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Abstract

Recently, neural network for scene flow estimation show

impressive results on automotive data such as the KITTI

benchmark. However, despite of using sophisticated rigidity

assumptions and parametrizations, such networks are typi-

cally limited to only two frame pairs which does not allow

them to exploit temporal information. In our paper we ad-

dress this shortcoming by proposing a novel multi-frame ap-

proach that considers an additional preceding stereo pair.

To this end, we proceed in two steps: Firstly, building upon

the recent RAFT-3D approach, we develop an improved

two-frame baseline by incorporating an advanced stereo

method. Secondly, and even more importantly, exploiting

the specific modeling concepts of RAFT-3D, we propose a

U-Net architecture that performs a fusion of forward and

backward flow estimates and hence allows to integrate tem-

poral information on demand. Experiments on the KITTI

benchmark do not only show that the advantages of the im-

proved baseline and the temporal fusion approach comple-

ment each other, they also demonstrate that the computed

scene flow is highly accurate. More precisely, our approach

ranks second overall and first for the even more challeng-

ing foreground objects, in total outperforming the original

RAFT-3D method by more than 16%. Code is available at

https://github.com/cv-stuttgart/M-FUSE.

1. Introduction

Estimating the 3D motion field of objects in the 3D world

from stereo or RGBD image sequences, the so-called scene

flow, is one of the fundamental tasks in computer vision.

Its fields of application range from robotics and automotive

scenarios [20] over markerless motion capture for virtual

and augmented reality [36] to action recognition and inten-

tion prediction [39].

Early works go back to the seminal approach of Vedula

et al. [37] in the late nineties and since then variational

methods have been among the leading techniques to solve

this task; see e.g. [7, 38, 40]. Only recently, four years

after their first application to scene flow estimation [19],

neural networks have been able take the lead in dedicated

benchmarks such as KITTI [20]; see e.g. the approaches

in [13, 34, 42, 43]. This comparably late success of neu-

ral networks, however, is not surprising: Scene flow esti-

mation has more degrees of freedom than other correspon-

dence problems that only work in 2D or 1D, such as optical

flow and stereo, hence solving this task requires more so-

phisticated ideas and more complex network architectures.

One way to deal with these additional degrees of free-

dom is to use semantic information. This information can

be given in terms of object models [20] or instance segmen-

tations [2, 15, 43]. Another way is to rely on point-wise

[34] or segment-wise rigidity priors [4, 15, 20, 38], or to

explicitly learn segmenting rigid motions [43]. In combi-

nation with semantic information such rigidity estimates al-

low to assign rigid motions to all independently moving ob-

jects and to the background [15, 43]. And finally, it is also

possible to reduce the difficulty of the problem. This can ei-

ther be done by decoupling stereo and 3D motion estimation

[1, 13, 34, 40, 42], which also enables the use of dedicated

state-of-the-art algorithms for stereo, or by directly relying

on RGBD footage [4, 5, 23, 24], e.g. by using time-of-flight

cameras or LiDAR [13].

In view of the aforementioned progress in neural net-

works for scene flow estimation, it is remarkable that cur-

rently leading methods [1, 12, 13, 15, 34, 42, 43] do not

exploit potentially valuable temporal information to fur-

ther improve the results. In fact, while differing in the

actual inputs – monocular images [1, 42], stereo pairs

[12, 13, 15, 42, 43, 34], RGBD images [34] or LiDAR

point clouds [13] – all leading networks are restricted to

the standard two-frame setting. In this context, it is also

surprising that the best multi-frame scene flow method on

the KITTI benchmark is still a classical variational method

which dates back to 2015 [38]. This illustrates that devel-

oping suitable multi-frame extensions of existing network

architectures is indeed a difficult task.

The latter observation is also reflected in the recent litera-

ture on multi-frame scene flow networks [27, 8]. On the one

hand, on the KITTI benchmark, only slight improvements

of 2%-4% have been reported compared to the underlying
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two-frame baselines1. Evidently, for recent multi-frame ar-

chitectures, the often much larger training gains do not gen-

eralize well to the actual test data. On the other hand, the

proposed multi-frame concepts were either not incorporated

into state-of-the-art baselines [27] or they were developed

for the even more challenging self-supervised monocular

setting [8]. This in turn gives an explanation for the rela-

tively poor overall performance of recent multi-frame meth-

ods compared to currently leading supervised two-frame ap-

proaches. And finally, as of today, the accuracy of leading

two-frame approaches in general has improved by a factor

two compared to the baseline in [27]; see e.g. [13, 43, 33].

