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(a) Ground-truth (b) GMA[15] (c) Ours
Figure 1. Test-time domain adaptation via meta-learning helps exploit types of motion and context that are only available from test inputs.
The second image shows the result by a pre-trained network, which can be substantially enhanced by our method.

Abstract

In this paper, we propose an instance-wise meta-learning
algorithm for optical flow domain adaptation. Typical op-
tical flow algorithms with deep learning suffer from weak
cross-domain performance since their trainings largely rely
on synthetic datasets in specific domains. This prevents op-
tical flow performance on different scenes from carrying
similar performance in practice. Meanwhile, test-time do-
main adaptation approaches for optical flow estimation are
yet to be studied. Our proposed method, with some train-
ing data, learns to adapt more sensitively to incoming in-
puts in the target domain. During the inference process,
our method readily exploits the information only accessi-
ble in the test-time. Since our algorithm adapts to each in-
put image, we incorporate traditional unsupervised losses
for optical flow estimation. Moreover, with the observa-
tion that optical flows in a single domain typically contain
many similar motions, we show that our method demon-
strates high performance with only a small number of train-
ing data. This allows to save labeling efforts. Through the
experiments on KITTI and MPI-Sintel datasets, our algo-
rithm significantly outperforms the results without adapta-
tion and shows consistently better performance in compar-
ison to typical fine-tuning with the same amount of data.
Also qualitatively our proposed method demonstrates more
accurate results for the images with high errors in the orig-
inal networks.

1. Introduction

Many technologies have recently been introduced in
meta-learning area [10], which consider learning to learn.
Among various meta-learning approaches [6] presented an
impressive result in quick adaptation to mutually different
tasks.

Optical flow defines the apparent 2D motion field be-
tween a pair of images. In other words, it indicates pixel
correspondences between neighboring frames in videos.
Optical flow estimation is challenging due to fast moving
objects and typical visibility problems such as occlusion.
Highly accurate optical flow enables successful prediction
of pixel correspondences in videos, therefore, it possesses
high potential values and can be utilized for a wide range
of applications such as motion estimation, object tracking,
video super resolution, and motion segmentation.

Unfortunately, there is a lack of research on whether op-
tical flow estimation can demonstrate high generalization
abilities for real test datasets apart from the primarily syn-
thetic training datasets [23, 5, 21, 4, 18]. This is because
it is challenging to acquire optical flow ground-truth in real
scenes. Tab. 1 shows that even for a synthetic dataset, the
performance significantly decreases when the domain of
the test differs from the training domain. Concerns can be
raised that the performance of existing studies may not be
fully applicable to the real data used in the field.

One might argue that fine-tuning on the test domain can
solve this problem. However, note that it was the lack of
optical flow ground-truth that prevented researchers from
training a general network for most of the real environ-
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Training
Data

Method
Chairs
(val)

Sintel(train) KITTI-15(train)

Clean Final AEPE F1-all(%)

C+T

PWC-Net[27] 2.30 2.55 3.93 10.35 33.7
VCN[33] 2.21 3.68 8.36 25.1
MaskFlowNet[35] 2.25 3.61 - 23.1
FlowNet2[13] 2.02 3.54 10.08 30.0
RAFT[28] 1.43 2.71 5.04 17.4
GMA[15] 0.79 1.30 2.74 4.69 16.6
RAFT+OCTC[14] 1.31 2.67 4.72 16.3

C
PWC-Net[27] 2.00 3.33 4.59 13.20 41.79
DDflow[20] 2.97 4.83 4.85 17.26 -
Uflow[16] 2.55 3.43 4.17 11.27 30.31

Table 1. Cross domain performance of existing methods. The networks are trained on FlyingChairs[5] dataset denoted as C, or FlyingChairs
and FlyingThings[21] (C+T). These average end-point errors are from the published papers. The results show that they tend to struggle
from inherent discrepancy among datasets.

ments. It follows that it is even not adequate to assume
abundant labeled data in a test domain. Fine-tuning with
only a small part of a dataset is not likely to yield decent per-
formance on the rest of the unseen data. On the other hand,
unsupervised training on the entire test dataset also does not
guarantee good performance and can be prohibitively slow.
Therefore we need to design a new approach, since typical
fine-tuning for optical flow estimation via deep learning is
unlikely to be successful for the reasons mentioned above.
At this point, we introduce meta-learning into this problem.
We propose to enable test-time adaptation with a limited
number of labeled data in the test domain and a strictly re-
stricted number of gradient descent iterations. The follow-
ing summarizes our technical contributions.

