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Abstract

Rotation is frequently listed as a candidate for data aug-
mentation in contrastive learning but seldom provides sat-
isfactory improvements. We argue that this is because the
rotated image is always treated as either positive or nega-
tive. The semantics of an image can be rotation-invariant
or rotation-variant, so whether the rotated image is treated
as positive or negative should be determined based on the
content of the image. Therefore, we propose a novel aug-
mentation strategy, adaptive Positive or Negative Data Aug-
mentation (PNDA), in which an original and its rotated
image are a positive pair if they are semantically close
and a negative pair if they are semantically different. To
achieve PNDA, we first determine whether rotation is pos-
itive or negative on an image-by-image basis in an unsu-
pervised way. Then, we apply PNDA to contrastive learn-
ing frameworks. Our experiments showed that PNDA im-
proves the performance of contrastive learning. The code
is available at https://github.com/AtsuMiyai/
rethinking_ rotation.

1. Introduction

Recently, self-supervised learning [24, 13, 16, 4, 15] has
shown remarkable results in representation learning. The
gap between self-supervised and supervised learning has
been bridged by contrastive learning [16, 4, 14, 6, 1, 2]. For
self-supervised contrastive learning, data augmentation is
one of the most important techniques [29]. A common ap-
proach for contrastive learning creates positives with some
augmentations and encourages them to be pulled closer.
Since this augmentation strategy creates positive samples,
we refer to it as positive data augmentation (PDA). In ad-
dition, some methods [27, 28, 12] use augmentation to cre-
ate negatives and encourage them to be pushed away. This
augmentation strategy is called negative data augmentation
(NDA).

Rotation has been attempted to be used for these aug-
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Figure 1: Comparison of previous and the proposed aug-
mentation strategy. Upper: PDA treats all rotated images
as positives and encourages them to be pulled closer. mid-
dle: NDA treats all rotated images as negatives and encour-
ages them to be pushed away. Lower: Our proposed PNDA
considers the semantics of the images, and treats rotation as
either positive or negative for each image.

mentations, but few improvements have been made. Al-
though rotation is useful in various fields, Chen et al.
[4] reported that rotation PDA degrades the representation
ability in self-supervised contrastive learning because rota-
tion largely affects image semantics. Since then, rotation
has been treated as harmful for self-supervised contrastive
learning. We consider that this is because previous ap-
proaches tried treating rotation as either positive or negative
without considering the semantics of each image.

To solve this problem and make full use of rotation, it is
important to consider whether the rotation affects the se-
mantics of each image. Natural images are divided into
two classes: rotation-agnostic image (RAI) with an ambigu-
ous orientation and non-rotation-agnostic image (non-RAI)
with a clear orientation. In RAI, an object can have var-
ious orientations. By applying rotation PDA to RAI and
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encouraging them to be pulled closer, the image will obtain
embedding features robust to rotation. On the other hand,
in non-RAI, the orientation of an object is limited. By ap-
plying rotation PDA to non-RAI and encouraging them to
be pulled closer, the images will lose orientation informa-
tion and might get undesirable features. For non-RAI, it is
preferable to treat rotation as negative to maintain orienta-
tion information.

Based on this observation, in this study, we introduce
a novel augmentation strategy called adaptive Positive or
Negative Data Augmentation (PNDA). In Fig.1, we show
an overview of PDA, NDA, and PNDA. While PDA and
NDA do not consider the semantics of each image, our pro-
posed PNDA considers the semantics of each image, and
treats rotation as positive if the original and rotated images
have the same semantics and negative if their semantics are
different. To achieve PNDA, we extract RAI for which ro-
tation is treated as positive. However, there is no method to
determine whether an image is RAI or non-RAI. Thus, we
also tackle a novel task for sampling RAI and propose an
entropy-based method. This sampling method focuses on
the difference in the difficulty of the rotation prediction be-
tween RAI and non-RAI and can extract RAI based on the
entropy of the rotation predictor’s output.

We evaluate rotation PNDA with contrastive learning
frameworks such as MoCo v2 and SimCLR. As a result of
several experiments, we showed that the proposed rotation
PNDA improves the performance of contrastive learning,
while rotation PDA and NDA might decrease it.

