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Abstract

We consider the problem of compressing an information
source when a correlated one is available as side informa-
tion only at the decoder side, which is a special case of the
distributed source coding problem in information theory.
In particular, we consider a pair of stereo images, which
have overlapping fields of view, and are captured by a syn-
chronized and calibrated pair of cameras as correlated im-
age sources. In previously proposed methods, the encoder
transforms the input image to a latent representation using
a deep neural network, and compresses the quantized latent
representation losslessly using entropy coding. The decoder
decodes the entropy-coded quantized latent representation,
and reconstructs the input image using this representation
and the available side information. In the proposed method,
the decoder employs a cross-attention module to align the
feature maps obtained from the received latent representa-
tion of the input image and a latent representation of the
side information. We argue that aligning the correlated
patches in the feature maps allows better utilization of the
side information. We empirically demonstrate the competi-
tiveness of the proposed algorithm on KITTI and Cityscape
datasets of stereo image pairs. Our experimental results
show that the proposed architecture is able to exploit the
decoder-only side information in a more efficient manner
compared to previous works.

1. Introduction
Image compression is a fundamental task in image pro-

cessing that aims to preserve the visual image content while
reducing the bit rate needed for storage or transmission.
The compression may be lossless, that is, when multiple

1Contributed equally to this work.

samples of the information source are compressed jointly
such that the source can be reconstructed with a vanish-
ing probability of error, or lossy, that is, allowing a non-
zero distortion in the reconstruction in order to achieve
higher compression rates. Shannon showed that the en-
tropy of the source is a fundamental bound on the bit rate
for lossless compression. In the lossy case, continuous-
valued data (such as vectors of image pixel intensities)
must be first quantized to a finite set of discrete values,
which inherently introduces some degree of error. There-
fore, for lossy compression, one must trade-off between
two competing costs: the entropy of the discretized latent
representation (rate) and the error arising from the quan-
tization step (distortion). Traditional image compression
schemes, like JPEG2000 [30] and BPG [6], typically consist
of partitioning the image into small pre-determined blocks,
which are processed through linear transforms like the dis-
crete wavelet transform (DWT), in order to decorrelate the
pixel values, and to obtain a latent representation of the im-
age, followed by intra block prediction (motion search) and
residual coding to exploit repetition and self-similarity of
the image content, which reduces the entropy of its repre-
sentation. This is then followed by quantizing the latent
representation, and an entropy coder to store/send the result-
ing quantized representation most efficiently. On the other
hand, recently proposed machine-learning-driven compres-
sion algorithms [3, 5, 16, 23, 26, 32, 33], which employ deep
neural networks (DNNs), achieve impressive performance
results, outperforming classical and standard methods, by
decorrelating the image values with a nonlinear transform,
parameterized by a DNN, in order to obtain a latent repre-
sentation, which is then quantized and entropy coded using
a learned probability distribution.

In this work, we are interested in DNN-aided distributed
stereo image compression, where an image y from the stereo
image pair (x, y) is available as side information only at
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Figure 1: System model.

the decoder side (see Fig. 1). This scenario can occur,
for example, when there are multiple distributed unmanned
aerial vehicles, autonomous vehicles, or simply multiple
static cameras that capture images with overlapping fields
of view. Note that these captured images are highly corre-
lated due to overlapping fields of view. Assume that one of
the cameras delivers its image (in a lossless fashion) to the
destination, e.g., a central storage or a processing unit. The
other camera, instead of employing a standard single image
compression algorithm, should be able to benefit from the
presence of a highly correlated image obtained from the first
camera, even though it does not have direct access to this
side information image at the encoder side. This is a special
case of the more general distributed source coding (DSC)
problem where two distributed encoders communicate their
sources to the decoder, characterized by an achievable re-
gion of rate pairs

(
𝑅𝑥 , 𝑅𝑦

)
((𝐷𝑥 , 𝐷𝑦), where 𝐷𝑥 and 𝐷𝑦

denote the distortions in the reconstruction of sources x and
y, respectively. The case we consider here is a corner point
of the achievable rate region corresponding to 𝐷𝑦 = 0 (loss-
less compression), implying that 𝑅𝑦 = 𝐻 (y). The benefit
of decoder-only side information in compression was first
characterized by Slepian and Wolf in [31] for the lossless
compression case, and by Wyner and Ziv in [39] for the
lossy compression case.