• Our approach utilizes unique characteristics of indi-
vidual test inputs in a new domain. To this end, we
employ an unsupervised loss for our adaptation stage.
Moreover, existing optical flow methods do not per-
form comparably on domains other than in-distribution
domain. To best of our knowledge, we are the first
approach to successfully handle this shortcoming by
adopting meta-learning.

• Labeling ground truth optical flow in real scenes is a
laborious task. Since our approach helps a network to
become more sensitive to inputs in the target domain,
our method can readily generalize to the target domain
and does not require GT in the test-time.

• Experiments show that our model successfully handles
the challenging condition of GT scarcity. Our method
significantly outperforms the pretrained networks and
demonstrates higher performance than naı̈ve fine-
tuning.

2. Related Works
2.1. Supervised optical flow networks

Traditionally, optical flow estimation has been relied on
variational approaches [3, 9, 32]. Many recent studies take
advantage of deep neural networks to improve performance,
as they are good at exploiting spatial information of the
scene and inferring the optical flows of occluded areas.
FlowNet [5] first succeeded in applying deep learning to
optical flow estimation and added correlation information
between pixels. PWC-Net [27] effectively predicted both
large and small flows using the coarse-to-fine technique.
RAFT designed a neural net capable of iterative refinement,
increasing model accuracy.

2.2. Unsupervised optical flow losses

Unsupervised learning allows neural networks to be
learned even with unlabeled data. For optical flows, un-
supervised learning can conventionally be performed us-
ing data terms called photometric consistency and prior
knowledge such as smoothness [26]. Recently, to im-
prove the smoothness regulation, edge-aware loss [31] or
bi-directional Census loss [22] have been proposed. In ad-
dition, OAFlow [31] and DDFlow [20] enhanced perfor-
mance by applying occlusion estimation using photometric
and smoothness losses.

2.3. Domain adaptation for optical flow estimation

Domain adaptation by definition aims to apply a high-
performance model to a target domain. For instance, in
another field of image processing, medical imaging, some
studies proposed to maximize performance in test-time
through domain adaptation, such as [29]. In the optical flow
field, [12] and [11] suggested the student-teacher model
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Figure 2. Qualitative Results on MPI Sintel[4] final pass. FlyingChairs[5]+FlyingThings[21] and FlyingChairs serve as the pre-training
domains for the first two rows and the bottom two rows, respectively. θ0, θftn , θml

n , θft∗n , and θml∗
n denote pretrained, fine-tuned, meta-

trained, adapted from fine-tuned, and proposed, respectively.

for medical image analysis, and [30] attempted sim2world
transfer by using the coarse-to-fine strategy. [7] mimics
[28]’s optical flow predictor using meta-learning. In con-
trast to [7], our method does not require any additional pa-
rameters or changes to model structure. This implies the
flexibility of our method to be applied to any other state-of-
the-art networks.

2.4. Meta-learning

Meta-learning is to learn things that were not previ-
ously thought to be subject to learning. It is increasingly
drawing attention, for it effectively adapts to new domains.
Among meta-learning methods, recent optimization-based
approaches inspire us, such as [1], [6], and [19]. We assume
[6] is the most related approach to our method. MAML[6]
is recognized for its capability to adapt to various domains
with a limited number of steps. It achieves this by encoding
shared prior knowledge across domains. In contrast to [6]
which adapts to diverse domains, we focus on boosting the
adaptation ability to respective inputs. To best of our knowl-
edge, we are the first to seriously analyze the test-time do-
main adaptation of optical flow estimation and incorporate a
meta-learning paradigm into the problem. In a nutshell, our
proposed method is an algorithmic conversion, and it pro-
vides major benefits for individual inputs in a domain with
insufficient GT. In this work, we present real optical flow

estimation as a representative example.

