] that uses a mix of text de-
tector and traditional computer vision techniques to classify
and extract spatial elements. Inspired by [25], we compare

Faster-RCNN[42] which is a traditional object detector. We
also fine-tune and evaluate recent transformer based object
detection models such as DETR [5] and Swin Transformer
[30] on UI interfaces from RICO dataset. Visual object detec-
tors are not able to leverage semantic context necessary for
document understanding. LayoutLMv2[52] model utilizes
visual, spatial as well as semantic context. However, it is
pre-trained for language modeling tasks as opposed to layout
hierarchy extraction objective. Performance of LayerDoc
with LayoutLMv2 backbone and SentenceBERT shows sig-
nificant gains across all element types as it benefits from
contextual modeling of spatial regions, multimodal input to
the contextual encoder, and multi-tasking objective aimed at
optimizing the element type classification and group identifi-
cation simultaneously. Header type elements in Hierarchical
Forms dataset are an exception where our model underper-
forms the Form2Seq baseline. Lower performance of header
can be attributed to model overfitting as the header class
is a minority in the dataset. LayerDoc is trained to pre-
dict several different components simultaneously as opposed
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Dataset Model Reading Order Word Grouping
p-BLEU (↑) ARD (↓) P R F1

FUNSD

Heuristics 0.69 8.46 – – –
LayoutLMv1 [51] 0.89 2.54 0.82 0.88 0.85
LayoutLMv2 [52] 0.92 2.21 0.84 0.87 0.86
LayoutReader [46] 0.98 1.75 – – –
ROPE [24] – – 0.88 0.90 0.89
LayerDocLLM 0.98 1.68 0.82 0.79 0.80
LayerDocLLM+SBERT 0.99 1.65 0.85 0.90 0.87
LayerDocLLMv2 0.98 1.63 0.86 0.92 0.89

LayerDocLLMv2+SBERT 0.99 1.60 0.92 0.93 0.92

RICO

Heuristics 0.49 1.77 – – –
Faster-RCNN [42] 0.55 1.76 0.45 0.76 0.57
UEID [6] 0.61 1.75 0.45 0.76 0.57
DETR [5] 0.63 1.74 0.48 0.79 0.60
LayoutLMv2 [52] 0.65 1.72 0.63 0.83 0.72
LayerDocLLM 0.65 1.70 0.68 0.95 0.79
LayerDocLLM+SBERT 0.67 1.68 0.68 0.94 0.79
LayerDocLLMv2 0.69 1.62 0.73 0.95 0.83

LayerDocLLMv2+SBERT 0.70 1.60 0.77 0.97 0.87

Table 4: Results for reading order (p-BLEU and ARD) and word
grouping (F1, P, R) for FUNSD and RICO dataset.

Dataset Model Hierarchy Reconstruction Rand-index Test
mAP (↑) P R F1

FUNSD
LayoutLMv1 [51] 0.27 0.51 0.54 0.52
LayoutLMv2 [52] 0.35 0.61 0.62 0.61
LayerDocLLM 0.45 0.77 0.72 0.74
LayerDocLLM+SBERT 0.48 0.72 0.81 0.76

LayerDocLLMv2+SBERT 0.50 0.78 0.83 0.80

RICO

Faster-RCNN [42] 0.15 0.32 0.33 0.33
UEID [6] 0.21 0.35 0.48 0.39
DETR [5] 0.21 0.43 0.48 0.45
LayoutLMv2 [52] 0.23 0.55 0.54 0.55
LayerDocLLM 0.19 0.70 0.74 0.72
LayerDocLLM+SBERT 0.22 0.74 0.73 0.74

LayerDocLLMv2+SBERT 0.27 0.86 0.84 0.85

Hierarchical Forms
DocStruct [47] 0.10 0.35 0.36 0.36
LayerDocLLM 0.10 0.33 0.51 0.40
LayerDocLLM+SBERT 0.11 0.36 0.51 0.42

LayerDocLLMv2+SBERT 0.12 0.31 0.55 0.40

Table 5: Results for hierarchy reconstruction (mAP and Rand-
index test) for FUNSD, Hierarchical Forms and RICO dataset.

to Form2Seq and DLV3+ baselines which are specifically
trained on selective components. Moreover, visual modality
does not help element type prediction as headers are usually
localized in a small part of the document and do not benefit
from contextual modeling.