1.1. Related work

1.1.1 Single image compression

There has been a surge of interest in DNN models for
image compression, most notably the ones proposed in
[3, 5, 16, 23, 26, 32, 33]. In [3], an autoencoder-based model
with a parameterized distribution as prior for the latent is
trained with a rate-distortion loss for a fixed target bit rate.
An extension is proposed in [5] that introduces a hyper-
prior to capture the spatial dependencies between the ele-
ments of the latent representation by estimating their stan-
dard deviations, thus enabling better compression of the la-
tent representation by the entropy coder. In [16], context-
adaptive entropy models are introduced, while in [23], an
autoregressive network is used as a non-factorized condi-
tional entropy model. Both [16, 23] generalize the hyper-
priors of [5] to estimate both the mean and variance of the
Gaussian priors of the latent representation. Many other

approaches and architectures have been recently proposed,
like saliency-driven compression [26], dense-blocks and
content-weighting [18], non-local attention [7, 8, 15], and
generative-adversarial networks (GANs) [1, 20].

1.1.2 Attention

Self-attention in vision applications was first introduced in
[12], where the image is tiled into a sequence of flattened
patches, and attention is applied to this sequence of patches.
In [27], attention mechanism is restricted to a local neigh-
borhood in order to fully replace convolutional layers. For
rectified stereo images, in particular, stereo attention mod-
ules (SAM) are introduced in [40] for stereo image super-
resolution, where attention at a certain location in the left (or
right) image is limited to the corresponding epipolar line in
the other image.

1.1.3 Centralized stereo compression

Centralized stereo image compression was first considered
in the DSIC model in [19], and the HESIC model in [10],
in which both the left and right images are available at the
encoder, and are jointly compressed. In DSIC, a dense
warp field is estimated using disparity estimation between
the two images, and warped features from the left image
are fed to the encoder and decoder of the right image. In
HESIC, the right image is warped by an estimated homog-
raphy, and only its residual with respect to the first image
is encoded. Subsequent works include the SASIC model
[38], and the bi-directional contextual transform module
(Bi-CTM) and a bi-directional conditional entropy model
(Bi-CEM) [17]. The SASIC approach computes the opti-
mal horizontal shifts of each channel of the latent represen-
tation to match the second image, and then encodes only
the residual of the shifted channel with respect to the cor-
responding channel of the second image. SASIC also con-
nects the encoder-decoder pipelines of the two images with
stereo attention modules [40]. In [17], the main idea is to
avoid the limitation of sequential coding of the two stereo
images by introducing an “inter-view context dependency”
mechanism.

1.1.4 Distributed stereo compression

In the current literature, the DNN-based methods that ex-
plicitly address distributed (stereo) image compression are:
(1) the DRASIC model in [11], (2) the DSIN model in [2],
(3) the NDIC model in [24], and (4) vector quantized vari-
ational autoencoder-based approach in [36]. In [2], the
authors exploit high spatial correlations between pairs of
stereo images, having significantly overlapping fields of
view. By finding corresponding patches between an inter-
mediate reconstructed image and the side information im-
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age, and computing their correlations, the authors then use
these patches to refine the reconstructed image at the de-
coder. The process of finding the corresponding patches is
non-differentiable, since it is done by using the argmax(·)
function, which possibly prevents the network from learn-
ing the inter-dependencies between the images in an opti-
mal way.