3. Proposed method
Using two consecutive video frames (It, It+1), we can

compute the optical flow V t with conventional flow estima-
tion networks as:

V t = fθ(I
t, It+1), (1)

where f denotes a conventional flow estimation network
with parameters θ, and each element of the flow field V t is
a two-dimensional vector which represents the motion dis-
placement at a pixel location.

However, conventional flow estimation networks have
difficulties in dealing with input frames when domain mis-
match occurs, and thus require additional burden of fine-
tuning. For instance, we may additionally fine-tune the net-
works pre-trained on FlyingChairs dataset [13] to the KITTI
dataset [23] to calculate more accurate flow in the KITTI
dataset. Unlike these typical fine-tuning approaches, we
propose a new adaptation technique which allows test-time
adaptation to a given specific input.

In this section, we first define the problem setting. Then,
we provide justification for our motivation and build a back-
ground on unsupervised optical flow losses. Finally, we de-
scribe the algorithm and originality of our method in details.
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3.1. Test-time adaptation of flow networks

Conventional flow estimation networks trained through
motion distributions from a specific dataset have difficulties
in handling input frames with a different motion distribu-
tion. To mitigate this problem, it is required to adapt the pa-
rameters of the pre-trained networks to the new test domain.
In particular, we aim to adapt the flow networks to the given
specific input at the test-phase by utilizing internal motion
statistics. However, as ground-truth motion information is
not available at the test-stage, we employ the conventional
unsupervised losses which allow us to train the networks in
an unsupervised manner for the test-time adaptation.

Our unsupervised loss function Lun is composed of data
term Ldata and regularization term Lreg, and it yields,

Lun(θ) = Ldata(V
t[θ]) + λ · Lreg(V

t[θ]), (2)

where λ is a user parameter to adjust the regularization.
Specifically, our data term measures the data fidelity sim-

ilar to [25, 8, 16], and the formulation is given by,

Ldata = α · (1− SSIM(It(p), It+1(p+ V t(p))))

+(1− α) ·
∥∥It(p)− It+1(p+ V t(p))

∥∥
1
,

(3)

where p denotes the pixel coordinates. The first and second
terms compute the dataset fidelity based on SSIM [34] score
and brightness constancy respectively, and α controls the
balance between these two terms. Moreover, we adopt the
edge-aware regularization [31] to preserve motion bound-
aries while enforcing smoothness on homogeneous regions,
and our regularization term is as follows:

Lreg = exp(−∇I
t

σ
) · ∥∇V t∥, (4)

where ∇ denotes a linear operator to compute pixel-wise
derivative and σ controls strength of the edge-awareness.

3.2. Meta-learning for test-time adaptation

By minimizing our unsupervised loss function in (2), we
can naively update the pre-trained flow model separately
on each test input from a new domain. In addition, we in-
troduce a more fast adaptation technique which can further
elevate the network performance and accelerate adaptation
speed when there are a small number of annotated ground-
truth flows on the new domain.

To be specific, we incorporate a meta-learning approach
with our problem for the fast adaptation. In general, con-
ventional meta-learning algorithm requires a large number
of train-dataset to enable the network to sensitively respond
to diverse task changes during the train-phase, and we ad-
ditionally need few ground-truth dataset for the test-time
adaptation at the test-phase.

