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Abstract

We study the problem of extracting biometric informa-
tion of individuals by looking at shadows of objects cast on
diffuse surfaces. We show that the biometric information
leakage from shadows can be sufficient for reliable identity
inference under representative scenarios via a maximum like-
lihood analysis. We then develop a learning-based method
that demonstrates this phenomenon in real settings, exploit-
ing the subtle cues in the shadows that are the source of
the leakage without requiring any labeled real data. In par-
ticular, our approach relies on building synthetic scenes
composed of 3D face models obtained from a single photo-
graph of each identity. We transfer what we learn from the
synthetic data to the real data using domain adaptation in a
completely unsupervised way. Our model is able to general-
ize well to the real domain and is robust to several variations
in the scenes. We report high classification accuracies in an
identity classification task that takes place in a scene with
unknown geometry and occluding objects.

1. Introduction
Imaging scenes that are not in our direct line-of-sight, re-

ferred to as non-line-of-sight (NLOS) imaging, has a diverse
set of applications in several domains such as surveillance,
search-and-rescue, robotic vision, and medical imaging [12].
NLOS imaging methods typically aim to extract information
from the hidden scenes that are outside of our field of view
based on the observations of a visible scene. In this work, we
ask the question whether or not such observations can leak
sensitive information about the hidden scenes. In particular,
we introduce a novel problem where we seek to determine
whether it is possible to extract biometric information of
individuals present in a room by looking at the shadows
on diffuse surfaces induced by their presence as shown in
Figure 1. We investigate this problem in a passive NLOS
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Figure 1: Consider an illustrative scenario where an individual
sits across a TV screen in a given room, and suppose that the light
reflected by the individual creates a shadow of the screen cast on a
blank wall. We demonstrate that such shadows have a potential to
leak biometric information in various scene configurations.

imaging setting, meaning that we focus on scenarios where
we rely on light sources naturally present in the scene.

Passive NLOS imaging methods can address a number
of tasks such as recovering 2D images of the scene [35, 56],
reconstructing videos of unknown scenes [2], and esti-
mating the motion and the number of hidden objects [5].
While several methods aim to recover the entire hidden
scene [35, 56, 2], often in accidental scenarios [43] where
no prior assumptions can be made about the scenes, recov-
ering certain attributes of the scene in such scenarios can
be useful in several applications. For instance, determining
whether or not a non-visible scene includes a person could
be potentially useful for autonomous driving, security, or
search-and-rescue applications [32, 38]. Our focus, on the
other hand, involves recovering biometric information of hid-
den individuals rather than merely detecting their presence.
Here, we define the biometric information as any informa-
tion that might be used to reveal an individual’s identity, in
whole or in part.

In this work, we aim to understand whether otherwise in-
nocuous shadows can be used to reveal at least some biomet-
ric information by relying on existing contemporary learning
tools. We approach this objective by focusing on a specific
instance of biometric information extraction, namely, iden-
tity classification. In other words, we study the problem
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of recovering the identities of people in a given room by
observing shadows of objects cast on a diffuse surface such
as a blank wall. We emphasize that our approach does not
focus on shadows cast by the individuals but the shadows
cast by the objects. We first carry out a maximum likelihood
(ML) analysis of this task, characterizing performance under
varying number of identities and noise levels by leveraging
synthetic face data. Our results suggest that the information
leakage from shadows can be significant under representa-
tive scenarios. Next, we investigate whether our findings
are accurate predictions of what an adversary may be able
to accomplish in practice by developing a learning-based
method that discovers hidden biometric cues in the shadows
without relying on any labeled real data. In particular, we
build synthetic scenes composed of 3D face models obtained
from a single photograph of each identity of interest [9], and
we transfer what we learn from this data to the real data in
a completely unsupervised way by leveraging unsupervised
domain adaptation techniques. Our method generalizes well
to the real domain and is robust to several variations in the
scene, such as the shape of occluding objects, lighting con-
ditions, head poses, and facial expressions. We report high
classification accuracies in an identity classification task that
takes place in a scene with unknown geometry and occlud-
ing objects, suggesting that, indeed, there is a significant
biometric leakage phenomenon.

