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Abstract

We propose SLI-pSp, a general purpose Image-to-Image
(I2I) translation model that encodes spatial layout infor-
mation as well as style in the generator, using pSp as the
base architecture. Previous methods like pSp have shown
promising results by leveraging StyleGAN as a generator
in various I2I tasks but they seem to miss finer or under-
represented details in facial images like earrings and caps,
and break down on complex datasets due to their solely
global approach. To address these shortcomings, we pro-
pose a technique termed Spatial Layout Injection (SLI-pSp)
that encodes spatial layout information in the input image
in the StyleGAN generator along with style. We do so with-
out modifying the style vector injection in the generator
through pSp’s map2style network, but rather by combining
SLI with noise layers in the StyleGAN generator at multiple
spatial scales. Such an approach helps preserve global as-
pects of image generation as well as enhance spatial layout
details in the output. We experiment on several challeng-
ing datasets and across several I2I tasks that highlight the
effectiveness of our approach over previous methods with
respect to finer details in the generated image and overall
visual quality.

Generative Adversarial Networks(GANs) [9] have revo-
lutionized the field of generative modelling. A variety of
GAN architectures have been proposed in the recent past
that generate images with excellent visual fidelity and pho-
torealism. Converting an image in a source domain to a
target domain while preserving the core content and adapt-
ing the style according to target domain is termed as Im-
age to Image (I2I) translation [13]. Such I2I problems exist
in various forms [25] and many solutions have been pro-
posed in the following themes: semantic image synthesis
[26, 49, 33, 21, 32], style transfer [34, 19], image inpaint-
ing [48, 28, 30], image super resolution [46, 41], etc.

Consider the task of semantic image synthesis. A funda-
mental question is to understand how well we transform a
semantic map into a realistic RGB image while preserving
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Figure 1. Our proposed SLI-pSp approach helps fix the lack of
spatial context in the image generation process in pSp. By in-
jecting spatial layout information in the decoder, we are able to
synthesize finer and under-represented details (such as earrings,
hats, and hairstyles) that are missed by pSp’s global approach. We
retain global properties of image generation even after our spa-
tial layout injection (SLI), thereby making our method work much
better across I2I tasks.

input semantics. Many previous approaches try to exploit
semantic layout information in the generator by proposing
encoder-decoder architectures [13, 36]. A common pitfall
in such methods seems to be that the network receives the
semantic information once (in the form of input), therefore
it is difficult to maintain that information throughout the
generation process via the decoder. To alleviate this prob-
lem, SPADE [26] proposes spatially-adaptive normalization
that helps modulate the activations at various layers of the
network via spatially adaptive, learnable affine transforma-
tions. However, this approach is limited in terms of rep-
resentational capacity. We address the issue of representa-
tional capacity by having a separate style vector injection as
well as spatial layout injection in the generator.

Another key issue is how well does the discriminator ar-
chitecture utilize the semantic layouts. Previous methods
such as Pix2Pix [13] and SPADE [26] use a multi-scale
PatchGAN discriminator that takes in a label map and an
image as inputs and outputs a predicate (real or fake) as
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its decision. CC-FPSE [21] and OASIS [32] also propose
variants of discriminators which give superior performance
to previous methods. However, it is well known that GAN
based architectures suffer from training instabilities due to
the adversarial (min-max) nature of the learning problem.
While many improvements [23, 42] have been proposed,
many architectures still require lots of tuning to train prop-
erly. We address this issue by adopting and extending the
pSp [29] framework that allows the use of a pretrained
StyleGAN generator as a proxy for the discriminator.

One of the most popular GAN architectures in use is
StyleGAN [17], due to its high quality, state-of-the-art im-
age generation capabilities. pSp [29] proposes an I2I frame-
work using StyleGAN as a generator. They introduce a
Feature Pyramid based encoder which embeds input im-
ages into an intermediate latent space (separate from Style-
GAN’s latent space) and use pretraining of the StyleGAN
generator in lieu of a discriminator. The key advantages of
pSp include less training instability due to no discriminator,
better style vectors injected into StyleGAN generator due to
their encoder and intermediate latent space, along with in-
teresting properties of StyleGAN such as style mixing and
multimodal synthesis. However, due to its global approach
it is not able to represent finer details in its generated images
(Figure 1). While the style gets propagated by its map2style
network, the outputs lack spatial layout consistency that is
provided in the input, and is often crucial in I2I tasks. As a
result, pSp struggles on datasets with more complex details
and higher inter-input image variance. Following are our
key contributions in this work:

1. We propose a simple solution termed Spatial Layput
Injection (SLI) that encodes spatial layout informa-
tion present in the encoder, and propagates it to the
StyleGAN decoder. Since our aim is to encode style
and structure, we do not replace the map2style network
to have a spatial bottleneck (spatial size > 1 × 1), but
rather combine the multi-scale encoder feature maps
with noise layers in the StyleGAN generator.