In contrast, we meta-train the flow network with only a
small number of annotated dataset since optical flows in a

single domain typically contain many similar motions (e.g.
forward motion in KITTI dataset), and we adapt the net-
work parameters to an input at the test-time in an unsuper-
vised manner. We embed our fast adaptation algorithm into
the MAML algorithm [6] which is one of the representatives
for its simplicity and flexibility. Through our meta-learning
method, we provide the network a training of learning new
types of motions and context in a specific domain, so adap-
tation becomes a much easier process than relying solely
on the unsupervised loss in (2). Moreover, we achieve this
without requiring a large amount of data from the target
domain. Then, during the meta-inference stage, we post-
process the meta-trained network to a test input without us-
ing the ground-truth dataset.

3.2.1 Meta-train for new domains

Similar to MAML [6], our meta-train stage is composed of
two update steps as provided in Algorithm 1. During inner
update step, we adapt the network parameters using the un-
supervised loss in (2), and conduct meta-optimization with
few labeled metaset through outer update step. To be spe-
cific, in the proposed meta-learning scenario, our task con-
sists of two consecutive video frames (It, It+1) and cor-
responding ground-truth optical flow V t

gt. At each outer
update step, we randomly sample Nτ tasks from uniform
distribution, and we adapt the network parameter for each
task in an unsupervised fashion. Finally, we meta-optimize
the flow parameter by minimizing the meta-objective as:

Lmeta(θ) =
1

Nτ

Nτ∑
i=1

∥fθi(It, It+1)− V t
gt∥1, (5)

where θi denotes the network parameter adapted to a spe-
cific task using the unsupervised loss. Notably, we can use
any conventional optimizers (e.g. SGD, ADAM) to mini-
mize the two loss functions, Lun and Lmeta. We repeat this
procedure until convergence and the proposed meta-train al-
gorithm allows the meta-trained parameter θ∗ to be general-
ized across similar tasks in a specific domain such as KITTI
dataset.

3.2.2 Meta-inference for test images

We elaborate our final adaptation algorithm which is
dubbed meta-inference during the test-phase in Algorithm
2. First of all, we use the meta-trained θml as the start-
ing point of this stage. Then, we perform the identical pro-
cess as in the inner update step in Algorithm 1, and adapt
the parameters by minimizing the unsupervised loss since
the ground-truth dataset is not available at the test-time. At
the end of N adaptations, we can render the final flow re-
sults V t for a given test input frames It and It+1 using the
adapted flow parameter θml∗. We measure the accuracy of
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Test
Domain

Pre-train
Data

pretrained fine-tuned ours

θ0 θ∗0 θftn θft
∗

n θml
n θml∗

n

KITTI 2015
C 10.25(0.09) 9.58(0.18) 3.59(0.46) 4.31(0.47) 5.74(1.23) 3.32(0.19)

C+T 4.65(0.03) 5.17(0.07) 2.73(0.54) 3.40(0.70) 2.81(0.65) 2.69(0.68)

Sintel final
C 4.11(0.02) 3.93(0.02) 3.84(0.02) 3.77(0.03) 3.58(0.30) 3.47(0.28)

C+T 2.75(0.01) 2.74(0.10) 2.75(0.01) 2.74(0.10) 2.75(0.01) 2.74(0.10)

Table 2. Quantitative results on KITTI 2015 and Sintel final datasets. We randomly split the test domain into metaset and testset three times
and average performances. The standard deviations are enclosed in parenthesises. Asteriods indicate that the model is adapted on St by
the unsupervised Lun individually on each input τ t

i . Note that we achieve θml∗ with as little as three gradient descent steps, framed by the
inner-loop’s 3 steps. On the other hand, we choose the best performance for θft∗. In case the epe of θft∗ keeps increasing from the very
first step, we select the third step for proper comparison to our method. We conduct experiments denoted as θ∗0 , θftn , θft∗n ourselves. By
doing this, we exhaustively verify our method’s advantages over naive fine-tuning and unsupervised learning with the same Sm, St, and
losses.