The paper [24] uses a different approach by explicitly
modeling the correlation between the two stereo images.
More precisely, [24] models the two images as being gen-
erated by a common set of features, as well as two inde-
pendent sets of features that capture the information in the
respective images that is not captured by the set of common
features. In order to minimize the redundant information
that is transmitted, the encoder only sends the independent
information corresponding to the input image, , while the
set of common features between the input image and the
side information are recovered locally only from the latter.
The paper [36] uses a vector quantized variational autoen-
coder (VQ-VAE) where, unlike most existing DNN-based
image compression schemes that use uniform quantization,
the model learns the quantization codebook, that is, it em-
ploys non-uniform quantization. In [11], the authors pro-
pose a framework for distributed compression of correlated
sources, followed by joint decoding, by employing a re-
current autoencoder architecture that processes the residual
content over repeated multiple iterations in order to achieve
better reconstruction performance.

2. Proposed method

2.1. Main contribution

In this paper, we use the NDIC model [24] as the “back-
bone”, which itself is built upon the model in [3] as its back-
bone. In principle, any other single image compression al-
gorithm can also be used as the backbone for NDIC; and
hence, also for our model. In addition, we augment this
backbone by introducing some transformer-based blocks,
specifically cross-attention modules (CAMs) between the
intermediate latent representations in different stages of the
decoders of the input image and the side information, whose
purpose is to align the corresponding patches. This is sim-
ilar to the “patch-matching” idea proposed in [2], but our
method provides a differentiable alternative to the search-
based algorithm used in [2]. Unlike the SAM approach [40],
used also in SASIC [38], the CAM technique we introduce
computes the attention globally, between patches of the la-
tent representations over all channels, similarly to [12, 34].
We show that our method outperforms the solution provided
in [24]. We also show that our method is able to perform
well in the case of unsynchronized and uncalibrated stereo
cameras, that is, when the correlated images are generated
at different time steps.

2.2. Architecture

In this section, we describe the autoencoder architecture
we use in our compression scheme. Following the method
proposed in [24], we model the images x and y as being gen-
erated by random variables w, v𝑥 and v𝑦 . The variable w is
meant to capture the common features between the two im-
ages, while the variables v𝑥 and v𝑦 , which are called the pri-
vate information variables of the respective images x and y,
are designated to capture the private aspects of x and y that
are not captured by the common variable w. The decoder
reconstructs not only the required image, but also the side
information image from w and v𝑦 , in order to ensure that the
common features w, extracted from y only, are relevant to
both images. The common information w here is defined
in the sense of Witsenhausen, Gacs and Korner [13, 37],
where it corresponds to a deterministic function w = 𝑓 (y)
(= 𝑓 ′(x)) of the two information sources, that is, two sepa-
rate observers of x and y are able to agree as to the value of
w with probability one.

See Fig. 2 for an illustration of the proposed distributed
compression algorithm using CAMs. The encoder maps the
image x to a latent representation v𝑥 by applying a trans-
form g𝑎𝑥 , which is parameterized by weights 𝝓𝑥 . Then,
the latent representation v𝑥 is quantized to obtain v̂𝑥 ∈ Z𝑚,
where its elements are rounded to the closest integer values.
Since the quantization step is a non-differentiable operation,
which prevents end-to-end training, it is instead replaced
by additive uniform random noise over [−0.5, 0.5] during
training (see [3] for a similar reasoning). Thus, v𝑥 is per-
turbed by uniform noise during training to obtain ṽ𝑥 , which
approximates the quantized latents v̂𝑥 . Similarly to [24],
the decoder extracts w = f (y; 𝝓 𝑓 ) by applying a nonlinear
transform f to image y, where 𝝓 𝑓 refers to the weights of
the respective DNN. During training, the transform f learns
to extract features from the SI that estimate the common
information between the stereo images. At the decoder, w
is concatenated with the received latent variable v̂𝑥 , and is
given as an input to the first layer of the primary image’s
decoder network g𝑠𝑥 , denoted by g(1)

𝑠𝑥 , which is parameter-
ized by weights 𝜽 (1)

𝑥 . Simultaneously, the side information
image’s decoder maps the correlated image y to the latent
representation v𝑦 using a transform g𝑎𝑦 , which is param-
eterized by weights 𝝓𝑦 . It then concatenates the common
variable w with v𝑦 , and then inputs it to the first layer of a
decoder network g𝑠𝑦 , denoted by g(1)