This in turn raises the question if suitable multi-frame ex-

tensions can be developed at all, if the underlying baseline

already provides a sufficiently high accuracy.

Contributions. In our paper, we show that multi-frame

ideas are still valuable in the context of recent high-accuracy

networks. Building upon the RAFT-3D method [34], we

present a novel multi-frame approach that allows to lever-

age the performance of current two-frame techniques. In

this context we make the following contributions: (i) We

propose a multi-frame architecture that particularly exploits

the advantages of the underlying RAFT-3D architecture by

combining a SE(3) based prediction step with a U-Net

based fusion architecture. In this context, we also improve

the underlying two-frame baseline by substituting the em-

ployed stereo approach. (ii) Performing ablation studies

and further experiments based on fourfold cross validation,

we illustrate the benefits of the different architectural com-

ponents of our method. In this way, we identify a fusion

strategy that generalizes well to the test data. (iii) With im-

provements of 9% for the baseline and 16% for the overall

approach, we report much larger performance gains than ex-

isting multi-frame networks from the literature. These gains

also lead to highly competitive results, eventually ranking

second in the KITTI scene flow benchmark.

2. Related work

Multi-frame scene flow. Regarding the use of multiple

time frames for scene flow estimation, one can mainly dis-

tinguish three types of methods. Like our approach, most

of them rely on a three frame setting that has proven to be

a good compromise between available temporal informa-

tion and efficiency for both optical flow [17, 18, 25, 41] and

scene flow [8, 21, 27, 28, 32].

(i) On the one hand, there are approaches that explicitly

model multi-frame scene flow in terms of an energy min-

imization framework. Such approaches are the method of

Vogel et al. [38] that, based on piece-wise rigidity assump-

1We considered from both papers the best overall results in terms of

the standard SF-all outlier measure: [27]: DTF-SENSE (9.18) vs. SENSE

(9.55), [8]: Multi-Mono-SF-ft (33.09) vs. Self-Mono-SF-ft (33.88).

tion, enforces a consistent piece-wise planar segmentation

over time, the method of Golyanik et al. [4] that follows

a similar idea but relies on RGBD data instead of stereo

sequences, the method of Taniai et al. [32] which fuses es-

timates from optical flow and multi-frame time stereo, and

the method of Neoral and Šochman [21] that extends the

two-frame scene flow approach of Menze and Geiger [20]

by additionally propagating object labels over time.

(ii) On the other hand, there are sparse-to-dense meth-

ods that speed up the computation of energy-based methods

by considering sparse matching strategies followed by a ro-

bust interpolation step. Such a method is the approach of

Schuster et al. [28], which performs a sparse multi-frame

matching relying on the assumption that the 3D motion in

terms of the scene flow is constant over time.

(iii) And finally, also neural networks gained recently

popularity in the context of multi-frame scene flow. Such

methods include another approach of Schuster et al. [27]

that predicts the forward from the backward flow based on

a small learned motion inverter and subsequently fuses both

flows using a convex fusion step, and the self-supervised

monocular approach of Hur and Roth [8] that uses a convo-

lutional LSTM to encourage consistency over time.

While our multi-frame method is also based on a neural

network that fuses flow estimates, its underlying strategy

differs significantly from the one in [27]. On the one hand,

our method not only relies on a much more advanced base-

line, i.e. RAFT-3D. Its entire architecture is also specifically

tailored towards this baseline; e.g. our method exploits both

the local SE(3) parametrization as well as the valuable in-

puts of RAFT-3D’s recurrent unit when adaptively integrat-

ing temporal information. On the other hand, instead of

learning a motion model via a small motion inverter that is

naturally limited in its generalization capabilities and subse-

quently restricting the fusion to a convex combination, our

method predicts the motion using a SE(3)-based extrapola-

tion and then considers a more generalized U-Net based fu-

sion step. While the SE(3)-based prediction holds in many

scenarios, the generalized fusion step allows to implicitly

learn possibly required corrections of this prediction.

Multi-frame optical flow. In contrast to scene flow estima-

tion (3D motion), there is already an extensive literature on

multi-frame neural networks in the closely related field of

optical flow estimation (2D motion = projected scene flow).

In this context, one can roughly distinguish three strategies:

(i) A first common strategy is to rely on a relaxed version

of a constant motion model. This can either be achieved by

adding a temporal smoothness constraint to the loss such

as the unsupervised method of Janai et al. [10] or, even

less strict, by initializing the estimation with the motion-

compensated flow from the previous time step (warm start)

as employed by the method of Teed and Deng [33].