This work can be viewed as a first step towards under-
standing the degree to which seemingly benign images of
shadow phenomema have the potential to leak at least some
biometric information that could be of societal concern. Such
information leakage might potentially be used with mali-
cious intent, e.g., to determine the presence of an individual
in a room without their consent. We emphasize that we
deliberately do not seek to design an optimized identity clas-
sification system (such as a sophisticated adversary might
want to). Rather, our methodology serves to demonstrate and
characterize the biometric information leakage phenomenon
to raise awareness to an overlooked privacy concern. Our
results suggest that the biometric cues we discover in shad-
ows could be used to distinguish identities as well as to
reliably narrow the identity to within a group of individuals
by extracting some amount of biometric information.

The main contributions of this work are as follows:

• We introduce a timely biometric leakage question,
which we formulate as a novel NLOS imaging prob-
lem of extracting an individual’s identity from subtle,
indirect shadow phenomena.

• Via a maximum likelihood analyis, we show that such
shadows have a significant potential to leak sensitive
information under representative scenarios.

• By combining existing learning tools, we develop a
methodology that discovers biometric cues in the shad-

ows without relying on any labeled real data, and report
nontrivial accuracies in an identity classification task
that takes place in a scene with unknown geometry and
occluding objects.

2. Background and Related Work
We now summarize the key background concepts and

methodologies from 3D face modeling in computer graphics
and domain adaption in machine learning, which we will
leverage in our work. We also include a brief summary of
related work within NLOS imaging—albeit with different
objectives—as additional context for our contributions.

Non-line-of-sight imaging. Based on how the observed
data is collected, NLOS imaging methods can be divided
into two categories: active methods, which typically involve
an imaging device that consists of a coherent illumination
source (laser) and a photon detector, and passive methods,
which do not require such specialized equipment. Passive
methods have been explored in a variety of scene configu-
rations and imaging objectives, and they typically exploit
structure present in the scenes that induces occlusion, which
improves the conditioning of the imaging problem [55].
Among these methods, Bouman et al. [5] shows that ver-
tical occluder structure such as corners can be used to re-
cover 1D projection of a moving scene, from which the
number of people moving in the hidden scene, their sizes
and speeds can be estimated. Seidel et al. extend this idea
to image stationary objects and form 2D reconstructions
of the hidden scenes [37, 36], while Naser et al. [26] de-
tects obstacles around the corners for autonomous driving
applications. However, none of these methods explore ex-
tracting biometric information from NLOS measurements.
In a different setting, [35] uses a pinspeck occluder with
known shape but unknown position to recover 2D scenes
while [56] exploits motion in hidden scenes to recover the
scene without any assumptions about the occluder shape
and position. More recently, [51] and [38] study classifi-
cation tasks from NLOS measurements. Unlike our more
practical unsupervised approach, however, these methods
use supervised learning tools and do not focus on identity
classification. In active imaging methods, on the other hand,
several patches of the observed scene are illuminated so that
the light pulses reflecting on these patches reach the hidden
scene and are reflected back to the photon detector through
the observed scene. The increasing availability of less ex-
pensive time-of-flight sensors has enabled the proliferation
of active NLOS imaging methods [6, 28, 30, 19, 31, 54].

3D morphable face models. 3D morphable face models
are statistical models of human faces [4, 29, 22, 16], which
have been widely used in domains such as face recognition,
entertainment, neuroscience and psychology [11]. Over the
last decade, advances in deep learning allowed these models
to achieve remarkable results in the challenging problem
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of recovering 3D faces from 2D images [33, 10, 45, 34],
where some of the more recent approaches do not require
explicit 3D shape labels [42, 41, 44, 15, 9]. Among these
methods, Deng et al. [9] develops a reconstruction network
that recovers accurate 3D faces from a single image, which
we use in our synthetic data collection.