2. We demonstrate that our approach does not replace
global consistency with local, but rather enhances spa-
tial layout details whilst preserving global aspects of
image generation. (see Figure 2).

3. With our proposed approach, we achieve state-of-the-
art results on face data like CelebA and CelebAMask-
HQ across a wide variety of I2I tasks. We also demon-
strate the effectiveness of SLI-pSp on a more complex,
custom dataset of building images.

4. Finally, we propose that SLI can be seen as a concept
rather than a particular architecture design. We show
that it is amenable to modifications by introducing At-
tentive SLI (ASLI-pSp) to achieve even better results.

Such modifications can be made as seen fit depending
on memory and cost requirements.

1. Related Work

1.1. GANs

Generative Adversarial Networks (GANs) [9] work on
the principle of a min-max game between a generator model
and discriminator model each trying to defeat the other.
GANs have paved way for a variety of generative modelling
tasks across different modalities such as RGB images, depth
maps, segmentation masks, etc. When it comes to facial
data, StyleGAN [17] is considered the state-of-the-art. This
is due to its unique progressively growing structure which
helps in generating high resolution images with great vi-
sual detail. Its mapping network helps disentangle factors of
variation in the data and noise layers in the synthesis block
help with stochastic variations in outputs. While StyleGAN
gives impressive results, there still exist some characteris-
tic artifacts which StyleGAN2 [18] attempts to alleviate.
One of the key issues is the artifacts introduced in generated
images due to AdaIN, therefore normalization is proposed
on the expected statistics of the incoming feature maps.
StyleGAN2-ADA [15] proposes an adaptive discriminator
augmentation scheme which stabilizes and makes Style-
GAN2 training work well in low data regimes. Further, Kar-
ras et al. [16] demonstrate improvement over StyleGAN2
by interpreting all signals in the network as continuous and
deriving small architectural changes to further improve FID
of StyleGAN2. They aim at making the synthesis network
equivariant w.r.t the continuous signal in order to ensure that
the finer details and coarser details transform together using
Fourier features.

Bartz et al. [4] use the noise inputs of StyleGAN model
to transfer content and color information in a fixed Style-
GAN model. They train an encoder to reconstruct and per-
form denoising without re-training StyleGAN. However, in-
stead of using stochastic noise they force the model to rely
only on latent code and only train the layers responsible for
predicting stochastic noise inputs. Abdal et al. [1] propose
a novel algorithm to embed a given image in the latent space
of StyleGAN. They show results for different tasks such as
morphing, style transfer and expression transfer and also
provide insights into the latent space of StyleGAN. Park et
al. [27] propose Swapping Autoencoder model for perform-
ing image manipulation. Their method encodes the image
into two independent components, structure and texture and
then combines them to form a realistic image. The swap-
ping autoencoder consists of an encoder E and a generator
G that form a mapping between the latent image and code,
dividing the latent code into structure and texture and en-
forcing swapping with other images. They also use a patch
discriminator which learns the co-occurrence statistics of
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image patches. Their model is based on Im2StyleGAN [1].
The ability to condition GANs on priors has led to ex-

ponential growth of work in conditional image synthesis,
and more generally, image to image translation methods
discussed further in the next section.

1.2. Conditional GANs & Image to Image Transla-
tion

Conditional GANs enable for a more controlled image
generation by conditioning the generator on some prior.
Previous works have demonstrated the ability of condi-
tional GANs across various modalities such as 3DGAN
[38], SegAN [40], MedGAN [3] for medical image synthe-
sis, text-to-image synthesis such as AttnGAN [39], Stack-
GAN [43], StackGAN++ [44], ACGAN [24], to handwrit-
ten font generation with GlyphGAN [10].