The contributions of our paper are summarized as fol-
lows:

e We propose a novel augmentation strategy called
PNDA that considers the semantics of the images and
treats rotation as the better one of either positive or
negative for each image.

* We propose a new task of sampling rotation-agnostic
images for which rotation is treated as positive.

e We apply rotation PNDA with contrastive learning
frameworks, and found that rotation PNDA improves
the performance of contrastive learning.

2. Related work
2.1. Contrastive Learning

Contrastive learning has become one of the most suc-
cessful methods in self-supervised learning [16, 4, 14, 6, 2].
One popular approach for contrastive learning, such as
MoCo [16] and SIimCLR [4], is to create two views of the
same image and attract them while repulsing different im-
ages. Many studies have explored the positives or negatives
of MoCo and SimCLR [9, 35, 19]. Some methods, such as

BYOL [14] or SimSiam [6], use only positives, but recent
studies [12, 30] have shown that better representation can
be learned by incorporating negatives into these methods.
For contrast learning, the use of positives and negatives is
important to learn better representations.

2.2. Data Augmentation for Contrastive Learning

There are two main types of augmentation strategies for
contrastive learning: positive data augmentation (PDA) and
negative data augmentation (NDA).

2.2.1 Positive Data Augmentation (PDA)

Contrastive learning methods create positives with aug-
mentations and get them closer. For example, Chen et
al. [4] proposed composition of data augmentations e.g.
Grayscale, Random Resized Cropping, Color Jittering, and
Gaussian Blur to make the model robust to these augmenta-
tions. On the other hand, they reported that adding rotation
to these augmentations degrades the performance. How-
ever, they used rotation PDA without considering the dif-
ference in the semantic content between RAI and non-RAL

2.2.2 Negative Data Augmentation (NDA)

Several methods have been proposed to create negative sam-
ples by applying specific transformations to images [3, 28,
27]. Sinha et al. [27] investigated whether several augmen-
tations, including Cutmix [33] and Mixup [34], which are
typically used as positive in supervised learning, can be
used as NDA for representation learning. However, they
did not argue that rotation NDA is effective. Tack et al. [28]
stated rotation NDA is effective for unsupervised out-of-
distribution detection, but they also did not state that ro-
tation NDA is effective for representation learning. These
methods [3, 28, 27] treat the transformed images as nega-
tives without considering the semantics of each image.

2.3. Rotation Invariance

Rotation invariance is one of many good and well-
studied properties of visual representation, and many ex-
isting methods incorporate rotational invariant features into
feature learning frameworks. For supervised learning, G-
CNNs [7] and Warped Convolutions [18] showed excellent
results in learning rotational invariant features. For self-
supervised learning, Feng et al. [11] worked on rotation
feature learning, which learns a representation that decou-
ples rotation related and unrelated parts. However, previous
works separated the rotation related and unrelated parts im-
plicitly as internal information of the network and did not
explicitly extract RAIL Here, we tackle a novel task for sam-
pling RAL
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In this paper, we propose a novel augmentation strategy
called PNDA that considers the semantics of the image and
treats rotation as positive for RAI and negative for non-RAIL
To achieve PNDA, we also tackle a novel task for sam-
pling RAIL. We demonstrated the effectiveness of rotation
PNDA with contrastive learning frameworks with sampled
RAI and non-RAL

3. Rotation-agnostic Image Sampling

To achieve PNDA, we first need to extract RAI for which
rotation is treated as positive. In Fig. 2, we show the setting
of extracting RAI. We have data of RAI and non-RAI, and
our goal here is to extract RAI in an unsupervised way. In
this section, we present our novel entropy-based method for
sampling RAL First, we illustrate the overall concept of the
method in Section 3.1. Then, in Section 3.2, we detail the
training procedure, and in Section 3.3 we explain the infer-
ence procedure. Finally, we explain the criterion of tuning
the hyperparameters in Section 3.4.

3.1. Overall Concept

This sampling method focuses on the difference in the
difficulty of the rotation prediction between RAI and non-
RAI For RAI, the feature distributions of the original and
rotated images are similar, so the model can hardly predict
which rotation is applied. Thus, the entropy of the rotation
predictor’s outputs should be large for RAIL On the other
hand, for non-RAI, the feature distributions of the original
and rotated images are different, so the model can easily
predict which rotation is applied. Hence, the entropy of the
rotation predictor’s outputs should be small for non-RAIL
Therefore we can separate RAI and non-RAI by the entropy
of the rotation predictor.