(ii) A second strategy is to estimate multiple flows in a
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Figure 1. Overview of our M-FUSE approach (see Sec. 3.2). We employ two shared instances of our baseline model to predict forward

(t → t+1) and backward (t → t−1) scene flow as well as additional features used in our fusion U-Net to predict the final flow estimate.

Dt ∆d (u, v) embVec corrCost dispRes

Figure 2. Input features to our fusion module. From left to right: Disparity in the reference frame Dt, disparity change ∆d, optical

flow (u, v), rigid-motion embedding vectors, correlation cost, disparity residuals. Top row: features from forward direction, bottom row:

backward direction. We use color visualizations for disparity/optical flow, and PCA to reduce the 16-channel embedding vectors to RGB.

joint recurrent unit (̸= shared recurrent unit). A correspond-

ing self-supervised approach has been proposed by Liu et

al. [14] who estimate forward and backward flows with a

double cost volume, which allows to learn flow in occluded

regions without an explicit motion model.

(iii) A third strategy seeks to improve the estimation by

incorporating a learned motion model. To this end, Maurer

and Bruhn [17] proposed an approach that integrates pre-

dictions from a motion model that is learned with a small

neural network on the fly. Similarly, Stone et al. [30] in-

corporated this idea in an unsupervised method, where the

motion model helps to teach the flow in occluded regions.

Alternatively, instead of learning the model directly, Ren et

al. [25] fuse a forward flow estimate based on a constant

motion model, but allow corrections in a learned follow-up

fusion step. To this end, they employ the fusion module

from FlowNet2 [9] originally designed for combining small

and large displacements.

While our approach is similar to [25] in the sense that

it also relies on a U-Net architecture, it generalizes the un-

derlying ideas to the scene flow setting, i.e. a setting where

the motion in a 3D scene is unprojected and hence more

meaningful – in contrast to optical flow. This offers new

possibilities such as predictions by more realistic motion

models (constant scene flow, constant SE(3) motion) as

well as a much better guided fusion (having access to op-

tical flow and disparity). Moreover, unlike [25, 30] our

approach is specifically tailored towards the baseline net-

work, i.e. RAFT-3D, explicitly exploiting the underlying

network characteristics (parametrization, cost volume, con-

vex upsampling, high resolution disparity). As our exper-

iments show, such a tight integration is required to further

improve state-of-the-art two-frame scene flow networks. Fi-

nally, in contrast to [25] our approach predicts the forward

from the backward flow instead of using the previous for-

ward flow. This, in turn, avoids registering the information

from the previous time frame (optical flow, fusion features)

via motion-based interpolation (warping).

3. Approach

We propose a neural network for scene flow estimation

from a triplet of stereo frames. Given the three stereo frames

(It−1

l , It−1
r ), (Itl , I

t
r) and (It+1

l , It+1
r ), our goal is to esti-

mate the four-dimensional scene flow (u, v, d, d′) [7] be-

tween frame t and frame t+1. Here, (u, v) denotes the

optical flow and d and d′ are the disparities at time t and

t+1 registered to the reference frame Itl .

Following recent works [1, 13, 34, 42], we thereby de-

couple the disparity estimation from the recovery of the

3D motion. To this end, we precompute disparities for

each stereo frame using a dedicated stereo method, yielding

Dt−1, Dt and Dt+1. This allows us to directly take over the

final estimate for d from Dt. Hence, the scene flow problem

reduces to estimating (u, v, d′). Please note that d′ cannot

be taken over directly from Dt+1 since d′ is registered to

Itl while Dt+1 is registered to It+1

l . However, knowing Dt,

we can easily convert between d′ and the change in disparity

∆d, with d′ = Dt +∆d when estimating the scene flow.

Using this notation, let us now explain our two-frame
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baseline and subsequently our full multi-frame network.

3.1. Improved twoframe baseline

We base our work on the recent two-frame approach

RAFT-3D [34], which first uses an off-the-shelf stereo es-

timation network to compute left-right disparities and then

estimates the scene flow while keeping the reference dis-

parity Dt fixed. The approach employs a recurrent neu-

ral network which operates at 1/8th of the original resolu-

tion, where the final result is obtained by a learned con-

vex upsampling [33]. Notably, RAFT-3D predicts the scene

flow in terms of a field of SE(3) transformation matrices,

and afterwards translates them to the standard parametriza-

tion (u, v, d′). Building upon this work, we proceed in two

steps. Making use of recent progress in the field of stereo

estimation, we first exchange RAFT-3D’s stereo estimation

network, GANet [44] with the recently well-performing

LEAStereo [3]. Subsequently, with the improved stereo re-

sults, we fully retrain RAFT-3D using their provided code.