Domain adaptation. Over the last few years, there
has been a significant amount of work in the area of do-
main adaptation [50, 53], which is the study of transferring
knowledge learned from a source domain to a target do-
main. More recent approaches in domain adaptation are
more concentrated towards deep learning-based solutions
and unsupervised methods where no labels from the tar-
get domain are used. These methods commonly rely on
aligning the distributions of the source and target domains
in feature spaces [14, 46, 48, 25, 39, 24, 47, 13]. Among
these methods, DDC [48] aims for learning domain-invariant
representations by imposing a maximum mean discrepancy
loss [17], Deep CORAL [39] aligns the second-order statis-
tics of the source and the target domains, while ADDA [47]
employs an adversarial discriminator to make the representa-
tions of the two domains indistinguishable from each other.
In another approach, Li et al. [23] shows that updating the
batch normalization statistics [20] for the target domain can
also be very effective, which we employ in our method.

3. Methodology
Suppose we are given M different identities who are indi-

vidually present in a room with an unknown geometry, and
suppose we observe shadows cast by an occluder in the room
blocking the light reflected by each individual. Denoting
each observation as x ∈ Rn (grayscale images of resolution√
n ×

√
n, with

√
n ∈ N) and its ground truth identity la-

bel as y ∈ Y = {1, 2, . . . ,M}, our objective is to learn a
classifier that is capable of reliably inferring identities from
shadows given training data S = {(x1, y1), . . . , (xN , yN )}.

We begin presenting our approach by first describing our
3D face model. Then, we follow an ML analysis to under-
stand how much information is leaked by shadows under
varying numbers of identities and noise levels. Inspired by
our findings, we develop our learning-based methodology
that could be employed to distinguish identities in practice.

3.1. 3D Face Modeling

In our approach, we make use of synthetic face models
which represent faces as triangular meshes. Given a number
of vertices V in a mesh, we represent a face shape s ∈ R3V

(3D coordinates for each vertex) and its texture t ∈ R3V

(RGB colors for each vertex) with the following linear 3D
morphable model [29, 7]:

s = s̄+Midαid +Mexpαexp

t = t̄+Mtexαtex

(1)

where s̄ ∈ R3V and t̄ ∈ R3V are the mean shape and mean
texture of the model; Mid ∈ R3V×kid , Mexp ∈ R3V×kexp

and Mtex ∈ R3V×ktex are the identity, expression and tex-
ture bases; and αid ∈ Rkid , αexp ∈ Rkexp and αtex ∈ Rktex

are the identity, expression and texture coefficients. Here,
s̄, t̄,Mid,Mexp, and Mtex are all provided by the model,
whereas αid and αtex are fixed and known vectors obtained
via sampling from a Gaussian prior [11] or by reconstructing
3D faces from 2D images of the identities of interest.

3.2. Maximum Likelihood Analysis

To determine whether and how much biometric informa-
tion leaks from the shadows, we simulate a representative
scene in the synthetic domain. For this, we first describe
our data generation, and in particular the creation of 3D
faces using the model described in (1) and the convolutional
model of occlusion. Next, we present our ML-based learning
algorithm with an objective to obtain lower bound on the
classification accuracy with respect to numbers of identi-
ties and noise levels, where we make certain assumptions
regarding the data distribution to allow for ease of analysis.