Image to Image (I2I) translation methods aim to learn the
mapping of an image from a source to target domain. Isola
et al. [13] first proposed the I2I method for conditioning
the network on image and further introducing L1 loss in the
objective function. They demonstrated results on multiple
tasks such as image → label, edges → image, day → night
images, map → aerial. The works of Wang et al. [37] ex-
tend this approach for high resolution image generation and
manipulation. Coming specifically to the task of semantic
image synthesis, usually the semantic mask is provided to
the generator via an encoder mapping [13, 37, 33]. How-
ever, it doesn’t lead to great semantic coherency in the final
image. Therefore, SPADE [26] method uses spatially adap-
tive normalization layers to modulate activations of the gen-
erator network. In CC-FPSE [21], the authors propose using
a Feature Pyramid based Discriminator to work at multiple
scales unlike a conventional PatchGAN discriminator. In
OASIS [32], the authors propose using a semantic segmen-
tation based discriminator to get better mIoU scores for the
generated images. They also get rid of a traditional encoder
and instead enable multi-modal synthesis directly by sam-
pling a 3D noise tensor at each layer of the model.

pSp [29], on the other hand, proposes to solve various
I2I tasks with a common architecture unlike previous men-
tioned methods. It uses an intermediate style space to em-
bed input images and uses pretraining of a StyleGAN model
as a proxy for the discriminator. It also uses a Feature Pyra-
mid based encoder to better extract style vectors for mul-
tiple scales. We identify the shortcomings of pSp’s global
approach to I2I tasks, and propose Spatial Layout Injection
(SLI) into the generator model to better preserve local struc-
ture information present in the input image. Such informa-
tion is crucial for tasks such as semantic image synthesis,
inpainting, super resolution, etc. We do so without compro-
mising the global approach of pSp that is provided by the
style vectors being injected in the generator.

Alaluf et al. [2] propose a method for iterative refine-

ment over the baseline pSp architecture. At every time step
they provide the network with current input and the output
obtained at the previous time step while the inital output is
initialized using the latent average.

1.3. Self-Attention Methods

Transformer architectures were initially proposed for
machine translation tasks [35] in NLP, but these models
have made their headway into computer vision in recent
years. ViT [8] made a breakthrough with its superior perfor-
mance on large scale dataset like ImageNet. Other key ar-
chitectures include DETR [5] for object detection, VilBERT
[22] for vision and language tasks and CCNet [12] for se-
mantic segmentation. BoTNet [31] proposes a hybrid model
which uses both convolutions and self-attention. This is dif-
ferent from other models like DETR and CCNet as they use
self attention outside their backbone unlike BoTNet. We
use BoTNet as a modification to the simple SLI-pSp model,
and denote it by ASLI-pSp. Note that this modification is
merely to portray how SLI can be seen as a concept and
upgraded in its implementation depending on memory and
cost requirements. We do not perform quantitative stud-
ies across attention models to compare performance of our
technique.

2. Approach
In this section, we present SLI-pSp, a model that intro-

duces a spatial layout injection from the encoder to Style-
GAN noise layers, thereby enabling better performance in
image-to-image translation tasks. We use pSp framework
as the base architecture and utilize multi-scale features from
the encoder to produce better local consistency in the gen-
erated images while retaining global properties. We empiri-
cally show that such feature injections help preserve seman-
tic details better, while also enjoying the interesting proper-
ties like multi-modal synthesis that StyleGAN has to offer.

2.1. Baseline Method

We first briefly revisit the key components of StyleGAN
and pSp framework that form the backbone for our method.

StyleGAN [17] proposes a novel style-based generator
architecture for unconditional image generation. A key idea
is to transform the latent vector z ∈ Z via a mapping net-
work f into a vector w in the intermediate latent space W .
This aids the representation to be more disentangled with
respect to the factors of variation in the network. w is then
propagated via learned affine transformations to the synthe-
sis network as styles y that control the Adaptive Instance
Normalization (AdaIN) after convolution operations. Fi-
nally, to encourage stochastic variation in generated images,
explicit single channel Gaussian Noise is fed to each layer
of the synthesis network.
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Figure 2. SLI-pSp framework. We extract feature maps using a feature pyramid network. These features are propagated via map2style
blocks and injected into the StyleGAN generator. While this serves the global aspect of image generation, we also propagate these encoded
features via Spatial Layout Injection (SLI) blocks to combine with the Noise Layers of StyleGAN. This helps in providing spatial context
to the image synthesis process, as is required for various I2I tasks.

pSp [29] proposes a Feature Pyramid Network based en-
coder framework which embeds input images into an ex-
tended latent space W+. The intermediate style repre-
sentation offers many advantages such as the ability to re-
sample style vectors thereby providing support for multi-
modal synthesis. They also propose a new way to use a
pretrained StyleGAN generator model for generic image-
to-image translation tasks. The style vectors are passed to
the StyleGAN generator corresponding to their scales. A
key advantage of this approach is that it does not require
training a discriminator network.