𝑠𝑦 , which is parameter-
ized by weights 𝜽 (1)

𝑦 .
In order to overcome the limitation of the convolu-

tional layers to allow only local feature interaction between
the two images, we introduce CAMs between the decoder
pipelines of the two images, that capture global correlations
between the intermediate latent representations in the de-
coder architectures for both images. Then the outputs from
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Figure 2: Proposed model architecture.

g(1)
𝑠𝑥 and g(1)

𝑠𝑦 are fed as inputs into a CAM (described in
detail at Section 2.3), that morphs and aligns the output fea-
ture map from g(1)

𝑠𝑦 , denoted by v(1)
𝑦 , with the output feature

map obtained from g(1)
𝑠𝑥 , denoted by v̂(1)

𝑥 . Next, the output
of the CAM, i.e., v(1)

𝐶𝐴𝑀
, is concatenated with v̂(1)

𝑥 , and fed
to the second layer g(2)

𝑠𝑥 . As seen in Fig. 2, this procedure
is repeated in the next two consecutive layers. In general,
the outputs of the 𝑖𝑡ℎ layer of the decoder networks, which
are v̂(𝑖)

𝑥 and v(𝑖)
𝑦 , are fed into a CAM, whose output, i.e.,

v(𝑖)
𝐶𝐴𝑀

, is concatenated with v̂(𝑖)
𝑥 in order to be fed to the

(𝑖 + 1)𝑡ℎ layer of g𝑠𝑥 . The reconstructed input image x̂ and
the reconstructed side information image ŷ are obtained as
the outputs of the decoder blocks g𝑠𝑥 and g𝑠𝑦 , respectively.
Note that the latent representation v𝑦 is neither quantized
nor perturbed with uniform noise, unlike v𝑥 . This is be-
cause the encoding and decoding of image y happen at the
decoder side without it being transmitted over the channel.
During training, we minimize the following loss function

𝐿 = 𝑅𝑥 + 𝜆𝐷𝑥 + 𝛼(𝑅𝑦 + 𝜆𝐷𝑦) + 𝛽𝑅𝑤 , (1)

where 𝑅𝑥 , 𝑅𝑦 and 𝑅𝑤 are the entropy estimates of v𝑥 , v𝑦
and w, respectively, and 𝐷𝑥 and 𝐷𝑦 are the distortion terms
for the reconstructions of the input image and the side in-
formation, respectively. In particular, 𝑅𝑥 represents the rate
of transmission of the input image x. Similarly to previous
works [3, 24], the probability distributions of the variables
w, v𝑥 and v𝑦 are modeled using univariate non-parametric,
fully factorized density functions, which are used to com-
pute the associated entropy terms. In Eq. (1), the hyper-
parameter 𝛽 controls how much importance is given to the
complexity of the common information to be extracted by
the decoder, and 𝛼 determines how much emphasis is given
to the reconstruction loss of the side information. Since our
main objective is the reconstruction of only x, we argue that
the terms 𝑅𝑦 + 𝜆𝐷𝑦 and 𝑅𝑤 act as regularizers for the main
objective under consideration, that is the rate-distortion per-

formance of the primary image x.

2.3. Cross-attention module (CAM)

The CAM takes as input the tensors v(𝑖)
𝑥 , v(𝑖)

𝑦 ∈
R𝐶×𝐻×𝑊 , where 𝐶 is the number of channels, 𝐻 is the
height, and 𝑊 is the width. The input tensors are tiled into
𝑁 = 𝐶𝐻𝑊

𝐶𝑝𝐻𝑝𝑊𝑝
3D patches of dimension 𝐶𝑝 × 𝐻𝑝 × 𝑊𝑝 ,

where 𝐶𝑝 is the number of channels, 𝐻𝑝 is the height,
and 𝑊𝑝 is the width of each patch. Using a linear layer,
the set of patches is transformed to a set of patch embed-
dings, denoted by P𝑥 =