3.2.1 Observation Model

Let (αm
id ,α

m
tex), m = 1, 2, . . . ,M , denote fixed and known

identity and texture coefficients of M identities. For simplic-
ity, suppose that the faces are sufficiently far away from the
observation surface so that they can be represented as 2D
rendered images of the 3D face objects, and suppose that we
observe grayscale images of shadows, xm ∈ Rn for each
identity m, according to the following data model:

xm = ARmM̃texα
m
tex︸ ︷︷ ︸

≜ rm

+z = Arm + z, m = 1, . . . ,M

(2)
where M̃tex ≜ [Mtex t̄ ] ∈ R3V×(ktex+1) is the
augmented texture basis that generates a texture map
from a texture code αm

tex ∈ R(ktex+1); the random matrix
Rm ≜ R(αm

id ,α
m
exp,θ

m,γm) ∈ Rn×3V denotes the ren-
dering operation that maps vertex colors of the mesh to
grayscale image pixels as a deterministic nonlinear func-
tion of the fixed and known identity vector αm

id ∈ Rkid , ran-
dom expression vector αm

exp ∈ Rkexp , random pose vector
θm ∈ Rkθ and random lighting γm ∈ Rkγ ; A ∈ Rn×n is an
unknown light transport matrix that maps a face image to a
shadow image due to the presence of an occluder; and finally
z ∼ N (0n, σ

2In) ∈ Rn denotes the additive noise due to
thermal noise and shot noise [55], assumed to be statistically
independent of the signal-related term Arm, where In is the
n-dimensional identity matrix.

3.2.2 3D Face Generation

We generate faces using the Basel Face Model 2009 [29] with
the neck and the ear regions excluded. We randomly generate
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Figure 2: M = 16 randomly sampled identities we use in our
experiments, rendered with neutral expressions (i.e., αexp = 0),
same head poses and lighting conditions. Identities differ only with
respect to their textures. In the experiments, textures are converted
to grayscale to avoid potential reliance on color information.

Figure 3: Representative shadow images for each identity, normal-
ized to the range [0, 1] for illustration purposes.

M = 16 identities by sampling αtex from N (0ktex
, Iktex

)
and setting αid = 0kid

, i.e., the identities have the same
face shape under the same facial expression. Hence, the
differences between identities only result from the texture,
as we seek to show that subtle differences in texture alone
can be sufficient to distinguish identities from each other.
The expression basis is provided by the model constructed
from the FaceWarehouse dataset [7], which we use to sample
identities with varying expressions. Finally, we render the
faces with random pose and lighting parameters (θ,γ). We
illustrate the 16 identities under neutral expressions, same
head poses, and lighting conditions in Figure 2.

3.2.3 Convolutional Model of Occlusion

In this part of our analysis only, we assume that the face
and the occluder lie in 2D planes that are parallel to each
other as well as to the observation plane. This gives rise to
the convolutional model of occlusion, a model commonly
adopted in passive NLOS imaging applications [21, 56].
Under this model, assuming the occluder is an opaque object
that completely blocks the light, the light transport matrix A
can be defined as Aij = 0 if the occluder blocks the light
coming from i-th pixel of the face image to j-th pixel of
the observation plane, and Aij = 1/n otherwise. Here, the
(1/n)-scaling ensures that the observed total power does not
exceed the total power reflected from the face [55, 3]. We
illustrate representative images of shadows obtained with this
model in Figure 3, where a rectangular occluder is simulated.

3.2.4 Learning Algorithm

Let rm be the random vector representing random face im-
ages for identity m as defined in (2). Given a fixed but un-

known A, we assume that the noiseless images of shadows
Arm are normally distributed with mean µm and covari-
ance Σm, i.e., Arm ∼ N (µm,Σm). Since we assume that
the noise z is statistically independent of these images, the
labeled examples xm for each identity m are distributed ac-
cording to N (µm,Qm), where Qm ≜ Σm + σ2In. Given
training data {xm

1 , . . . ,xm
N} for each identity m, we first

compute the sample means and covariances as

µ̂m ≜
1

N

N∑
i=1

xm
i Q̂m ≜

1

N

N∑
i=1

(xm
i − µ̂m)(xm

i − µ̂m)T

(3)
At test time, given a test observation x, assuming each iden-
tity is equally likely and that the determinant of the covari-
ance matrices of each identity are equal to each other, the
ML estimation rule is given by

m̂ = argmin
m=1,2,...,M

(x− µ̂m)T
(
Q̂m

)−1
(x− µ̂m) (4)