This way, we obtain an improved two-frame baseline serv-

ing as a building block for our multi-frame network.

3.2. Multiframe fusion network

Conceptually, our multi-frame fusion network consists

of two shared instances of our improved two-frame base-

line and a fusion module predicting the final scene flow.

More precisely, given two initial motion estimates for the

forward and backward flow in low resolution, we derive

low-resolution features which we adaptively upsample and

subsequently combine with high-resolution features, even-

tually fusing forward and inverted backward flow estimates

in a feature-guided high-resolution fusion module. In the

following, we discuss all steps of our approach in detail;

see Figure 1 for a complete overview.

1 Initial scene flow estimation. Initially, our improved

two-frame baseline predicts forward (t → t+1) and back-

ward (t → t −1) scene flow at 1/8th of the full image reso-

lution; as in the original RAFT-3D method [34]. It predicts

flow estimates in terms of a field of SE(3) transformation

matrices and a weighting mask for convex upsampling.

2 Low-resolution features. In order to later guide our

fusion of flow estimates, we consider two features derived

from the specific architecture of our baseline. First, rigid-

motion embedding vectors (embVec) are essential to our

baseline method, as they are used for a soft-grouping of pix-

els that belong to objects with the same rigid motion [34].

Since this segmentation information can be valuable for the

fusion of forward and backward flow estimates, we utilize

these features as an input to our fusion module. To this end,

we extract the 16-channel prediction of the rigid-motion

embedding vectors by the network for both the forward and

the backward baselines. Second, the cost volume is at the

core of recent motion estimation algorithms [31, 33, 34]

since it assigns matching costs to potential flow estimates.

In order to better guide our fusion module, we look up the

correlation costs (corrCost) for the current flow estimates in

forward and backward direction, which provides support-

ing information on the quality of the estimates. Note that

we omit the multi-scale pyramid and the spatially extended

lookup employed by [33, 34] and only extract a single cost

value per pixel for the central location.

3 Joint convex upsampling. So far, the flow predictions

as well as the extracted features are given on 1/8th of the

original resolution. As the next step, we will hence ex-

ploit the convex upsampling mask predicted by the base-

line networks in order to obtain flow predictions and fea-

tures on the original high resolution. This proceeding offers

three advantages: We can utilize disparity maps, which are

given at the original resolution, we can perform backward-

to-forward prediction at the original resolution and we can

ultimately fuse flows at the original resolution.

4 High-resolution features. With the correlation cost at

hand, we have matching information based on image fea-

tures, but so far we do not make use of any disparity cues

to guide the fusion. In order to create meaningful fea-

tures, we first convert the upsampled forward and back-

ward transformation fields to optical flow and disparity es-

timates which yields (ufw, vfw, d
′

fw) and (ubw, vbw, d
′

bw), re-

spectively. Then, we warp the initial high-resolution dispar-

ity estimates Dt+1 and Dt−1 using these optical flows such

that they are aligned with the reference frame and subtract

the corresponding disparity estimates in order to compute

disparity residuals (dispRes) for both directions as

W(Dt+1, ufw, vfw)− d′fw , (1)

W(Dt−1, ubw, vbw)− d′bw , (2)

where W(D,u, v) denotes backward-warping of D using

the optical flow (u, v). If the correct scene flow is given,

the residuals are 0 for non-occluded pixels [34].

5 Backward-to-forward prediction. In our initial flow

estimation, we predicted backward flow pointing towards

the previous frame. In order to obtain a meaningful pre-

diction in forward direction, we utilize the SE(3) motion

parametrization of the upsampled scene flow and invert the

backward transformations with a differentiable matrix in-

version [35]. Note that this inversion in matrix space is ca-

pable of performing true inversion of rotational motion ra-

ther than simple linear inversion in the standard scene flow

representation, which only flips the sign. Subsequently, we

convert the matrix representation of the forward and the in-

verted backward flow to optical flow and disparity change,

which is the parametrization we employ for the fusion.