(
p1
𝑥 , . . . , p𝑁𝑥

)
∈ R𝐷1×𝑁 and P𝑦 =(

p1
𝑦 , . . . , p𝑁𝑦

)
∈ R𝐷1×𝑁 of v(𝑖)

𝑥 and v(𝑖)
𝑦 , respectively, where

𝐷1 is the length of each patch embedding. We define three
learnable weight matrices, namely query (W𝑄

𝑥 ∈ R𝐷1×𝐷2 ),
key (W𝐾

𝑦 ∈ R𝐷1×𝐷2 ), and value (W𝑉
𝑦 ∈ R𝐷1×𝐷2 ), where 𝐷2

is the length of the query, key and value corresponding to
each patch embedding. The patch embeddings are projected
onto these weight matrices to obtain Q𝑥 = (P𝑥)𝑇W𝑄

𝑥 ,
K𝑦 = (P𝑦)𝑇W𝐾

𝑦 , and V𝑦 = (P𝑦)𝑇W𝑉
𝑦 . Finally, the out-

put of the CAM is computed as

v(𝑖)
𝐶𝐴𝑀

= Unpack embedding

(
Softmax

(
Q𝑥K𝑇

𝑦√
𝐷2

)
V𝑦

)
, (2)

where the “unpack embedding” operation reverses the em-
bedding operation done on the patches. See Fig. 3 for an
overall summary of the CAM architecture. In the code, we
employ a multi-headed attention mechanism, that is, mul-
tiple attention weights are computed in parallel, similarly
to [34].

3. Experiments
3.1. Experimental setup

In order to assess the rate-distortion performance of our
proposed approach with respect to the existing models for
DSC as well as to the point-to-point neural compression
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Figure 3: Cross-attention module architecture. The
Matmul operation refers to matrix multiplication (see Eq.
(2)).

baselines [3, 5], we conducted a number of experiments us-
ing the PyTorch framework [25]. Our code is publicly avail-
able1.

See Fig. 2 for the proposed DNN architecture. The non-
linear transforms g𝑎𝑥 and g𝑎𝑦 have the same structure as
those proposed in [3]. More specifically, these transforms
are consisting of convolutional layers followed by either lin-
ear (i.e., rectified linear unit) or nonlinear functions (i.e.,
generalized divisive normalization [GDN] [4] and inverse
generalized divisive normalizetion [IGDN]). In [3], it has
been shown that GDN and IGDN are particularly suited for
density modelling within the context of neural image com-
pression. Additionally, we introduce the transform denoted
by f, as proposed in [24], as well as CAMs, as described in
2.3.

For the first part of the experiments, we composed our
dataset from KITTI 2012 [14] and KITTI 2015 [21, 22] to
simulate both calibrated and synchronized as well as the
more general case of uncalibrated and unsynchronized cam-
era array use cases. For the calibrated and synchronized
camera array use case, we constructed our dataset from
KITTI stereo datasets (i.e., a pair of images taken simul-
taneously by different cameras), consisting of unique 1578
stereo image pairs that are captured by a single pair of stereo
cameras. We term this dataset as KITTI Stereo. By aug-
menting this dataset by swapping the images in the pair,
hence getting a total of 1578×2 = 3156 pairs, we trained ev-
ery model on 1576 image pairs, and we validated and tested
every model on two different sets each with 790 image pairs
from the augmented dataset.

For the second part of the experiments, we used the
Cityscape dataset [9], consisting of 5000 stereo image pairs,
where 2975 image pairs were used for training, and 500 and

1Our code is available at https://github.com/ipc-lab/
NDIC-CAM.

1525 image pairs were used as validation and test dataset,
respectively. Similarly to KITTI Stereo, this dataset aims
to illustrate calibrated and synchronized camera array use
case.