Algorithm 1: Meta-train algorithm.
Require:
U(T ): uniform distribution over tasks
θ: pre-trained flow network parameter
Nτ : number of tasks
N : adaptation number, α, β: update steps
Output:
meta-trained flow parameter θml

while until convergence do
for i← 1 to Nτ do

Sample a task (It, It+1, V t
gt) ∼ U(T )

θi ← θ
V t ← fθi(I

t, It+1)
j ← 0
while j < N do

Lun(θi) =
Ldata(V

t[θi]) + λ · Lreg(V
t[θi])

θi = θi − α∇θiLun(θi)
j ← j + 1

end
end
Lmeta(θ) =

1
Nτ

∑Nτ

i=1 ∥fθi(It, It+1)− V t
gt∥1

θ ←− θ − β∇θLmeta(θ)

end
Return: θml ← θ

the optical flow results in terms of end-point error (EPE),
and we provide the EPE values over various test inputs in
our experiments.

3.3. Differences from previous arts

Previous arts [1, 6, 19] present their meta-learning meth-
ods either in a supervised manner or in an unsupervised

Algorithm 2: Meta-inference algorithm.
Input:
It, It+1: two adjacent tst input frames
N : adaptation number, α: update step
Require:
θml: meta-trained flow network parameter
N : adaptation number, α: update step
Output: adapted flow result V t

θml∗ ← θml

V t ← fθml∗(It, It+1)
j ← 0
while j < N do

Lun(θ
ml∗) =

Ldata(V
t[θml∗]) + λ · Lreg(V

t[θml∗])
θml∗ = θml∗ − α∇θml∗Lun(θ

ml∗)
j ← j + 1

end
Return: V t ← fθml∗(It, It+1)

manner. On the contrary, our proposed algorithm is a hybrid
variant of meta-learning. In Algorithm 1, we meta-train the
network in a supervised fashion. Then, in Algorithm 2, we
perform a quick adaptation with an unsupervised loss in the
test-time. In summary, our method is a mixed approach that
allows fast adaptation in the test-phase.

4. Experiments
4.1. Implementational details

We use pytorch [24] and learn-to-learn [2] libraries to
implement our adaptation algorithms. Learning rate was set
to be 1.25 × 10−4 for fine-tuning, following the learning
rate of the baseline model [15]. We set the learning rate
to be 5 × 10−6 for β and 1.0 × 10−5 for our α and all
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(a) θ0: pre-trained

(b) θ∗0 : adapted from pre-trained

(c) θftn : fine-tuned

(d) θml∗
n : proposed

(e) Source images of the inputs

(f) Ground-truth
Figure 3. A couple of qualitative examples of evaluations on a real-world dataset, KITTI-15’s St.

the other adaptations as similar approaches [5, 14, 28] have
adopted less learning rates. We used standard Adam [17]
optimizer to minimize the proposed losses in Algorithm 1
and 2. We set our adaptation gradient descent steps i.e., N
3. For flow estimation, we adopt GMA [15] as our baseline
model where the number of iterations of convGRU cells in
GMA is 12. For evaluation, we measure the performance of
the flow networks in terms of EPE.

4.2. Dataset settings for comparison

We use conventional benchmark datasets as in [5, 14, 28]
and selected FlyingChairs[5] and FlyingThings[21] for pre-

training. The abbreviations of these two datasets are C and
T, respectively. We use officially provided pretrained net-
works of GMA [15] as our baseline and evaluated networks
adapted by the proposed algorithms on two independent
datasets, KITTI-15 and MPI-Sintel. We let K and S denote
these datasets as in previous works [5, 28, 14]. Specifi-
cally, KITTI-15 training split was created from real-world
images on roads and consists of 200 frames. On the other
hand, Sintel train split was made from synthetic scenes, and
it comprises 23 scenes and 1041 frames in total. Notably,
we adopted the final pass on Sintel dataset as a representa-
tive. This is because final pass is made up of fully rendered

2150



images including atmospheric effect, motion blur, and cam-
era depth-of-field blur. Therefore, the final pass is more
likely to meet our purpose of testing with more challenging
images.