2.2. Spatial Layout Injection

One the drawbacks of pSp’s global approach is that it
seems to miss finer or underrepresented details in the face
images, such as earrings or caps. On probing further, this
approach broke down when tried on other datasets with
more variation and complexity such as Places2 [47]. This
is due to a lot of high frequency information and numer-
ous objects in a scene that are insufficient to be captured
without transfer of input spatial layout information. pSp’s
map2style network downsamples the spatial resolution to
1 × 1, thereby hindering propagation of input layout infor-
mation from the encoder.

To remedy this, we propose Spatial Layout Injection
(SLI) that encodes spatial layout information and propa-
gates it to the pretrained StyleGAN generator. One way

to inject such information could be by modifying the
map2style network to create a spatial bottleneck and prop-
agating style and encoded spatial layout to the generator.
However, there is merit in having a global approach as is re-
quired by certain I2I tasks. Therefore, we strategically em-
bed the feature maps from the encoder by combining it with
the noise layers in the generator without changing the style
injection via map2style in the network. Since the authors
of StyleGAN state that the noise injected separately allows
for local stochastic changes this makes it a suitable location
for the injection of the features. Further since StyleGAN
uses hierarchical generation and synthesises finer details at
higher levels we restrict feature injection to lower scales to
ensure higher flexibility. Let the encoder feature maps be
denoted as Êi, where i ∈ {16, 32, 64} corresponding to the
spatial scales of the feature maps. These are generated using
feature pyramid over a ResNet backbone. Let the noise lay-
ers in the StyleGAN generator be represented by Nj , where
j ∈ {4, 8, 16, ..., 1024} represents spatial sizes. The com-
bined spatial layout feature maps and noise added to the
generator, B′ can we written as

B′ = concat(conv(Êi), Ni) i ∈ {16, 32, 64}, (1)
were conv represents a convolution layer which reduces
number of channels from 512 to 256 and concat operation
concatenates along the channel dimension as spatial sizes
are the same. Instead of using a single channel noise which
is then broadcasted and added to the output of correspond-

4098



ing convolution, we use a 256-channel noise which is then
combined with a 256-channel SLI.

This ensures that style propagation via the map2style
network remains unhindered, whilst scene layout informa-
tion is also injected into the generator. These feature maps
are multi-scale so it is possible to choose the scale and num-
ber of feature maps to inject in the generator. An added ad-
vantage of SLI is that it is input modality agnostic, i.e the
input could be a segmentation map, edge map, blurry im-
age etc. without any change required in the architecture.
Moreover, this is done without compromising the Style-
GAN properties, e.g multi-modal synthesis via style-mixing
as shown in supplementary.

2.3. Variant - Attentive Spatial Layout Injection

To show the versatility of the SLI concept, we employ a
variant of SLI with attention, namely Attentive SLI (ASLI-
pSp). We use Bottleneck Transformers as introduced in [31]
for our attention layer. This modification can be understood
via the following equation
B′ = concat(botnet(conv(Êi)), Ni) i ∈ {16, 32, 64},

where botnet(.) is the Bottleneck Transformer opera-
tion that takes in the output of the encoder feature maps
after they are passed through the conv layer. The botnet-
transformed feature maps are then similarly concatenated
with the noise layers in the StyleGAN generator. We will
see in later sections how such a modification can boost
scores like FID.

2.4. Loss Functions

We use similar loss functions as done in pSp as it serves
for a fair comparison with our proposed approach. We also
employ a weighted combination of losses that are listed be-
low. The pixel-wise reconstruction loss (or L2 loss) is de-
fined as

L2(x) = ||x− SLIpSp(x)||2
We also use an LPIPS [45] loss which helps preserve image
quality. Here, F(·) denotes the perceptual feature extractor.

LLPIPS(x) = ||F (x)− F (SLIpSp(x))||2
The latent vector regularisation loss helps the encoder E

to generate style vectors in the latent space closer to average
latent vector w.