6 Fusion inputs. As a final step, we concatenate the for-

ward and backward flow and all features which we provide
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to the fusion module, yielding 43 channels that are visual-

ized in Figure 2. Summarizing, we employ the disparity

in the reference frame Dt and for forward and backward

direction scene flow estimates (u, v,∆d), rigid-motion em-

bedding vectors, correlation costs and disparity residuals.

7 Fusion module. With a rich set of inputs at hand, we

apply our fusion module to predict a final scene flow esti-

mate. The fusion module is a CNN that uses a U-Net ar-

chitecture [26], employing three depth levels with channel

sizes 64, 128 and 256, where each level in the downsam-

pling as well as in the upsampling branch consists of two

3 × 3 convolutional layers with stride 1 and zero-padding,

to preserve image dimensions. The downsampling uses the

same convolutional layers with a stride of 2 and upsampling

employs transposed convolutions with kernel size 4, stride

2 and zero-padding of 1. Similar to the original U-Net,

we use residual connections between the downsampling and

the upsampling branch, however, instead of concatenation,

we add the upsampled tensor to the skip connection. Af-

ter each convolutional layer, a LeakyReLU activation [16]

with slope 0.1 is applied. Finally, the three-channel output

is predicted with one 3 × 3 convolution without activation.

Please note that in contrast to [27] our generalized fusion is

not restricted to a convex combination, i.e. a linear blending

of predictions and forward flow. Hence, it implicitly allows

to perform corrections when performing the fusion, in case

predictions or forward flow are not accurate.

3.3. Supervision

Our network predicts the scene flow as triplet (u, v,∆d).
We compute the target disparity as d′=d+∆d and supervise

our training using a robustified sublinear L1 loss, reading

Lfuse=
∑

x

(

α · |d′−d′gt|+ |u−ugt|+ |v−vgt|+ ϵ
)γ

. (3)

In all our experiments, we chose ϵ = 0.01 and γ = 0.4. We

additionally introduce a weighting parameter α to balance

the loss components for disparity and optical flow and set

it to 2. Finally, we also utilize the multi-iteration loss from

RAFT-3D [34] LR3D that computes the L1 norm of optical

flow and disparity change with a per-iteration weight. We

apply it directly to the output of the forward baseline and

obtain a total loss of L = Lfuse + µ · LR3D, with µ = 0.1.

4. Experiments

We implemented our model in PyTorch [22] and ini-

tialized the fusion module’s weights with the normal dis-

tributed initialization by He et al. [6] for convolutions, and

zero-initialization for biases. For the two-frame baseline,

we used code provided by the authors [34].

Training details. For the two-frame baseline, we followed

the original training of RAFT-3D [34] with 200K steps pre-

training on FlyingThings3D [19] and 50K steps finetun-

ing on the KITTI train split [20]; the latter using our im-

proved disparity estimates [3]. For training our multi-frame

method, we initialized our shared forward and backward

model with the pretrained two-frame baseline and also fine-

tuned for 50K steps on the KITTI train split – this time,

however, dividing the 50K steps in two stages. First, for

10K steps, we kept the parameters of the shared baseline

models fixed in order to pretrain the fusion module. Then,

for the remaining 40K steps, we trained our entire model

end-to-end. Thereby, we used the Adam optimizer [11] with

the same linear-decay learning rate strategy [29] as RAFT-

3D [34], employing maximum learning rates of 5 ·10−4 and

1 · 10−4 for the two finetuning stages. During all stages, we

trained on a single NVIDIA A100 GPU with batch size 4.

Moreover, we utilized spatial and photometric augmenta-

tions [34] with crop size 256× 960.

4.1. Benchmark results

In our first experiment, we compare the accuracy of our

multi-frame scene flow method to that of other recent scene

flow approaches from the literature. To this end, we com-

puted the scene flow for the KITTI test split both with our

novel M-FUSE approach as well as with its underlying two-

frame baseline and submitted the corresponding flow fields

to the official benchmark [20]. To this end, we can not only

show total improvements but also investigate the influence

of the improved stereo method we employ. Table 1 shows

the obtained results together with the results of the ten top-

ranked published scene flow methods. Thereby, it lists the

standard outlier rates D1 and D2 for the disparities at time t

and t+ 1, the optical flow error Fl and the scene flow error

SF. These errors are evaluated on all pixels, as well as sep-

arately for static background (bg) objects only moving due

to camera motion and for dynamic foreground (fg) objects

that move independently; see [20] for details. Additionally,

for each outlier rate, the table shows relative improvements

of the baseline and our method with respect to RAFT-3D

as well as the relative improvements of our multi-frame ap-

proach compared to the two-frame baseline.