In practice, since n is typically very large, we cannot assume
that N ≫ n. Therefore, inverting the sample covariance
matrices obtained by a finite number of samples N does
not yield a robust classifier. Assuming rank(Σm) = r for
any m, and denoting the eigenvalue decomposition of the
m-th sample covariance matrix Q̂m ≜ UmΛm(Um)T with
Λm = diag(λm

1 , . . . , λm
n ) such that λm

1 ⩾ · · · ⩾ λm
n > 0,

we propose the following improved procedure. Since the
noise is assumed to be spatially white, we first estimate the
noise variance for each identity as [52]

σ̂2 =
1

n− r

n∑
i=r+1

λm
i (5)

Then, we set the refined estimate Q̂m = UmΛ̄m(Um)T,
where Λ̄m = diag(λm

1 , . . . , λm
r , σ̂2, . . . , σ̂2), and adopt the

ML estimator defined in (4).

3.3. Neural Network Classifier

As an example of the kind of processing an adversary
seeking to extract biometric information might use in prac-
tice, we now develop a learning-based framework suitable
for identity classification in real settings, where we assume
that the occluder shape is not fixed but arbitrary. Since we
follow a data-driven approach, representing possible varia-
tions such as the occluder shape, lighting conditions, facial
expressions, and head poses in the training data is crucial to
achieve a robust classification system. Because collecting
such data is highly impractical, we develop a method that
avoids such challenges. In particular, we use 3D graphics
software to collect large amounts of training data by placing

In fact, this is only asymptotically an ML classifier, since we use the
sample means and covariances obtained from a finite number of samples.
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Figure 4: Face reconstructions of M = 2 identities we use in our
experiments, rendered with varying expressions. Given RGB recon-
structions of the faces, we first convert their textures to grayscale
and match their average intensity levels. Expressions are randomly
sampled and varied in the dataset.

3D faces and objects into simulated scenes. Then, we trans-
fer what we learn from these scenes to the real settings by
employing unsupervised domain adaptation techniques.

3.3.1 3D Face Generation

To minimize the gap between the synthetic and real domains,
we use a 3D face reconstruction network [9], which allows
us to obtain a 3D model of an identity from a single image.
The reconstructed faces in this work also follow the Basel
Face Model 2009 [29] with the neck and the ear regions
excluded, which ensures that the network trained with the
synthetic data relies only on the identity information, i.e.,
information such as the thickness of the neck or the contrast
between the hair and skin intensities cannot be exploited
in our method. As before, we create variations in facial
expressions using the model obtained from [7]. We convert
the reconstructed textures to grayscale to avoid potential
reliance on color information, and scale the intensity levels
of the two identities so that the average intensity of their
textures are the same. We show the reconstructed faces with
varying expressions in Figure 4.

3.3.2 Scene Geometry and Datasets

Our imaging configuration includes the following: a person
whose identity is unknown, a light source that illuminates
the face of this person, a blank wall where we make our
observations, and an occluding object that creates shadows
on this wall. For illustration purposes, we focus on chairs
as occluding objects, as they are one of the most common
and diverse classes of indoor objects. However, we empha-
size that our method can easily be extended to handle more
classes of objects by incorporating them in the training set.

In our synthetic data collection, we use 3D chair models
provided by ShapeNet [8]. We use a white planar object as a
wall and a white spotlight as an illumination source. When
we render the scenes, we cover as much variation as possible
by changing the pose, position and expression of the faces,
and vary the position of the light sources. We illustrate a
representative synthetic scene in Figure 5a.