We show an overview of our approach in Fig.3. G is
a feature generator network, and F' is a rotation predictor
network. Our idea is to train the rotation predictor F' to
learn the boundary between RAI and non-RAI The key is
to update the rotation predictor F' using only non-RAI and
to create a rotation predictor that can correctly predict the
rotation of only non-RAI.

3.2. Training Procedure

From the previous discussion in Section 3.1, we propose
a training procedure consisting of the following two steps,
as shown in Fig. 3.

3.2.1 Stepl.

At the first step, we train an initial model with all samples
before overfitting. We define the set of transformations S as
all the image rotations by multiples of 90 degrees, i.e., im-
age rotations by 0, 90, 180, and 270 degrees. Namely, we
denote S := {Sy, Sgo, S180, 5270 }. We apply S to a set of

all images. We train the model to predict which transforma-
tion S € S is applied. As preprocessing, for a given batch
of samples B = {z;}2 |, we apply S to B. The objective
function in this step is as follows.

Lon=53" 3 ~Sloa(p(as)), Bs = (S}

SeS zs€Bs
ey

p (zs) denotes the |S|-dimensional softmax class probabil-
ities for input xg. We train the model at this step for 5,
epochs.

3.2.2 Step2.

We propose a separation loss to separate RAI from non-
RALI Specifically, we first define the following two losses.

Lu=23" Y Lulr(s),

SeSxzg€Bg
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(H(p) —p < —m),
otherwise.

N

Eq.(2) is the entropy separation loss proposed by [26].
H(p) is the entropy of p. p is set to %, since log(|S|)
is the maximum value of H(p). m is the margin for sep-
aration. This loss enables the entropy of RAI to be larger
and urges the rotation predictor to misclassify the rotation
of RAI, and enables the entropy of non-RAI to be smaller,
and urges the rotation predictor to predict the rotation of
non-RAI more confidently. The loss in Eq.(3) enables the
model to learn using only non-RAI. With a hyperparameter

A, the final objective is as follows.
Loxs + Mles. @)

We train the model at this step for 5 epochs. A in Eq.(4) is
proportional to the epoch number: A = ) ePB%Ch, where \
is a constant number.

3.3. Inference

At inference, we take images with four different rota-
tions as input and calculate the average entropy of the out-
puts as a score that represents the difficulty of rotation pre-
diction. We treat the images whose score is larger than p+m
as RAI and the other images as non-RAI. We treat rotation
as positive for RAI and as negative for non-RAI.

3.4. Criterion for tuning hyperparameters

The way of tuning the hyperparameters A’ and m fo-
cuses on the rotation classification accuracy after Stepl and
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Figure 3: Overview of training steps and inference step in the proposed sampling method. G is a feature extractor and
F' is a rotation predictor. During training, at Step1, we initialize the network with all samples before overfitting. At Step2,
we update the network using only non-RAI and make a boundary between non-RAI and RAI. At inference, we calculate the
score by averaging the entropy of F”’s outputs of 4 rotated images, and we determine RAI or not.

Step2. At Stepl, we train the rotation predictor before over-
fitting. At Step2, we train the rotation predictor with non-
RALI and separate the entropy of RAI and non-RAI largely
and extract RAI The rotation prediction accuracy of the ro-
tation predictor after Step2 should be almost the same as
after Stepl because the number of non-RAI and RAI does
not change between Stepl and Step2. We tuned the hyper-
parameters A’ and m so that the accuracy of the rotation
prediction after Step 2 is the same as that after Step 1.

4. PNDA for contrastive learning

In this section, we explain how to apply PNDA to con-
trastive learning frameworks [4, 5]. We first describe con-
trastive learning (i.e. the InfoNCE loss) in the context of
instance discrimination. Next, we introduce our approach
to applying PNDA to contrastive learning.