Lreg = ||E(x)− w||2
For facial images, preserving identity is crucial. Hence, an
ID Loss is also employed when dealing with facial images.
The loss measures the cosine similarity between input and
output image.

LID(x) = 1− ⟨R(x), R(SLIpSp(x))⟩,
where R(.) is a pretrained ArcFace Network [7]. Thus, the

final loss equation can be expressed as
L(x) =λL2

L2(x) + λLPIPSLLPIPS(x)+

λregLreg(x) + λIDLID(x)

3. Experimental Setup
We demonstrate our approach across a wide variety of

tasks and datasets to illustrate the benefits of combining
style and spatial layout information in an I2I setting. Specif-
ically, we pick the following tasks: Segmentation Map to
Face (Seg2Face), Super Resolution and Edges to RGB Im-
age. We use the default training settings as in the original
method proposed in [29] and train for a max 500000 steps
on NVIDIA Tesla V100 32GB GPU and a batch size of 8.

3.1. Datasets

• CelebA-HQ [14]: It contains about 30,000 high reso-
lution face images from the CelebA dataset. The train
set consists of about 24,000 images. It is used in our
Super Resolution task.

• CelebAMask-HQ [20]: It is a derivative of the
CelebA-HQ dataset with same train-test splits, but
comes with segmentation masks. Each mask of an im-
age is manually annotated, and the dataset contains 19
classes such as skin, nose, eyes, lip, hair, etc. We use
this for Seg2Face Task.

• AFHQ-Dog [6]: This dataset is a collection of around
5000 high quality dog images (faces), of which about
500 images form the test set. We showcase Super Res-
olution results on this dataset.

• Places2-CustomBuildings: We extract a few building
categories from the Places2 dataset [47] for pretraining
of the StyleGAN generator. These include building fa-
cade, courthouse, manufactured home, office building,
parking garage-outdoor and residential neighborhood
and total to about 150,000 images. We select a subset
of around 30,000 images from these as train set (and
∼ 3700 as test set) for evaluating the baseline pSp,
and our methods SLI-pSp and ASLI-pSp. A custom
dataset is chosen to showcase the effectiveness of SLI
in the generated images. We use this dataset for Edges
to RGB image task.

3.2. Training Details

Similar to the pSp framework, we train our network
using the ResNet-IR architecture. Further, for each of
the datasets mentioned above we train the StyleGAN sep-
arately and the use it as the decoder with the modified
psp-Encoder for further training in a conditioned setting.
The pSp-Encoder is trained from scratch while the Style-
GAN is further fine-tuned. Input image size is 256 × 256
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for all tasks across different datasets. The learning rate
for the experiment is 0.0001 with Ranger optimizer. The
loss coefficients used were the same as in pSp training, i.e
λLPIPS = 0.8, λL2

= 1.0, λreg = 0.005. LID is not used
for any task except CelebA-Super Resolution, which uses
λID = 1.0. The training times of both StyleGAN and pSp
are the similar to the original works and we use the original
configurations for the same.

4. Results and Discussion

To evaluate the effectiveness of SLI, we compare our ap-
proach to pSp and a few other baselines across a variety
of I2I tasks. We describe the experiment, its results and
quantitative evaluations to assess image diversity, quality
and correctness. We then discuss the key differences of our
approach with respect to the results.

Input

Pix2Pix

Spade

CC-FPSE

pSp

SLI-pSp

ALSI-pSp

Figure 3. We show results on the Seg2Face task using the
CelebAMask-HQ dataset and compare it to some previous works.

4.1. Segmentation Map to Face Image

Method: The generated face images are conditioned on
corresponding segmentation maps provided during training
and inference. During evaluation, we do style-mixing at
higher level features, i.e we combine latent code of input
image (segmentation mask) with a randomly sampled latent

vector. We evaluate our method against various baselines.

We evaluate SLI-pSp and ASLI-pSp on CelebAMask-
HQ dataset by synthesizing face images from segmentation
maps. One of the biggest differences in the generated out-
puts is that SLI variants can synthesize smaller and under-
represented objects in the dataset, such as earrings while
maintaining image quality as shown in Figure 1. In addi-
tion to that, we observe a tighter correspondence of the gen-
erated images with the label map. This is especially evident
in the case of varying hair styles (See Figure 1 (b), (c) and
Figure 3). We quantify this tighter correspondence by com-
puting mean IoU scores across classes using the generated
images for each method.