For the third part of the experiments, we simulated the
general case of uncalibrated and unsynchronized camera ar-
rays. We built the dataset from 21 stereo pairs per scene ob-
tained sequentially from each of the 789 scenes. We name
this dataset as KITTI General. We constructed this dataset
from pairs of images, where one image is taken from the
left camera and the second image from the right camera,
but now, the images are taken from different time steps (un-
synchronized), in our case, 1 to 3 time steps apart. Also, the
images are taken up to approximately 9 meters apart (uncal-
ibrated). This results in objects differing in scale and posi-
tion between the two images, or even sometimes not appear-
ing in one of the images at all. For this dataset, we trained,
validated, and tested the models on 174936, 912, and 3607
image pairs, respectively. We evaluated the image quality
performance of the models using multi-scale structural sim-
ilarity index measure (MS-SSIM), which is widely reported
to be a more realistic measure for human perception of im-
age quality [35], in comparison with mean-squared error
distortion. Refer to supplementary material to see sample
image pairs from all datasets.

3.2. Training

For both KITTI Stereo and KITTI General datasets, we
center-crop each 375× 1242 image to obtain images of size
370 × 740, and consequently, downsample them to 128 ×
256. For the Cityscape dataset, we directly downsample
images to 128 × 256. We train the benchmark models, as
well as the proposed approach, with different values of 𝜆
to obtain points in different regions of the rate-distortion
curves, using MS-SSIM metric for the reconstruction loss.
We train all models for 500K iterations, using randomly ini-
tialized network weights. We train the models using AMS-
Grad optimizer [28], with a learning rate of 1 · 10−4, where
we reduce the learning rate by a factor of 10 when the
loss function stagnates down to a learning rate of 1 · 10−7.
Similarly to [24], we opt for a batch size of 1 considering
the relatively small sizes of datasets under consideration.
For comparison, we also train the models proposed in [24]
and [2], which will be referred to as NDIC and DSIN, re-
spectively, by using the provided codes23. For NDIC, we
used the “Ballé2017” backbone, and the model hyperpa-
rameters were kept the same. For KITTI Stereo dataset, we

2https://github.com/ipc-lab/NDIC,
https://github.com/ayziksha/DSIN.

3We did not conduct experiments with [36] since the source code of
the revised version of this work is not publicly available. Furthermore,
the authors mention that the exact number of channels they employ within
their autoencoder network varies for different rate-distortion points, which
is not provided in [36].
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Figure 4: Comparison of different models in terms of MS-
SSIM metric. “Ballé2017” and “Ballé2018” models refer
to [3] and [5], respectively. “ATN” refers to our proposed
approach.

used parameters (𝛼 = 1, 𝛽 = 10−3) for the loss function and
parameters (𝛼 = 1, 𝛽 = 1) for the rest of the experimental
setup. This is due to the finding that although the parame-
ters (𝛼 = 1, 𝛽 = 10−3) is shown to be the best performing
one considering KITTI Stereo dataset in the ablation study
provided in [24], we observe that this combination of pa-
rameters induces further instability during the training pro-
cess. We suspect that this is because of the reduced weight-
ing of the regularization term controlling the complexity of
the common information to be extracted (see Eq. (1)).

3.3. Experimental results

In this section, we evaluate the performance of the pro-
posed model, which we refer to as “ATN”, and compare it
with the NDIC model [24] and the DSIN model [2] (see
Fig. 4). In addition to DSIN and NDIC models (discussed
in Section 1.1.4), we also assess BPG as well as the DNN-
aided compression schemes introduced in [3] and [5], which
will be referred to as “Ballé2017” and “Ballé2018”, respec-
tively. Following [29], we opt for 4:4:4 chroma format
for BPG. It is important to remark that the point-to-point
schemes such as BPG and data-driven ones such as [3,5] do
not exploit the side information at the decoder side. Look-
ing at Fig. 4, we observe a significant improvement in per-
formance with our proposed model compared to the NDIC
model on KITTI Stereo and Cityscape datasets. Note that in
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Figure 5: Comparison of the proposed approach and NDIC
considering MS-SSIM metric on KITTI General dataset.