4.1. Contrastive Learning

InfoNCE loss (i.e. contrastive loss) is commonly used in
instance discrimination problems [4, 16]. Given an encoder
network f and an image =, we denote the output of the net-
work as z = f(x). We use z; as the embedding of a sample
x; and use z, as the embedding of its positive sample x,,.
We use z,, € N; as embeddings of negative samples. The

InfoNCE loss is defined as follows:

£;fNCE _ o, _ exp(zi | 2p/T) _ G
exp(z; Z:D/T) + ZzneNi exp(z; ' 2n/T)

where 7 is a temperature parameter.

SimCLR [4] and MoCo v2 [5] create two views of the
same image #;, #; 7 with random augmentation aug(-). For-
mally, #; = aug(z;) and #;7 = aug(z;). These two
views are fed through the encoder f to obtain embeddings
z; = f(#;) and ;T = f(2; 7). They encourage z; and z;*
to be pulled closer. That is, when &; is an anchor image,
the positive sample is #; . For negative samples, MoCo
v2 uses a large dictionary as a queue of negative samples.
SimCLR randomly samples a mini-batch of M examples
and makes pairs of augmented examples X and X*. For-
mally, X = {;}, and X* = {2,7}M,. The mini-batch
size results in 2. For negative samples, SimCLR uses the
other 2(M — 1) augmented examples other than positives
within the mini-batch.

4.2. Contrastive Learning with PNDA

Rotation PNDA treats rotated images as positives for
RAI and negatives for non-RAI. We define the set of pos-
itive samples P;" and negative samples N;" which contain
rotated images of an anchor x;. To deal with multiple posi-
tive pairs, we use supervised contrastive loss [20]. The ex-
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tended InfoNCE loss for PNDA is defined as follows:

PNDA
Li =

exp(zisz/T) 6)

P 22, S enron, oxp(a 2 /7)

To give a more detailed explanation, we define Rot(z, 0)
is an image that rotates image = by 6 degrees. The detail
explanations about P;” and N;" for MoCo v2 and SimCLR
are provided below:

4.2.1 PNDA for MoCo v2.

For MoCo v2, we refer to [12], which incorporates patch-
based NDA into MoCo v2. We extended [12] for rotation
PNDA. The set of anchor images for PNDA is the same
as vanilla MoCo v2. We set P," to #; ", Rot(#; ", 90),
Rot(#; ", 180) and Rot(#; ", 270) for RAI and ;" for non-
RAL We set N;" to vanilla MoCo v2’s negative samples for
RAI and vanilla MoCo v2’s negative samples, Rot(x}"', 90),
Rot(#; T, 180) and Rot(#; 7, 270) for non-RAL

4.2.2 PNDA for SimCLR.

To the best of our knowledge, there is no method that ap-
plies NDA to SimCLR for representation learning. We pri-
oritize batch-wise processing, which is the essential mech-
anism of SimCLR, and the ease of implementation. Like
vanilla SimCLR, we create X+ and X *. In addition, with
01 and 6y which are different degrees chosen randomly
from {90, 180, 270}, we create two sets of rotated im-
ages Xy, and ng Formally, Xg, = {Rot(z;,6,)}M,,
Xy, = {Rot(#;",602)}M,. The mini-batch size results in
4M . Like vanilla SimCLR, we use X and X+ as anchor
images. We set P;" to #; 7, Rot(#;, 61) and Rot(#; T, 05) for
RAIand #; " for non-RAL We set N;" to the other 4(M —1)
augmented examples within the mini-batch for RAI and the
other 4M — 2 augmented examples, including rotated im-
ages of an anchor z;, within the mini-batch for non-RAIL
Note that, although the mini-batch size increases, the diver-
sity of the images in the mini-batch does not change since
we increase the data by rotation.

5. Experiments
5.1. Datasets

We use CIFAR-100 [21] and Tiny ImageNet [22], which
are used in self-supervised setting [36, 10, 31, 25]. CIFAR-
100 contains 50,000 training images and 10,000 test images
scaled down to 32x32 in 100 different classes. Tiny Ima-
geNet contains 100,000 training images and 10,000 test im-
ages scaled down to 64 x64 in 200 different classes, which
are drawn from the original 1,000 classes of ImageNet [8].
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(a) CIFAR-100 (b) Tiny ImageNet

Figure 4: The train and validation accuracy curves for ro-
tation classification with split-training and split-validation
data. We use the epoch just before overfitting to (3.