Table 1. Quantitative evaluation on the test set.
Method LPIPS Loss ↓ FID ↓ mIoU ↑

pSp 0.35 53.90 0.61
SLI-pSp 0.31 37.32 0.81

ASLI-pSp 0.32 36.89 0.81

Additionally, as it is shown in Figure 1(c), pSp confuses
the cap class with hair, and generates a photorealistic but
semantically incorrect image. In this case, both SLI variants
are able to capture the correct semantic information. Note
not only does our method generate the correct cap structure
while displaying the right texture, it also displays realistic
lighting along the contours where the shadow of the cap is
visible.

To evaluate quantitatively, we employ various metrics
such as LPIPS, FID and mIoU. FID [11] is used as a proxy
for realism, and is sensitive to both quality and diversity.
The SLI-variants perform significantly better than pSp with
a difference of greater than 16 points. The mean IoU scores
are computed by evaluating the label map synthesised by
our generated images against ground truth label maps using
a pre-trained segmentation network. We outperform pSp in
this regard as well, and it strengthens our qualitative anal-
ysis about SLI variants being better with respect to under
represented objects in the data.

4.2. Edges to RGB Image

We explore our method on another task which takes an
edge image as input and generates an RGB image. After
evaluating on face data which StyleGAN can handle rela-
tively well, we wanted to stress test our method on a com-
plex dataset. Therefore, we compiled building images from
various categories in the Places2 dataset, termed as Places2-
CustomBuildings. The variance among images is high as
these buildings have been captured in varying lighting con-
ditions, different poses and comprise of different types of
structures like church, skyscrapers, residential homes, etc.
We then create edge images for the dataset using Canny
edges and some post-processing to decrease noisy edges.

4100



Edges Psp SLI-pSp GT

Figure 4. Results on Places2 dataset. Our method generates much
reliable information due to feature injection.

Table 2. Quantitative Results for Edges to RGB image task on
Places2-CustomBuildings dataset.

Method LPIPS Loss ↓ FID ↓
pSp 0.48 236.733

SLI-pSp 0.32 23.71
ASLI-pSp 0.31 28.71

We observe that pSp doesn’t perform well on this dataset
at all and produces generic facade details which seem to
be common across different input edge images, although it
does very loosely follow the outline of the building and the
sky. We attribute this to two primary factors, a) the lack of
spatial information in the image synthesis process, and b)
lack of semantic context in the edges. This can be verified
by the very high FID score achieved by pSp on this task.
The same set of edges can be used for representing a variety
of different scene components unlike face data, where one
can visually distinguish between the edges that create dif-
ferent facial structures such as nose, ears or mouth, thereby
making the problem highly ill-posed. On the other hand,
we notice that SLI-pSp is able to capture spatial layout very
well and is able to map the highly concentrated edges to
semantically consistent building components which make
sense globally (image-level). We see in Figure 4(c), how
our method is able to capture the individual window de-
signs, and even engravings in the buildings (Figure 4(d))
unlike pSp. We also outperform pSp by quite a margin
quantitatively (Table. 2). While the generated image by
our method lacks the visual quality that we got on facial
images (primarily due to complexity of task and data), we
put forward a strong case for SLI as an idea to be explored

even further, along with the idea of using style vectors in
the generation process, as done in pSp.

4.3. Super-Resolution

Method: We follow the pSp setup to synthesize high res-
olution images from their low-resolution counterparts. We
downsample the high resolution images at various scales
(x2, x4, x8, x16, x32) using bi-cubic interpolation and use
it as the input image.

We showcase our method’s performance on the Super-
resolution task. We choose 2 datasets: CelebA and AFHQ-
Dog on which we evaluate our method’s performance.

In the case of CelebA, we notice that our method visu-
ally performs at par with pSp, but is better at preserving
spatial information present in the downsampled input. SLI
variants are especially better at preserving the hairstyles and
color scheme of the clothes present in the low resolution im-
age (See Figure 5 (top)). On observing Figure 5(bottom),
we notice how well SLI variants can capture objects like
caps that are omitted by pSp and misrepresented as hair.
Similarly, we also notice the hairstyle is kept consistent in
the upsampled images by SLI variants as opposed to pSp.
The above claims are well supported quantitatively (Table
3) by substantial improvements in FID scores. LPIPS and
L2 losses also show a reduction on the test set, thereby
signalling better performance using SLI. We do notice a
slight reduction in sharpness of the image generated by our
method that can be attributed to the introduction of local
information injected by SLI, and is definitely something to
improve as future work.