5.2. Group Identification

Hierarchical Forms: Table 2a shows group identification
results where we compare against image segmentation base-
lines - DeepLabV3+ and MFCN for element extraction.
These models often make mistakes in case of closely spaced
text blocks and text fields, struggling to predict complete
choice fields and choice groups due to their inability to cap-
ture complete horizontal context. Form2Seq[1] and MMPAN
[17] baselines use LSTM-based seq2seq models to extract
multimodal hierarchical associations. We consider the set-
tings where ground truth is given as input to the next step of
the pipeline. Results for DeepLabV3+, MFCN, Form2Seq,
and MMPAN are derived from [1] which evaluated them to
work with specific inputs (text blocks) and to give certain
outputs (text blocks, choice groups, choice fields), hence
the sparsity in their results. We additionally evaluate Doc-
Struct [47] on Hierarchical Forms, a recent state-of-the-art
method for layout structure extraction by re-implementing
it for generic semi-structured documents. RICO: We eval-
uate the task of group identification on RICO using hybrid
deep networks (UIED), traditional (Faster-RCNN) as well as
Transformer-based DETR for 2D object detection baselines.
The input to the model is the raw document image while the
outputs are predicted bounding boxes with class labels. Lay-
outLMv2 model is fine-tuned and evaluated similarly to [27].
Performance of LayerDoc: LayerDoc is significantly

better compared to all baselines by a large margin for Hi-
erarchical Forms, except for Choice Fields. Form2Seq and
MMPAN outperform in grouping text blocks and widgets into
choice field elements as they were designed to selectively
handle such elements. DocStruct severely underperforms
against LayerDoc on complex hierarchical forms due to
the lack of document-level context and inability to general-
ize beyond simple key-value pair elements. For RICO, both
Faster-RCNN and DETR are weaker than LayerDoc as
they do not leverage multimodal input. LayerDoc outper-
forms LayoutLMv2 due to its superior recursive parent-child
link prediction approach. Performance on FUNSD: Table 3
compares multiple state-of-the-art methods for element clas-
sification and group identification on FUNSD. LayerDoc
outperforms all other models on extracting and classifying
key-value pairs in noisy forms. Ablation Study: We denote
a darker green shade to indicate better F1 performance,
and ablation is indicated by the ”Modality” column across
the tables. We observe a consistent benefit of using both
visual as well as textual modalities in LayerDoc across all
tasks. Visual cues extracted by Detectron2 in LayoutLMv2
backbone improves performance as most semi-structured
documents have visually rich elements such as tables, check
boxes, widgets, buttons, input fields. Semantic cues help
improve identification of most elements, except table and
sections elements as they rely more heavily on spatial bound-
aries and neighbouring white spaces for accurate extraction.

Hierarchy Reconstruction: We evaluate the predicted doc-
ument layout hierarchy in Table 5. Elementary tokens
(words+bounding boxes) are input and each layer uses the
predictions from the previous layer in a recursive man-
ner. Unlike past hierarchy extraction techniques applied
to FUNSD [47], we do not assume ground truth parent boxes
to be a part of the input during hierarchy inference. We
evaluate using Mean Average Precision (mAP) of predicted
boxes with a 0.5 IoU threshold between ground truth and
predicted bounding boxes. To generate hierarchies from
baseline models, we use the elements detected at inference
to arrange them in a bottom-up hierarchy based on geometric
constraints. We show that LayerDoc with LayoutLMv2
and SentenceBERT outperforms other configurations on all
three datasets where ablations show the usefulness of visual,
spatial and textual cues.