As one can see, already our baseline (RAFT-3D, with

LEAStereo) shows significantly improved results compared

to the original RAFT-3D approach (with GANet). In this

context, the total gain of 9.9% can be mainly attributed to

strong improvements in the background region. Our full

M-FUSE approach then improves these results even fur-

ther, outperforming RAFT-3D by 16.3%. Thereby, it also

shows strong gains in the foreground, which are due to the

consideration of multi-frame information (see M-FUSE vs.

Baseline). As a result, on the KITTI benchmark our method

ranks second for all pixels, and first for foreground regions.

In Figure 3 we analyze the multi-frame improvements

for four exemplary KITTI sequences. In accordance with
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Table 1. Top ranking non-anonymous submissions to the KITTI benchmark.

Method D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all

DTF SENSE [27] 2.08 3.13 2.25 4.82 9.02 5.52 7.31 9.48 7.67 8.21 14.08 9.18

PRSM [38] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97

Binary TTC [1] 1.48 3.46 1.81 3.84 9.39 4.76 5.84 8.67 6.31 7.45 13.74 8.50

Stereo expansion [42] 1.48 3.46 1.81 3.39 8.54 4.25 5.83 8.66 6.30 7.06 13.44 8.12

ISF [2] 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

ACOSF [12] 2.79 7.56 3.58 3.82 12.74 5.31 4.56 12.00 5.79 5.61 19.38 7.90

UberATG-DRISF [15] 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

RAFT-3D [34] 1.48 3.46 1.81 2.51 9.46 3.67 3.39 8.79 4.29 4.27 13.27 5.77

RigidMask+ISF [43] 1.53 3.65 1.89 2.09 8.92 3.23 2.63 7.85 3.50 3.25 13.08 4.89

CamLiFlow [13] 1.48 3.46 1.81 1.92 8.14 2.95 2.31 7.04 3.10 2.87 12.23 4.43

M-FUSE (ours) 1.40 2.91 1.65 2.14 8.10 3.13 2.66 7.47 3.46 3.43 11.84 4.83

Baseline 1.40 2.91 1.65 1.97 9.22 3.17 2.98 9.51 4.06 3.53 13.57 5.20

Baseline Improvements

(Baseline vs. RAFT-3D) 5.4% 15.9% 8.8% 21.5% 2.5% 13.6% 12.1% -8.2% 5.4% 17.3% -2.3% 9.9%

Multi-frame Improvements

(M-FUSE vs. Baseline) - - - -8.6% 12.1% 1.3% 10.7% 21.5% 14.8% 2.8% 12.7% 7.1%

Overall Improvements

(M-FUSE vs. RAFT-3D) 5.4% 15.9% 8.8% 14.7% 14.4% 14.7% 21.5% 15.0% 19.3% 19.7% 10.8% 16.3%

D2
Baseline: 1.49 M-FUSE: 1.71 -14.8% Baseline: 2.14 M-FUSE: 2.28 -6.5% Baseline: 6.18 M-FUSE: 4.78 +22.7% Baseline: 47.81 M-FUSE: 30.93 +35.3%

Fl
Baseline: 6.91 M-FUSE: 5.29 +23.4% Baseline: 6.47 M-FUSE: 4.23 +34.6% Baseline: 8.52 M-FUSE: 6.09 +28.5% Baseline: 52.36 M-FUSE: 42.31 +19.2%

SF
Baseline: 7.55 M-FUSE: 5.96 +21.1% Baseline: 6.64 M-FUSE: 4.50 +32.2% Baseline: 9.70 M-FUSE: 7.21 +25.7% Baseline: 52.77 M-FUSE: 46.16 +12.5%

Figure 3. Qualitative evaluation of multi-frame improvements for four sequences of the KITTI benchmark (M-FUSE vs. baseline). From

top to bottom: reference frame, change in the outlier errors D2, Fl and SF. Grey: Both methods are inliers, blue: M-FUSE is inlier and

two-frame baseline is outlier, red: two-frame baseline is inlier and M-FUSE is outlier, yellow: both methods are outliers.

the numbers in Table 1, we observe that (i) multi-frame

improvements are strongest for the optical flow error com-

pared to the disparity error and (ii) the improvements are

most prominent on the individually moving foreground ob-

jects. Figure 4 visually shows improvements for back-

ground regions (top) and foreground objects (bottom).