Table 3. Quantitative Results for Super resolution task on CelebA.
We evaluate on data with 8x and 16x downsampling. SLI variants
show substantial improvements across various metrics.

Method LPIPS Loss ↓ L2 Loss ↓ FID ↓
pSp(8x) 0.23 0.06 31.35

SLI-pSp (8x) 0.12 0.01 10.21
ASLI-pSp (8x) 0.10 0.01 9.90

pSp(16x) 0.24 0.06 32.53
SLI-pSp (16x) 0.18 0.02 18.33

ASLI-pSp (16x) 0.17 0.02 18.01

We also evaluate the task of super-resolution on the
AFHQ-Dog dataset, which is different compared to the hu-
man faces dataset on which StyleGAN works quite well.
We observe how pSp misses out on upsampling colors cor-
rectly, and that SLI-pSp does a better job at generating more
accurate colors and lighting in the scene. We also notice
in Figure 6 (1st and 3rd row), how SLI variants are able to
preserve the yellow part of the green grass. This can be ar-
gued to be representative of style of the input image (and not
merely structural) which our method is able to capture. We
do notice a little washing out of colors in our ASLI variant
that would be investigated in future work.
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Overall, for tasks like super-resolution, we argue for ap-
proaches which encode spatial features accurately in the
generation process as it is imperative to have an accurate
structure in the generated “upsampled” image. This is
achieved to a great extent by our SLI-pSp method.

8x 16x 32x GT

Input

Psp

Ours

Input

Psp

Ours
Input pSp Ours Ours+attention

Figure 5. Superresolution Results. We observe a mild tradeoff be-
tween preservation of semantics and overall image quality in both
methods due to introduction of locality bias

Input pSp Ours Ours GT
+attention

Figure 6. Results on AFHQ super-resolution. First row shows re-
sults for incorrect color, second and third row show results for
incorrect structure and colors.

5. Conclusion, Limitations and Future Scope

In this work, we have identified the shortcomings of pSp,
a generic Image-to-Image translation framework. We dis-
cover that due to the global approach of pSp, and the lack
of spatial layout context in the image generation process,
it is not able to synthesize finer and less represented de-
tails in the dataset, and fails to work in more complex data
settings. We propose a simple fix termed Spatial Layout
Injection (SLI) that encodes the spatial layout information
from the input image and propagates it to the StyleGAN de-
coder. While there is advantage in having a global approach
for certain problem settings, we argue that it is not suffi-
cient, and that we need both style and spatial information in
the image synthesis process. Hence, SLI-pSp combines the
multi-scale encoder feature maps with the noise layers in
the StyleGAN generator, without modifying the style prop-
agation component. We demonstrate through our detailed
experiments that we don’t replace global context with lo-
cal, but rather amplify the spatial layout details required for
many I2I tasks. We showcase results and comparisons with
pSp on various tasks such as segmentation map to face im-
age, edges to RGB image, and super resolution. We eval-
uate these tasks across various datasets and show qualita-
tively and quantitatively, the importance of SLI as a con-
cept in the I2I process. While SLI is done by a simple conv
operation, we show how it can be upgraded to a different
design choice by introducing ASLI-pSp, depending on com-
putational budget.

While we achieve good performance across tasks, there
is a sharpness reduction issue and artifacts are observed in
some samples in the case of super resolution using atten-
tion mechanism despite a better performance than pSp in
terms of the FID scores. This might require probing vari-
ous configuration changes to the SLI Block or even modi-
fying the encoder for better features to inject in the gener-
ator. We hypothesise that the aritifacts observed in case of
super-resolution are due to strong locality bias without tight
correspondence to the output. While we achieved substan-
tially better results in the edges → buildings task where the
edges have a tighter correspondence to the output, notwith-
standing its ill-posedness and complexity, there is much
room for improvement as the generated images lacked the
finesse present in the facial images. Since our key focus
is on improving synthesis quality we leave inversion for
future research. This could be a potential future direction
where the generator architecture might need to be modified
or maybe a discriminator would aid in better visual quality.
We hope that the simple yet important concept that we ex-
plored would encourage the vision and graphics community
to further conduct research in this direction.
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