In our real data collection, the individuals sit across a
blank wall individually, where a chair is positioned between

x

y

z

(a) Synthetic scene geometry

(b) Real scene geometry

Figure 5: Scene geometries for (a) synthetic and (b) real settings.
Both scenes consist of four main components: a person whose
identity is unknown, an illumination source, a blank wall, and an
occluding object that creates the shadows on the wall. The light
reflecting from the face creates shadows of objects on the wall.

the identity and the wall. The faces are illuminated by spot-
lights in different positions while the expressions and poses
of the subjects, as well as the pose of the chair, are var-
ied during the data collection process. We performed these
experiments in a physical space shown in Figure 5b.

3.3.3 Domain Adaptation

Given two sets of data S = {(xs
1, y

s
1), . . . , (x

s
N , ysN )} and

T = {(xt
1, y

t
1), . . . , (x

t
N , ytN )}, which represent the source

data and the target data, respectively, our objective is to learn
a classifier using the source data S such that it performs well
on the target data T . This can be achieved in a supervised
manner by using very few labeled samples from T , or in an
unsupervised manner by using no labeled samples from T .
In this work we follow the latter, as we seek to ensure that the
supervision signals coming from the target domain involve
only identity information, i.e., these signals may depend
on unintended cues from the real settings such as clothing,
reflectance of the hair or other unintended phenomena.

Our method involves training a classification network that
follows the ResNet-18 architecture [18], where we change
the final classification layer so that it reflects the number
of classes in our application. Initializing the feature ex-
traction module with the pretrained weights, we first train
the network on the synthetic data in a supervised manner.
Then, we freeze the learned weights and update the running
means and variances of each batch normalization layer in
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Figure 6: Empirical results for maximum likelihood classification.
Top: Classification accuracies with respect to varying number of
identities and signal-to-noise ratio (SNR). Bottom: Classification
accuracy with respect to the distance between the estimated means
of the identities and SNR.

the network [20, 23] by feeding the unlabeled target data
T = {xt

1, . . . ,x
t
N} through the network. As we will show

in the next section, the updated network generalizes well to
the test samples from the target domain.

4. Experiments and Results
We describe our experiments and present their results

by first focusing on our ML classifier and characterizing its
performance with respect to the number of identities and
noise levels. Next, we focus on our neural network classifier
by elaborating on the real and synthetic data colletion, and
provide accuracies obtained in different stages of the method.

4.1. Maximum Likelihood Analysis

Following the data generation pipeline we described in
Section 3.2, we generate 20000 samples for each of the 16
identities, where we randomly change the head poses, facial
expressions, and lighting conditions (we include the details
of this process in the supplementary material). We split this
data into train and tests sets with 90%–10% split, which
gives us 18000 train and 2000 test samples for each identity.
Next, we pick the first 2, 4, 8, and then all 16 identities from
this dataset, and apply our ML-based learning algorithm
described in Section 3.2.4, where we calculate classification
accuracies on the test data under varying noise levels. We
summarize our results in Figure 6 (top), where we observe

sc
en
e

oc
cl
ud
er

ob
se
rv
ed

Figure 7: Representative samples from the dataset, where each
column shows one sample. Our dataset covers a diverse set of head
poses and facial expressions as well as occluder shapes.

high accuracies for all numbers of identities at moderate-to-
high signal-to-noise ratio (SNR) levels.

Although the results we illustrate in Figure 6 (top) are rep-
resentative under the face model described in Section 3, we
note that the similarities between the identities have a natural
influence on the accuracy, since it is more difficult to distin-
guish two identities that have very similar face shapes and
textures (e.g., two identities might include identical twins
in practice). To investigate this, we pick 4 pairs of identi-
ties from our dataset with varying distances d(i, j) between
their estimated means, where d(i, j) ≜ ∥µ̂i − µ̂j∥2 ∈ R+

for an identity pair (i, j). We report accuracy curves for
these pairs in Figure 6 (bottom), where we observe that the
distance between the means has a direct impact on the perfor-
mance, although almost perfect classification is still possible
when the SNR is sufficiently high. This suggests that the
variabilities of shadow images associated with each identity
(determined by the respective covariances) are almost negli-
gible with respect to the distances between the means when
the noise is sufficiently small.