Reading Order: Table 4 compares reading order of OCR to-
kens based on the extracted layout hierarchy. We implement
a heuristics baseline that linearly sorts the words from left to
right and top to bottom based on OCR box coordinates. We
report results on FUNSD and RICO datasets and conclude
that LayerDoc achieves the SOTA results. Comparing
LayerDoc’s performance on FUNSD with LayoutLmv1,
LayoutLMv2, LayoutReader[46] and ROPE[24] shows com-
petitive p-BLEU performance and reduction in ARD by
approximately 10%. For RICO, we compare the reading or-
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(a) (b) (c) (d)

Figure 3: Example illustrations of predictions by LayerDocLLMv2+SBERT on the test set of the Hierarchical Forms dataset.
Blue boxes denote input child boxes while green boxes indicate detected parent box in the hierarchy. The pink box in (b)
highlights the semantically unique spatial groups inferred from document layout hierarchy.
(a) Field - widget pairs are detected with high precision with spatially consistent boxes being grouped together.
(b) Non-trivial form fields aggregated based on their semantic meaning. Eg., addresses in text fields are grouped into text block.
(c) Extracts difficult non-symmetric TextBlocks despite multiple levels of nesting.
(d) Errors in Choice fields grouping due to initial mistakes in grouping of widgets propagates to later choice groups grouping.

der derived from the layout hierarchy as extracted by UIED,
Faster-RCNN, DETR, and LayoutLMv2. LayerDoc gen-
erates better reading order compared to competitive object
detection methods. Our contribution becomes significant for
RICO dataset where reading order is complicated by deep
nested hierarchies. Ablation experiments show that both
layout and textual information play equally important roles.

Word Grouping: We observe an improvement of 4% and
10% in F1-score of word grouping performance on FUNSD
and RICO datasets, respectively. LayerDoc is able to cap-
ture the complete text layout that helps it recover missing
words that flow over to the start of the next line at line end.
This is especially important for grouping check boxes and
text fields into choice groups, and table components present
in deeply nested scanned forms.

Impact of SBERT and layer-wise structure on
LayerDoc: We observe a 8-14% performance drop by
removing SBERT in element classification, group identifica-
tion, reading order and word grouping tasks, demonstrating
its importance to LayerDoc with a LayoutLMv2 backbone.
However, even without SBERT, LayerDoc outperforms the
LayoutLMv2 baselines on RICO by 10-14%, demonstrating
that the layer-wise structure of LayerDoc is also important.
Computational cost: On an average, LayerDoc requires
≈10 times less forward passes to generate complete hierar-
chy compared to the DocStruct/LayoutLMv2 baseline as it
can perform link prediction between a proposed parent box
and all child boxes in a layer through its contextual model-
ing instead of comparing all possible pairs of parent-child
pairs across different layers one at a time. This results in
reduced search space. LayerDoc has comparable parame-
ters to LayoutLMv2, with the additional parameters from
linear layers. Hence their time complexity is comparable,
yet LayerDoc outperforms due to algorithmic modifications

rather than model size. Figure 3 presents some illustrative
examples with inferred layout hierarchies by LayerDoc.
Error Analysis: (i) Recursive Error Propagation: Figure 4
(appendix) shows that grouping performance reduces higher
up the predicted hierarchy as elements detected in the initial
layers are used for predicting elements in the subsequent lev-
els of the hierarchy, causing error propagation. (ii) Lack of
parent-box context: Our approach infers one parent box at a
time in a given layer. Despite optimal layer-wise parent-box
selection, errors produced at this step cannot be backpropa-
gated during training. Restricted backtracking in future work
may alleviate error accumulation at higher levels.

6. Conclusion and Future Work
We present LayerDoc that uses visual, textual and spa-

tial signals along with constraint inference to extract the doc-
uments hierarchy in a bottom-up layer-wise fashion. Exten-
sive experiments demonstrate the advantages of our method
for extracting specific components of the hierarchy (ele-
ment type classification and group identification) as well as
its downstream applications in reading order detection and
word grouping on three diverse semi-structured document
datasets. LayerDoc enables full-scale hierarchy extraction
from diverse documents to enable form authoring, document
re-flow, and adaptive editing of user-interfaces. Our cur-
rent work is limited by its iterative nature and restricted to
greedy optimizations. Future work can focus on integrating
restricted backtracking in parent selection, layer embedding
for different levels, cross-dataset generalization, semi-greedy
approaches. Hierarchy construction can aid long-context
document understanding for tabular parsing [32], layout-
enriched speech synthesis [31], and NLP tasks like temporal
information extraction [33], temporal dependency parsing
[35], and NLI [34].
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