Previous works [5, 14, 28] conventionally examine their
models on S and K after training on C and T. Then, they
fine-tune their models on entire S and K trainsets respec-
tively. The next procedure is evaluating each fine-tuned
model on the same entire S or K trainsets. This is obvi-
ously not a fair evaluation - that is why those results are
often put inside parenthesises -, so we avoid reporting such
results. Instead, [5, 14, 28] additionally provide outcomes
from KITTI and MPI-Sintel benchmarks testsets.

4.3. Quantitative and qualitative flow results

We further highlight our generalization ability by re-
peated random samplings of metaset since the KITTI train-
set, for example, comprises no more than 200 image pairs.
In Tab. 2, we present the average of three random split-
tings of Sm for meta-train and St for meta-inference. We
note that Sm and St are two disjoint sets. In Tab. 2, we
let θ0, θftn , θml

n denote the pre-trained, the fine-tuned for n
iterations, and the meta-trained with n outer-loop iterations,
respectively, Then, we use * for denoting the adaptation or
the meta-inference. The pretrained AEPEs on KITTI and
Sintel datasets are 10.2, 4.65, 4.11, 2.75 while AEPE of our
final meta-inference results are 3.32, 2.69, 3.47, 2.74, which
shows superiority of the proposed algorithm. During our fi-
nal fast adaptation process, the error decreases from 5.74
to 3.32 in case of pretraining on C and testing on KITTI.
Similar tendency appears in the rest of the rows. This per-
formance gain is achieved by only three gradient descent
steps.

For the qualitative results, the bottom two rows in Fig. 2
effectively illustrates our method’s benefits. In this particu-
lar frame, left and right sides are disoccluded and occluded
in the next frame. θml

n denotes meta-trained parameters by n
iterations. Our method’s final result from θml∗

n outperforms
other methods in such challenging cases. We analyze that
this is because the parameter θml

n has been trained to min-
imize the EPE after few adaptation process with the same
Eq. 2. This enables our θml

n to easily adapt to θml∗
n . Al-

though fine-tuned parameters θftn is similar in performance
with θml

n as an intermediate state, improvements are hardly
seen in θft∗n . Adaptation after naive fine-tuning still poorly
handles frame boundary areas.

Note that to the best of our knowledge, we are the first to
analyze optical flow test-time learning with a small amount
of training data from a target domain. Since most of the
optical flow estimation papers utilize Sintel and KITTI for
the evaluation, we are performing an uncommon analysis
on those datasets. Thus, although a direct comparison to the
state-of-the-art methods is nearly unfeasible, we open up a

new possibility of improving the estimation results in a test-
time manner. For instance, in Tab. 1, our baseline GMA[15]
reports 4.69 AEPE on KITTI-15 when pretrained on C+T.
However, our method’s performance in Tab. 3 begins with
4.68, which is in effect 4.69, as θ0 and reduces it to 3.11
with only five training inputs from 200 KITTI-2015 target
data. Moreover, the additional test-time learning only takes
3 gradient descent steps.

4.4. Ablation study: comparison to fine-tuning

In order to further verify our method’s advantage, we
conducted fine-tuning with the same Sm for ourselves. If
we assume that metaset is available, one may question
whether meta-learning is necessary rather than fine-tuning.
This questioning motivates us to present the results of tradi-
tional fine-tuning on Sm. The performances of fine-tuning
are 3.59, 2.73, 3.84, 2.81, respectively for each row in Tab.
2. Furthermore, we perform Algorithm. 2 on top of θ0
and θftn respectively. We denote them as θ∗0 and θft∗n as
counterparts of our θml∗

n . For θ∗0 and θft∗n , the end point
error increases for some cases on KITTI and partially de-
screases for the other cases. This limited improvement is
due to the fact that the general fine-tuning is a plain training
process, and this training does not take into account the sub-
sequent adaptation. As a result, unsupervised learning be-
comes highly susceptible to Dnew’s satisfaction of optical
flow priors and eventually malfunctions for difficult dataset
such as KITTI. The performance gain from 10.3 to 9.6 in
the first row results from the initial high error. High error
allows larger space for error drop. However, for θml∗

n , addi-
tional performance gain from θml

n can be obtained at almost
any case, resulting in better outcomes than fine-tuning. We
argue that this performance is the effect of transporting the
parameter set to a position that is suitable for test-time adap-
tation scheme. Therefore, a specialized network for each
incoming input is made more possible in our method.