4.2. Neural Network Classifier

We now present our experiments and results for the neural
network classifier, and show that our method is effective
in extracting subtle biometric cues from shadows in real
settings, consistent with our ML analysis predictions.

4.2.1 Synthetic Data Collection and Training

We generate the synthetic data for our network randomly,
where we vary the pose, expression and position of the face,
the location of the light source, and the occluder shape. We
illustrate representative samples from the dataset in Figure 7.

We collect our synthetic data using Mitsuba2 [27], with
which we render 256 × 256 images of the observed wall
using 50000 samples per pixel. Rendering one image takes
≈ 50 seconds on an NVIDIA GeForce RTX 2080 Ti GPU,
and the intensities of all images are normalized to [0, 1] range
after rendering. For each identity, we collect 4000 images
that we split into train and test sets with 75%–25% split,
which gives us a total of 6000 train and 2000 test samples.
We illustrate random samples from this dataset in Figure 8a.

874



(a) Source images

(b) Target images

Figure 8: Random images from the source and the target datasets.

Details of the dataset generation and training procedure are
included in the supplementary material.

4.2.2 Real Data Collection and Domain Adaptation

To represent the typical use cases, we deliberately cover
fewer variations in our real data compared to the synthetic
data (e.g., collecting data in a very diverse set of scene con-
figurations may not be feasible or practical for an adversary).
In particular, we experiment with 4 light source locations
by using 4 separate spotlights (which are individually lit
during the data collection), and 2 different occluders which
we repose in 5 different angles to increase the diversity in the
dataset. Similar to what we have in the synthetic dataset, the
identities also change their head poses and facial expressions
while the data is collected. We collect 4000 samples for each
identity, and we randomly split the whole dataset into train
and test sets with 75% − 25% split. We illustrate random
samples from the real dataset in Figure 8b.

We show our results in Figure 9 where we visualize the
feature distributions of the test samples before and after do-
main adaptation using t-SNE [49]. Before the domain adap-
tation (shown in the first row), we observe that the network
trained on the source data produces two feature clusters for
the source and target domains. Furthermore, ground truth la-
bels of the source samples seem to be well-separated, which
allows the network to achieve a classification accuracy of
75.80% on the source domain, as illustrated in the predic-
tions plot. Since the network does not see any target samples
before the domain adaptation, it performs rather poorly on
the target domain, achieving 62.70% accuracy. After the
domain adaptation (shown in the second row), we observe
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Figure 9: Illustration of results: feature distributions of the test
data (extracted from the final layer before classification) in 2D
using t-SNE dimensionality reduction technique [49]. First row:
Feature distributions of source and target domains before domain
adaptation, where we observe that the network performs well on the
source domain but not on the target domain. Second row: Feature
distributions after domain adaptation, which reflect that the network
generalizes well to the target data as well.

source target (before
adaptation)

target (after
adaptation)

74.57± 0.84 59.67± 9.26 77.08± 2.42

Table 1: Average classification accuracies (in percentage) at differ-
ent stages of our method, computed over 20 independent trials.

that the feature distributions of the source and target data are
well-aligned, and ground truth labels for both domains seem
to be well-separated, which allows the network to achieve a
classification accuracy of 76.35% on the target domain, as
illustrated in the predictions plot. We also report average
classification accuracies in Table 1 computed over 20 inde-
pendent trials using the same network and hyperparameters.

5. Discussion and Analysis
Having demonstrated that biometric information leakage

can occur, we now turn to understanding aspects of how it
occurs, by interpreting and analyzing the behavior of our
neural network classifier in various scene configurations. To
achieve this, we analyze the results on the synthetic images
for which we have access to the conditions under which
they were rendered, such as occluder shape, head pose, and
light source location. We analyze the samples on which the
network fails or performs well, and the regions of the input
that the network relies on the most by using interpretable
machine learning tools referred to as saliency methods [1].