4.2. Ablations

We ablate our model architecture in Table 2. For these

and all following experiments, we perform 4-fold cross vali-

dation on the KITTI train split for more reliable evaluations

with only limited data available. Note that we omit the error

measure for D1 in the tables since it is identical.

Feature aggregation. Our U-Net computes additive in-

crements for previous layers at the same resolution, which

leads to a residual structure. We compare this approach to

the strategy presented in [26], where feature maps are con-

catenated and not summed up before a convolution. Using

additive residual connections slightly improves results.

Fusion module depth. In a second study, we ablate the

depth of our fusion U-Net by comparing variants with two,

three and four levels. While a two-level U-Net still gives

on-par results in the D2 error, our three-level U-Net outper-

forms both the other networks in the Fl and SF errors.

Additional fusion inputs. Our fusion network makes use

of forward and backward scene flow estimates. In a larger

set of experiments we determined which additional inputs to
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RigidMask+ISF D2: 2.80 Fl: 3.96 SF: 4.02

CamLiFlow D2: 2.38 Fl: 3.64 SF: 3.72

RAFT-3D D2: 2.61 Fl: 4.95 SF: 5.54

M-FUSE D2: 0.60 Fl: 1.15 SF: 1.31

RigidMask+ISF D2: 1.20 Fl: 3.60 SF: 4.08

CamLiFlow D2: 1.00 Fl: 3.03 SF: 3.42

RAFT-3D D2: 1.07 Fl: 3.64 SF: 4.43

M-FUSE D2: 0.99 Fl: 2.02 SF: 2.60

Figure 4. Qualitative comparison of our method, the original RAFT-3D, as well as the two top-performing approaches from the literature for

two scenes using the visualizations provided by the KITTI benchmark [20]. From left to right: Target disparity visualization, corresponding

D2 error plot, optical flow visualization, corresponding Fl error plot, combined SF error plot.

Table 2. Ablation study. We show 4-fold cross validation results

on KITTI train in terms of the D2, Fl and SF errors [20] as well as

the number of parameters in millions.

D2 Fl SF #param

two-frame 1.81 3.67 4.07

Feature aggregation

concat. 2.08 3.42 3.99 2.56

add (ours) 1.99 3.21 3.82 2.38

Fusion module depth

2 levels 1.99 3.40 4.02 0.53

3 levels (ours) 1.99 3.21 3.82 2.38

4 levels 2.06 3.34 4.02 9.79

Additional fusion inputs

none 2.72 3.33 4.62 2.36

corrCost,dispRes 1.87 3.36 3.83 2.36

corrCost,embVec 2.29 3.71 4.58 2.38

dispRes,embVec 1.99 3.43 3.97 2.38

corrCost,dispRes,embVec (ours) 1.99 3.21 3.82 2.38

corrCost,dispRes,embVec, Itl 2.10 3.27 3.96 2.38

our fusion module are useful. To this end, we compare our

set of additional inputs (correlation costs, disparity residuals

and rigid motion embedding vectors) to omitting all of them

(none) and to omitting each of them individually, to assess

their individual contribution. The results show that omitting

all additional features significantly worsens results, which

indicates that valuable information is contained in our set of

features. Further, we see that omitting the rigid motion em-

bedding vectors gives inconclusive results compared to our

method, with superior D2 results but a worse Fl error. The

disparity residuals seem most essential: When removed, the

resulting quality lowers significantly for all measures. Fur-

ther, removing correlation costs has a slight negative im-

pact. Additionally, we investigated if adding the reference

frame Itl to the set of inputs [25] is helpful. However, this

did not improve results any further, presumably because the

correlation cost already provides sufficient information.

We show additional ablations with less conclusive results

in the supplementary material.

4.3. Scene flow parametrization

Next, we investigate the influence of the underlying

scene flow parametrization in our fusion module. Table 3

compares the image-space parametrizations of optical flow

and target disparity (u, v, d′) against optical flow and the

change in disparity (u, v,∆d). Additionally, we investigate

the world-space 3D motion vector parametrization (x, y, z).
Evidently, the image-space parametrizations outperform

the 3D vector parametrization by a large margin in the opti-

cal flow error Fl. We argue that this is due to the error mea-

sures that are employed in scene flow estimation, which also

work in image space. Among the image-space parametriza-

tions, using the change in disparity instead of the target dis-

parity yields better results. Presumably, predicting the dis-

parity change (motion) instead of the target disparity (struc-

ture) bears a greater resemblance to the optical flow, which

renders this strategy superior for the joint prediction.
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Table 3. Influence of the scene flow parametrization.