4.5. Analysis: the amount of labeled data

In this study, we analyze the possibility of restricting
the number of training data in the target domain. Such
exploration of small Sm has not been heavily investigated
by other optical flow studies. Nevertheless, we empirically
demonstrate that exploiting knowledge from a smaller por-
tion of a new domain is achievable. In Tab. 3, in case at
most 50% of the test domain should be labeled for train-
ing, fine-tuning finds a similar point at the loss function’s
hyper-plane, reaching our method’s results. However, such
assumption of exhaustive labeling often becomes expen-
sive due to the fact that obtaining accurate optical flow GT
for real scenes is difficult to be automated. On the other
hand, our θml∗

n ’s performance significantly improves upon
θftn when there are only a limited number of meta-training
data available. As our method yields larger gains in Tab. 2
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Size of
Sm

Ratio of
Sm

pretrained fine-tuned ours Our gain
over θftnθ0 θ∗0 θftn θft

∗
n θml

n θml∗
n

5 2.5% 4.68(0.04) 5.14(0.05) 3.79(0.23) 3.93(0.28) 3.12(0.15) 3.11(0.12) +0.65(0.29)
10 5% 4.69(0.07) 5.18(0.04) 3.05(0.28) 3.05(0.33) 2.86(0.19) 2.83(0.18) +0.22(0.11)
20 10% 4.65(0.03) 5.17(0.07) 2.73(0.54) 3.40(0.70) 2.81(0.65) 2.69(0.68) +0.04(0.03)

100 50% 4.59(0.05) 4.95(0.05) 1.41(0.11) 1.42(0.11) 1.45(0.11) 1.45(0.11) -0.04(0.06)

Table 3. Analaysis on the effect of the amount of labeled data. Sm is splitted from the target domain. The results are computed on KITTI-
2015 while θ0 is pretrained on C+T. In case of lower ratio of metaset, our method significantly improves upon naive fine-tuning. All results
are in pixel unit.

𝜃0 𝜃𝑛
𝑓𝑡 𝜃𝑛

𝑚𝑙

𝜃0
∗

𝜃𝑛
𝑓𝑡∗ 𝜃𝑛

𝑚𝑙∗

GT

Figure 4. Qualitative results on KITTI-2015. Note that only 2.5% of the target domain data was used for test-time adaptation with and
without meta-learning. Both methods have drastic improvements over the baseline parameter (i.e., θ0), but our result from meta-inference
is a better outcome for the moving car and the out-of-frame occlusion in the rightmost areas. In addition, θml∗

n benefits from the adaptation
while the others obviously do not with the same unsupervised loss.

when starting from pre-training on C, we can arguably as-
sume even larger gains for Tab. 3 in that case. Standard
training including fine-tuning typically requires abundant
training data and is otherwise susceptible to over-fitting.
Moreover, the gain’s standard deviation remains about the
half of the average, which further implies our method’s con-
sistent advantages over the counterpart.

5. Conclusion

We present a test domain adaptation method that enables
a neural network to have separate sets of network coeffi-
cients for different scenarios. Then, we provide the opti-
cal flow problem as a prime example. Current optical flow
estimation methods have significant performance gaps be-
tween the training domains and test domains. It follows
that they struggle to be generalized to unseen real scenes.
Our approach formulates a revised meta-learning frame-
work so that a pretrained network can learn to adapt on a
novel domain. This is made possible by exploiting internal
motion statistics in different motion distributions. For re-
liability, we demonstrate several comparative analysis with
naive methods such as fine-tuning and test-time unsuper-
vised learning. The proposed method exhibits significant

improvements in most of the performances on widely used
datasets. This achievement can be implemented in a sim-
ple and effective way and is independent of the base optical
flow network.
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