5.2. Rotation-agnostic Image Sampling

5.2.1 Implementation Details.

We used ResNet-18 [17] as a feature encoder. Especially,
for CIFAR-100, we use extended ResNet used by [4]. They
replaced the first convolution layer with the convolutional
layer with 64 output channels, the stride size of 1, the ker-
nel size of 3, and the padding size of 3. They removed the
first max-pooling from the encoder and added a non-linear
projection head to the end of the encoder. In this study, we
refer it to ResNet* to distinguish it from ResNet.

To set 31, we need to know the epoch before overfit-
ting with all training data because self-supervised learning
methods use all training data. However, to know the ac-
curate epoch just before overfitting with all training data
is impossible due to the lack of validation data. In order
to know the approximate epoch just before overfitting, we
treat 80% of all training data as split-training data and treat
the rest 20% of all training data as split-validation data,
and investigate the epoch just before overfitting with split-
training data. We set (31 to the epoch just before overfitting
with split-training data, which is close to the epoch with all
training data. In Fig. 4, we show the train and validation
accuracy curves with split-train and split-validation data for
rotation classification. We set 3 to 10 for both datasets.

We set 85 to 200 for CIFAR-100 and 150 for Tiny Im-
ageNet. According to Section 3.4, we set A to 0.20 for
CIFAR-100 and 0.10 for Tiny ImageNet and m to 0.20 for
both datasets. We use the Adam optimizer with a learn-
ing rate of 0.001 for CIFAR-100 and the Stochastic Gradi-
ent Descent (SGD) with a momentum of 0.9 and a learning
rate of 0.1 for Tiny ImageNet. We use cosine decay sched-
ule [23]. We train with a batch size of 64 in all experiments.
We conducted 3 runs and chose the model that best matched
the criterion in Section 3.4. We conducted the training on a
single Nvidia V100 GPU.
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Figure 5: Examples of RAI extracted by our sampling
framework on CIFAR-100 and Tiny ImageNet.

Table 1: Number of RAI extracted by our sampling frame-
work on CIFAR-100 and Tiny ImageNet

Dataset #RAI  #images ratio of RAI (%)
CIFAR-100 6,229 50,000 124
Tiny ImageNet 30,711 100,000 30.7

Acc. of rotation prediction: 86%
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Figure 6: The histograms of the scores obtained with the
model after Stepl and Step2 on CIFAR-100 and Tiny Im-
ageNet. As Section 3.3, a score denotes the difficulty of
predicting the rotation of an image. These results show that
the model after Step2 ensures separation between non-RAI
and RAI, whereas the model after Stepl confuses non-RAI
and RAL

5.2.2 Results on Rotation-agnostic Image Sampling.

In Fig. 5, we show some examples of RAI extracted by our
sampling framework on CIFAR-100 and Tiny ImageNet.
This result shows that our sampling framework can extract

RAI approximately correctly. Table 1 shows the number
of RAI on CIFAR-100 and Tiny ImageNet. About 12% for
CIFAR-100 and about 31% for Tiny ImageNet of all the im-
ages are extracted as RAI Fig.6 shows the histogram of the
score of the outputs with the model after Stepl and Step2
on CIFAR-100 and Tiny ImageNet. As described in Sec-
tion 3.3, a score denotes how difficult the rotation predic-
tion is. Although the accuracies of rotation prediction with
both models are almost the same, the distributions of scores
are quite different. The model after Step2 makes the dif-
ference in the scores between RAI and non-RAI larger and
enhances the separation, while the model after Stepl con-
fuses non-RAI and RAI. Note that the number in Table 1
is the number of RAI extracted by our sampling framework
and not the actual number of RAI in the datasets. There are
no ground truths of RAI and non-RAI, so the exact number
of RAI is unknown.

5.3. PNDA for contrastive learning
5.3.1 Compared Methods.

We mainly use MoCo v2 [5] and SimCLR [4] as contrastive
learning frameworks. In addition to these baselines, we ap-
ply rotation PDA and rotation NDA to these frameworks.
Rotation PDA regards all samples as RAI and treats rotated
images as positives. Rotation NDA regards all samples as
non-RAI and treats rotated images as negatives.