We first investigate the influence of occluder shape and
face appearance on the performance, where we compare
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(a) Incorrectly classified images

(b) Correctly classified images

Figure 10: Random samples of incorrectly and correctly classified
images. Incorrectly classified images usually lack shadows (hence
penumbrae) where most information appears to lie. In contrast,
correctly classified images usually have large shadow areas.

all 484 fail cases (which gives us 75.80% accuracy on the
source domain) with 484 of the correctly classified images
with the highest softmax probabilities. For the occluder
shape analysis, we illustrate random samples from the in-
correctly and correctly classified images in Figure 10. Here,
it is observed that the incorrectly classified images usually
lack shadows. Specifically, defining black pixels (with zero
intensity) in each image as umbra, the umbrae cover 12.11%
of the incorrectly classified images on average, whereas they
cover 21.95% of the correctly classified images.

The fact that the shadows appear to be crucial for inferring
identities is consistent with the analysis of the resolving
power of single edge occluders [5, 37, 36]. In our case,
we use the resolving power of the edges of the occluder,
where the penumbra formed on the wall can be used to
calculate 1D projections of the input face along the direction
of the edges. In other words, our results suggest that the
penumbrae contain the most useful information about the
unknown identity present in the scene, and they are in fact
where our network appears to rely on the most. In particular,
we investigate which regions of the input images have more
influence on the class predictions by employing a saliency
method referred to as integrated gradients [40]. We illustrate
several examples in Figure 11, where we show the original
inputs and the image attributions for each input. We observe
that the network is more sensitive to the penumbra regions
compared to other parts of the image, which is in line with
our previous observation that the penumbrae leak most of
the sensitive information.

input attr. overlaid input attr. overlaid input attr. overlaid input attr. overlaid input attr. overlaid

Figure 11: Image attributions extracted by the Integrated Gradients
method [40]. We observe that the network is mostly sensitive to the
penumbra regions, where most biometric information seems to lie.

6. Concluding Remarks

We show that it is possible for biometric information of
individuals to be inferred from indirect shadows cast by ob-
jects on diffuse surfaces. We analyze this largely overlooked
optical phenomenon first via a maximum likelihood analy-
sis, which shows that otherwise innocuous shadows can be
exploited for reliable identity inference under representative
scenarios. We further construct a method—representative
of one that might be used in practice by an adversary—that
demonstrates these vulnerabilities in real settings. In particu-
lar, we use a learning-based approach that discovers hidden
biometric cues in the indirect shadows by combining syn-
thetic data training with unsupervised domain adaptation.
Our synthetic data acquisition relies on a state-of-the-art 3D
face reconstruction network, with which we obtain accurate
3D face models from only a single photograph of each iden-
tity. We show that our method achieves high accuracies in
an identity classification task in real settings, and is robust
to several variations in the scene, such as the shape of the
occluding objects, lighting, head pose, and facial expres-
sions. Our results suggest that the primary source of the
biometric information leakage is the penumbra portions of
the shadows, which we explain with the resolving power
of occluding edges. Although the degree to which larger
numbers of identities can be distinguished—and different
types of biometric information can be extracted—remains to
be investigated, our results make clear that biometric leakage
occurs and that the information can be extracted by using ex-
isting tools and learning methodologies. Given that indirect
shadow phenomena is omnipresent, our results make a case
for further investigation of the risks and an exploration of
approaches to their mitigation.

At the same time, the extensions of our methodology
could, in principle, facilitate applications that would have
positive societal impacts. For instance, such extensions
would be useful in certain security and surveillance applica-
tions, or in identity recognition tasks that require no storage
or observation of any sensitive information about the identi-
ties, enabling face recognition without taking any photos of
the individuals. These, too, warrant further investigation.
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