general, ATN with hyperparameters (𝛼 = 0, 𝛽 = 0) achieves
better performance than the one with (𝛼 = 1, 𝛽 = 10−3) on
the KITTI Stereo dataset, and comparable performance to
ATN with (𝛼 = 1, 𝛽 = 10−3) on the Cityscape dataset. We
argue that in order for CAMs to do feature alignment, the
inputs v̂(𝑖)

𝑥 and v(𝑖)
𝑦 to the CAM must be correlated. Note

that this correlation is provided by the variable w. By ap-
plying more pronounced regularization on w, the amount of
common information w extracted is reduced, and v̂(𝑖)

𝑥 and
v(𝑖)
𝑦 become less correlated, thus reducing the efficiency of

the CAMs. We also note that the proposed solution signifi-
cantly improves the performance compared to DSIN in ex-
periments with both datasets, suggesting that the proposed
differentiable way of aligning the corresponding patches
in the two images is better than the “search-based” patch-
matching algorithm adopted by the side information (SI)
finder block in [2]. We also report the results on KITTI
General dataset in Fig. 5. The gains achieved by distributed
compression models on KITTI General are notably less in
comparison to those achieved on KITTI Stereo, since there
is less correlation to exploit between images from differ-
ent time steps for this dataset. Even in this more general
setup where images are only loosely co-located in space or
time, our method outperforms NDIC, where gains are more
prominent in low bit rate regime.

We also provide a visual comparison of reconstructions
by NDIC and our model in Fig. 6 and 7. Observe that
our proposed approach captures the fine details better than
NDIC, while scoring lower bit rates. Our model is espe-
cially successful in capturing the texture and color details
thanks to CAM components that make use of the side in-
formation image in a superior way by aligning and morph-
ing the corresponding patches within intermediate latents.
Knowing that the objects closer to the cameras experience a
larger shift from one stereo image to the other one, we can
observe that the improvement in visual quality due to patch
alignment done using CAMs is most evident in objects and
features closer to the stereo cameras.
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Original Image NDIC ATN (Ours)

(a) Cityscape (b) bpp = 0.1444 (c) bpp = 0.1311

(d) KITTI Stereo (e) bpp = 0.1065 (f) bpp = 0.0847

(g) KITTI General (h) bpp = 0.1134 (i) bpp = 0.1071

Figure 6: Visual comparison of different models trained for
the MS-SSIM metric. “NDIC” refers to the model proposed
in [24].

Original Image NDIC ATN (Ours)

(a) Cityscape (b) bpp = 0.1563 (c) bpp = 0.1440

(d) KITTI Stereo (e) bpp = 0.0912 (f) bpp = 0.0725

(g) KITTI General (h) bpp = 0.0923 (i) bpp = 0.0708

Figure 7: Additional examples for visual comparison of dif-
ferent models trained for the MS-SSIM metric.

3.3.1 Feature alignment

In Fig. 8, a sample channel from the latent feature repre-
sentation v̂(2)

𝑥 after the second layer of the decoder g𝑠𝑥 , and
the corresponding channel from the output of the CAM, are
shown. Observe that the road edges in the bottom left cor-
ner of the original left and right images are at different loca-
tions, but after the application of CAM to v̂(2)

𝑥 and v(2)
𝑦 , the

features corresponding to the road edge in the CAM output
v(2)
𝐶𝐴𝑀

are aligned with those in v̂(2)
𝑥 . This indicates that the

CAM layer learns how to align the features in the latent rep-
resentation of the SI with those in the latent representation
of the input image, allowing more efficient utilization of the
features available in the SI.

(a) Original left image (b) Original right image

(c) A channel of v̂(2)𝑥 (d) A channel of v(2)
𝐶𝐴𝑀

Figure 8: Alignment of feature maps.

NDIC ATN (Ours)

(a) bpp = 0.0911 (b) bpp = 0.0729

Figure 9: For a similar reconstruction quality in KITTI
Stereo dataset (1𝑠𝑡 row), the decomposition of common in-
formation (2𝑛𝑑 row) and private information (3𝑟𝑑 row) for
NDIC and for our proposed approach.