5.3.2 Evaluation Protocols.

Following the previous works [16, 4], we verify our meth-
ods by linear classification on frozen features, following
a common protocol. After unsupervised pretraining, we
freeze the features and train a supervised linear classifier
(a fully-connected layer followed by softmax). We train
this classifier on the global average pooling features of a
ResNet. We report top-1 classification accuracy.

5.3.3 Implementation Details.

We use ResNet-18 and ResNet-50 [17] as our encoder to
be consistent with the existing literature [16, 4]. Especially,
for CIFAR-100, we use ResNet*. We train models for 300
epochs on CIFAR-100 and for 200 epochs on Tiny Ima-
geNet. We conducted the training on a single Nvidia V100
GPU. A more detailed explanation can be found in the sup-
plementary materials.

5.3.4 Results on PNDA for Contrastive Learning.

Table 2, 3 show the results of rotation PDA, NDA and
PNDA for MoCo v2 and SimCLR. We found that rotation
PDA degrades the performance in all experiments. Rotation
NDA outperforms the baselines of MoCo v2 and SimCLR
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Table 2: Top-1 linear classification accuracies of rotation PDA, NDA, PNDA for MoCo v2 and SimCLR on CIFAR-100. The
scores are averaged over 3 trials. RP denotes the ratio of positive rotated images. These results show that PDA and NDA
might degrade the performance, but rotation PNDA boosts the performance of contrastive learning.

None + PDA +NDA + PNDA (ours)
RP (%) - 100 0 12
MoCo v2 [5] ResNet-18* | 62.74+0.37 57.1840.27/5.56  62.7540.29 | 63.184+0.2210.44
ResNet-50*% | 67.51+£0.08 63.36+0.12/4.15 67.284+0.32 | 68.20+0.2310.69
SimCLR [4] ResNet-18* | 62.71+0.38 61.12+0.18/1.59  61.73+£0.23 | 63.42+0.0410.71
ResNet-50* | 65.90+0.17 64.46+0.09/1.44 64.6740.01 | 66.55+0.1270.65

Table 3: Top-1 linear classification accuracies of rotation PDA, NDA, PNDA for MoCo v2 and SimCLR on Tiny ImageNet.
The scores are averaged over 3 trials. RP denotes the ratio of positive rotated images. These results show that PDA and NDA
might degrade the performance, but rotation PNDA boosts the performance of contrastive learning.

None + PDA +NDA + PNDA (ours)
RP (%) - 100 0 31
MoCo v2 [5] ResNet-18 34.33+0.23 30.76+0.08/3.57 34.60+0.16 | 35.784+0.3071.45
ResNet-50 | 38.88+0.40 35.06+0.61/3.82  38.944+0.51 | 39.934+0.4711.05
ResNet-18* | 45.06+£0.28 41.42+0.20]3.64  45.2940.20 | 46.35+-0.1011.29
SimCLR [4] ResNet-18 3591+0.22 35.7440.18/0.17  36.5940.14 | 37.174+0.1571.26
ResNet-50 | 40.10+0.30 40.00+0.20/0.10  41.074+0.13 | 41.48+0.2411.38

Acc. (%)

40 60 80 100
RP (%)

(a) CIFAR-100

37.2 30% (ours)

Acc. (%)

0 20 40 60 80 100
RP (%)
(b) Tiny ImageNet

Figure 7: The effect of the ratio of positive rotated images
on CIFAR-100 and Tiny ImageNet. The results show that
our sampling method can extract approximately the correct
number of RAI images.

in some settings, but the differences between them are not
large. However, our proposal PNDA outperforms all com-

parison methods in all experiments, although PNDA only
treats rotation as positive for a few images (12% for CIFAR-
100 and 31% for Tiny ImageNet) and negative for the other

images.

5.4. Ablation Studies

The ratio of positive rotated images. We examined the
effect of the ratio of positive rotated images. 0, 5, 20, 30,
and 100% of the images on CIFAR-100 and 0, 10, 20, 40,
and 100% of the images on Tiny ImageNet in the descend-
ing order of the score are treated as positive rotated im-
ages. Then, we use RAI extracted by our sampling frame-
work (12% for CIFAR-100 and 31% for Tiny ImageNet)
and compare the accuracies. Fig. 7 shows the results of our
experiments with SimCLR using ResNet18*. The experi-
mental results show that the number of RAI extracted by
our sampling framework is close to optimal. This result also
demonstrates the validity of tuning the hyperparameters of
our sampling method in Section 3.4.

