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Abstract

Contrastive learning has shown its effectiveness in im-
age classification and generation. Recent works apply con-
trastive learning to the discriminator of the Generative Ad-
versarial Networks. However, there is little work explor-
ing if contrastive learning can be applied to the encoder-
decoder structure to learn disentangled representations. In
this work, we propose a simple yet effective method via in-
corporating contrastive learning into latent optimization,
where we name it ContraLORD. Specifically, we first use
a generator to learn discriminative and disentangled em-
beddings via latent optimization. Then an encoder and two
momentum encoders are applied to dynamically learn dis-
entangled information across a large number of samples
with content-level and residual-level contrastive loss. In
the meanwhile, we tune the encoder with the learned em-
beddings in an amortized manner. We evaluate our ap-
proach on ten benchmarks regarding representation disen-
tanglement and linear classification. Extensive experiments
demonstrate the effectiveness of our ContraLORD on learn-
ing both discriminative and generative representations.

1. Introduction

In recent years, the disentanglement of factors in images
has attracted many researchers’ attention, which mainly in-
cludes two folds: adversarial and non-adversarial methods.
Adversarial methods [33, 11, 18, 39, 15] often apply a min-
max optimization framework [16] for disentanglement of
images, which costs much time on hyper-parameters tun-
ing. In terms of non-adversarial models, several variational
autoencoders [20, 23] variants have been proposed to dis-
entangle the generative factors in an unsupervised manner
without inductive biases, which did not achieve satisfactory
results as proven in an empirical study [31].

*Corresponding author.

With the extra class supervision, semi-supervised meth-
ods achieve promising performance in disentanglement.
Typically, comprehensive experiments in [32] validate the
effectiveness of a limited amount of supervision in state-of-
the-art unsupervised disentanglement models. LORD [14]
applies a latent optimization framework with a noise reg-
ularizer on content embeddings to achieve superior perfor-
mance over amortized inference. Based on LORD, Over-
LORD [15] is proposed to disentangle class, correlated and
uncorrelated attributes for image translation. A more recent
work [13] adopts a pre-trained CLIP [38] model to generate
partial annotations for image manipulation. However, there
exist two main drawbacks among these methods: 1) using
different separate encoders for different factors is resource-
wasteful for real-world applications and requires expensive
human design. 2) just learning the content embeddings in-
side each sample is not sufficient to learn the diversity ex-
isting in the dataset.

Driven by the shortcomings discussed above, we propose
a simple yet effective method named ContraLORD, where
we incorporate contrastive learning into latent optimiza-
tion for representation disentanglement. Recent works [10,
37] apply contrastive learning on the discriminator of the
GAN [16] for disentangling representations. Typically, the
3D imitative-contrastive learning in [10] is used for control-
lable face image generation by comparing pairs of gener-
ated images. However, in this work, we focus on applying
contrastive learning to the encoders to learn the discrimi-
native and generative embeddings with disentangled infor-
mation. Specifically, we first apply a generator to learn
discriminative and generative embeddings via latent opti-
mization. Then we apply an encoder and a momentum en-
coder to dynamically learn disentangled information across
a large number of samples with content-level and residual-
level contrastive loss. In the meanwhile, we use the learned
discriminative and generative embeddings to tune the en-
coder in an amortized manner.

We evaluate our ContraLORD on two main tasks: linear
classification and disentanglement. Extensive experiments

1531



show the effectiveness of the learned discriminative embed-
dings on linear classification and generative embeddings on
the disentanglement of factors. We conduct comprehen-
sive studies on three benchmarks on linear classification and
seven benchmarks on disentanglement to investigate if con-
trastive self-supervised models can learn disentangled fea-
tures. In the meantime, we achieve superior performance
on linear classification compared to baselines. Our Con-
traLORD also achieves promising results over state-of-the-
art methods in terms of disentanglement.

The main contributions of this work can be summarized
as follows:

• We present a simple yet effective method called Con-
traLORD by incorporating contrastive learning into la-
tent optimization for representation disentanglement
and linear classification.

• We formally explore the disentangled features across
a large number of samples with content-level and
residual-level contrastive losses.

• Extensive experiments on ten benchmarks show the ef-
fectiveness of our approach to learning disentangled
representations.