3.3.2 Visualization of private and common informa-
tion

In Fig. 9, we provide visualizations of the private and com-
mon information components obtained for NDIC as well as
our model. We generate the private information visualiza-
tion by plotting the output of the decoder when the side in-
formation image is replaced with a fixed array of 0.5. This
is done in order to block any relevant information that the
decoder might extract from the SI. We also generate the
common information visualization by plotting the output of
the decoder when the input image is replaced with a fixed
array of 0.5, in order to block all information from the in-
put image. Consistent with [24], we observe that the com-
mon information mostly captures the global color and tex-
ture details whereas private information captures the struc-
tural content (e.g., objects and edges). For a similar recon-
struction quality, observe that our approach yields a richer
and more defined common information, and yields lower fi-
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Figure 10: Ablation study experiments on the number of
“CAM” layers on the proposed architecture, using the MS-
SSIM metric on the KITTI Stereo dataset.

delity private information compared to NDIC. This explains
why our model is able to capture finer details compared to
NDIC, while scoring lower bit rates, which depends on the
fidelity of the private information sent by the encoder. By
extracting more common information from the side infor-
mation image at the decoder side, the proposed approach
relies less on the information transmitted from the encoder
to achieve a similar reconstruction quality.

3.3.3 Ablation study

The outputs of each layer of the decoders capture features at
different scales, where the initial layers capture large scale
features, and the later layers capture the small scale fea-
tures. Therefore, CAMs applied to the outputs of the ini-
tial layers do large scale alignment, while CAMs applied
to the later layers do alignment of the small-scale features.
To study the impact of each CAM component in our ap-
proach (see Fig. 2 for the baseline architecture), we carry
out an ablation study on the number of CAMs, and com-
pare the performances in Fig. 10. We remove the CAM
layers starting from the last convolutional layer, moving in
the direction of the first layer. As seen in the plot, removing
1 CAM layer does not affect the performance significantly.
However, removing the second CAM layer results in a sig-
nificant reduction in performance. See Fig. 11 for a visual
comparison of the performances between the model with 1
CAM and the model with 3 CAM components.

3.3.4 Drawbacks

We discuss a few drawbacks and limitations of this work.
Like most deep learning-based image compression works,
our method is dataset-dependent, that is, it performs well on
the data distribution it is trained on, while not guaranteeing
a good performance on images from another distribution.
Another limitation is that the proposed model has almost
double the number of parameters compared to [24], thus
resulting in slower inference times than other approaches.

Original Image ATN w/ 1 CAM ATN w/ 3 CAM

(a) bpp = 0.1369 (b) bpp = 0.1275

(c) bpp = 0.1265 (d) bpp = 0.1157

(e) bpp = 0.1451 (f) bpp = 0.1356

Figure 11: Reconstructed images obtained for the model
having only 1 CAM and 3 CAM components. Having more
CAM layers helps the model to preserve finer details while
scoring a lower bit rate.

Please refer to the supplementary materials for a discussion
of number of model parameters and inference times.

4. Conclusion
We presented a new method for distributed stereo image

compression, which makes use of cross-attention mecha-
nisms in order to align the feature maps of the intermediate
layers in the decoding stage. The method achieves a supe-
rior performance in exploiting the correlation between the
decoder-only side information image and the image to be re-
constructed, compared to the solution provided in [24]. We
have shown that this approach achieves good reconstruction
quality even at very low bit regimes, substantially outper-
forming the single image compression models, as well as
surpassing the previous works on distributed image com-
pression with side information. Even for a more general
camera array use case with uncalibrated and unsynchro-
nized images, we have shown that the proposed method is
on par or superior in performance with respect to the ap-
proach in [24]. The ablation study shows that there is dimin-
ishing marginal benefit with the increasing number of CAM
components employed in the decoding pipeline, which pro-
vides a trade-off between decoding complexity and perfor-
mance.
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distributed image compression using common information.
In 2022 Data Compression Conference (DCC), pages 182–
191, 2022.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A.
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