The effect of each element of PNDA. We investigated
the effectiveness of each element of PNDA. Table 4 shows
the comparison results for MoCo v2 with ResNet18* on
CIFAR-100. The results show that both the processes of
treating RATI’s rotated images as positives and non-RAI’s
rotated images as negatives contribute to the high perfor-
mance of PNDA. This result indicates the necessity of pro-
cessing each image separately for RAI and non-RAI.
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Table 4: Ablation of each element of PNDA. We use MoCo v2 with ResNet18* on CIFAR-10

Methods | positive for RAI | negative for non-RAI | acc (%)
MoCo v2 - - 62.74
+ positive v - 62.92
+ positive or negative (PNDA) v v 63.18

Table 5: Top-1 linear classification accuracies of rotation PDA, NDA, PNDA for BYOL. The scores are averaged over 3 trials

on CIFAR-100.

None + PDA +NDA + PNDA (ours)
RP (%) - 100 0 12
BYOL [14] ResNet-18* \ 60.81+0.16 57.11+0.23]3.70  60.514+0.47 \ 61.68+0.47 10.87
5.5. PNDA for BYOL age rotation, but we cannot consider some issues, such as

Our PNDA can be applied to contrastive learning frame-
works without negatives such as BYOL [14]. Methods, such
as BYOL [14], do not rely on negatives. BYOL minimizes
their negative cosine similarity between positives. With the
embedding feature z; and z, in Section 4.1, the loss for
BYOL is defined as follows:

£iBYOL —

(7

For BYOL, we refer to [12], which incorporates patch-
based NDA into BYOL. We extended [12] for rotation

PNDA. We define the set of rotated positive samples Pf,
and rotated negative samples N;” which are rotated images
of an anchor x;. The extended BYOL loss for PNDA is

defined as follows:
£, PNDA _

1z = 2.

1

zi — 2p|| +
i = 2l +

e}
Zi — Zpl|| — ———
O Tt

v
Zp! ePp;"

>z — zal,

Zn €N
®)

where « is the parameter that controls the penalty on the
similarity between the representations of the anchor image
and the negative rotated images. We set « to 0.05. We set
P as Rot(#; T, 90), Rot(#; ", 180) and Rot(z;, 270) for
RAI and ¢, which denotes no images, for non-RAI. We set
N/’I as ¢ for RAI and Rot(z; ", 90), Rot(#; ", 180) and
Rot(#; T, 270) for non-RAL

Table 5 shows the results for BYOL. We found that our
proposal PNDA improves the performance.

6. Discussion
6.1. Limitations

The performance of our proposal PNDA depends on the
RAI sampling results. In the previous section, we showed
that PNDA boosts the performance of contrastive learning.
However, the sampling results could be improved. We ex-
tracted RAI by focusing on the difficulty of predicting im-

the background dependencies [32] or the case of multiple
objects in an image [8]. Large-scale datasets, such as Ima-
geNet [8], have these issues and require more accurate sam-
pling methods. By developing a more accurate sampling
method, the performance of PNDA can still be improved.
Addressing such issues is a future challenge.

6.2. Extentions

To the best of our knowledge, this work is the first at-
tempt to determine whether an image is rotation-invariant
or rotation-variant. Our method can be generalized to many
rotation-based methods, not limited to contrastive learning.
Furthermore, in this work, we focus on rotation. In addi-
tion, the problem of augment-invariance exists in various
augmentations other than rotation. Therefore, it is intrigu-
ing to consider generalizing our PNDA to apply to other
augmentations.

7. Conclusion

In this paper, we propose a novel augmentation strat-
egy called adaptive Positive or Negative Data Augmenta-
tion (PNDA), which treats rotation as the better one of ei-
ther positive or negative considering the semantics of each
image. To achieve PNDA, we tackle a novel task for sam-
pling rotation-agnostic images for which rotation is treated
as positive. Our experiments demonstrated that rotation
PNDA improves the performance of contrastive learning.
PNDA might increase accuracy in augmentation other than
rotation, which was previously considered ineffective. We
think this perspective will facilitate future work.
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