D2 Fl SF

(u, v, d′) 2.06 3.49 4.13

(u, v,∆d) (ours) 1.99 3.21 3.82

(x, y, z) 2.04 8.50 8.79

Table 4. Comparison of multi-frame strategies

D2 Fl SF

two-frame 1.81 3.67 4.07

warm-start (inv. backward) 2.59 5.29 5.73

warm-start (fw-warped prev.) 2.23 4.48 4.88

learned inv + mask fusion 2.06 3.96 4.39

specialized U-Net (bw-warped prev.) 2.10 3.78 4.26

specialized U-Net (inv. backward) 2.01 3.59 4.05

M-FUSE 1.99 3.21 3.82

4.4. Comparison of multiframe strategies

Finally, we compare our approach to three multi-frame

strategies available in the literature: Warm-starting the

method, a learned inversion with mask-based fusion and a

specialized U-Net with additional inputs; see Table 4.

First, the warm-start initialization strategy has been

shown to be highly successful in recent recurrent net-

works [33]. We considered two variants for our baseline

approach: For one, we used the matrix-inverted backward

flow as an initialization, in contrast to the identity matrix

initialization from [34]. For the other, we initialized with

the previous forward scene flow that is forward-warped in

the corresponding Lie algebra [35] using the estimated opti-

cal flow. In Table 4, both approaches perform considerably

worse than the two-frame baseline, even though forward-

warping yields better results than inverted backward flow.

This is in line with previous studies, where warm-start on

the KITTI dataset did not yield improvements [33].

Second, we considered a recent strategy that relies on a

learned backward-to-forward inverter [17, 27] followed by

a predicted fusion mask that linearly combines forward and

backward estimates [27]. We reimplemented the inversion

and fusion module from [27] and pretrained the former, be-

fore using these modules in our method. For comparabil-

ity, we adapted the modules to our three-channel predic-

tion case, keeping Dt fixed. In Table 4, this strategy clearly

yields worse results than our approach. We attribute this to

the simplistic structure of the motion model and the restric-

tive convex combination of flow inputs.

Third, we investigated a strategy that employs the spe-

cialized fusion U-Net from FlowNet2 [9] for fusing optical

Table 5. Parameter Count and Timing

stereo scene flow total

RAFT-3D 6.6M 4.0s 44.9M 0.4s 51.4M 4.4s

Baseline 1.8M 0.8s 44.9M 0.4s 46.7M 1.2s

M-FUSE 1.8M 1.2s 47.2M 1.3s 49.0M 2.5s

flow estimates [25] guided by a brightness constancy map

and the reference image. To this end, we extended this fu-

sion module to the scene flow setting and embedded it in

our approach. For a fair comparison, we also added dispar-

ity residuals to its fusion inputs. We evaluated two variants,

one with backward-warping the previous flow estimate as

in [25], and one with inverted backward flow, as in our ap-

proach. While only the approach with inversion is able to

reach results on-par with the two-frame baseline, both can-

not keep up with the results achieved by our method.

4.5. Timing and parameter counts

Table 5 shows that our method takes a total of around

2.5s per frame for inference on a NVIDIA GeForce RTX

2080 Ti with 51.4M parameters. The runtime is composed

of 1.2s for stereo (3×0.4s LEAStereo) and 1.3s for scene

flow (2×0.4s RAFT-3D baseline + 0.5s fusion). While

runtime and parameter count is increased compared to the

two-frame baseline, our method is still faster and more

parameter-efficient than the original RAFT-3D approach

due to the fast and lightweight LEAStereo method [3].

5. Conclusion

We proposed a novel multi-frame scene flow approach

that leverages the performance of recent high accuracy two-

frame methods. To this end, we developed an improved

RAFT-3D baseline and embedded it into a U-Net-based

fusion approach that adaptively integrates temporal infor-

mation by combining an SE(3)-based extrapolation of the

backward flow with the jointly estimated forward flow. The

achieved results clearly demonstrate that our strategy of

explicitly tailoring our architecture towards the underlying

baseline pays off. With more than 16% improvements com-

pared to the original RAFT-3D approach, they show sig-

nificantly larger improvements than other multi-frame net-

works in the literature. Moreover, in absolute accuracy

our method ranks second in the public KITTI benchmark,

clearly outperforming all other multi-frame approaches.
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