2. Related Work
Discriminative Representations Learning. Discrimina-
tive representations learning has addressed researchers’ at-
tention for a long time since discriminative representations
are significant for image classification. Most of the previ-
ous works adopt supervised [28] and unsupervised learn-
ing [21, 46, 47, 45] to learn embeddings that most discrimi-
nate between classes in the dataset. Typically, the principle
of maximal coding rate reduction [44] is applied to maxi-
mize the coding rate difference between the whole dataset
and the sum of each separate class. However, there exists
little work of contrastive learning to explore the discrimina-
tive representations for the pre-training stage. In this work,
we mainly focus on learning discriminative embeddings for
linear classification by incorporating contrastive learning
into latent optimization to improve the performance of base-
lines.
Disentangled Representations Learning. Disentangled
representation learning aims at learning generative factors
existing in the dataset, that is, disentanglement learning.
A bunch of previous work focuses on unsupervised learn-
ing with variational autoencoders, such as β-VAE [20],
Factor-VAE [23]. Following those work, DCI disentangle-
ment [12], SAP score [26], and Mutual Information Gap
(MIG) [3] are often utilized as quantitative metrics to mea-
sure the quality of disentangled representations. In recent
years, semi-supervised models have been used by many re-
searchers in the literature. Adding a limited amount of su-

pervision to unsupervised models is proven in [32] to be
effective in learning disentangled representations for real-
world scenarios. LORD [14] leverages the latent optimiza-
tion framework with a noise regularizer on content embed-
dings for class and content disentanglement. More recently,
a simple framework for disentangling labeled and unlabeled
attributes is utilized in OverLORD [15] for high-fidelity im-
age synthesis. A study [13] uses a CLIP [38] pre-trained
model to annotate a set of attributes for disentangled im-
age manipulation. In this work, we intend to learn disen-
tangled embeddings via combining latent optimization and
contrastive self-supervised learning.
Contrastive Learning. Recently, contrastive self-
supervised learning [41, 4, 5, 17, 19, 6, 2, 7, 29, 43, 35, 36]
has been explored a lot by many effective methods. Sim-
CLR [4], an end-to-end structure, is proposed to pull away
the features of each instance from those of all other in-
stances in the training set. In the self-supervised setting,
low-level image transformations such as cropping, scaling,
and color jittering are utilized for encoding the in-variances
from samples. The InfoNCE loss, that is, the normalized
temperature-scaled cross-entropy loss, is often optimized to
maximize the similarity between positive samples and min-
imize the similarity between negative samples. Large batch
size is always used in this kind of end-to-end structure [4, 5]
to accumulate a large bunch of negative samples in con-
trastive loss. PIRL [34] without a large batch size applies
a memory bank to store negative samples and update repre-
sentations at a specified stage. MoCo [19] and MoCov2 [6]
replace the memory bank with a memory encoder to queue
new batch samples and to dequeue the oldest batch. In this
work, we leverage content-level and residual-level momen-
tum encoders to store a queue of negative samples with dis-
entangled information for learning generative embeddings,
where content-level and residual-level contrastive losses are
applied to capture content and residual representations.

3. Methodology

3.1. Problem Setup

In this part, we first begin with the problem setup and for-
mally define the notations for easy reading. Regarding the
problem, our goal is to demystify the disentangled and dis-
criminative features learned by contrastive self-supervised
learning. To address this problem, we propose a simple
yet effective method by combining contrastive learning and
latent optimization for representation disentanglement. To
explain it better, we define the notations below in a unified
manner.
Notations. Given a set of training examples X =
{x1,x2, · · · ,xn}. For each image xi, i ∈ {1, 2, · · · , n},
we need to learn one discriminative embeddings d and a
generative embeddings gi from a pre-defined set of embed-
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dings {g1,g2, · · · ,gm}, where m denotes the total num-
ber of generative factors in the training data. That is,
di ∈ R1×d,gi ∈ R1×g , where d, g denote the dimensional-
ity of discriminative and generative embedding, separately.
In our setting, we split the generative embedding gi into two
folds: content embeddings gc

i and residual embeddings gr
i .

The content embeddings contain information that is related
to the discriminative embedding, while the residual embed-
ding includes uncorrelated information.

Overall, the objective of our work is to learn di,g
c
i ,g

r
i

for each image xi from a training dataset. In the next
part, we present the technical details of our method. To
learn di,g

c
i ,g

r
i from a set of training examples, we pro-

pose a simple yet effective approach called ContraLORD, as
shown in Figure 1. Our ContraLORD mainly includes two
parts: 1) embedding optimization: We first use a generator
G(·) to learn discriminative and disentangled embeddings
via latent optimization. 2) encoder pre-training: we apply
a encoder f(·) and a momentum encoder fm(·) to dynami-
cally learn disentangled information across large amount of
samples with content- and residual-level contrastive loss.

3.2. Embedding Optimization

To learn the discriminative and disentangled embed-
dings, we are motivated by LORD [14] to introduce the
latent optimization in the first stage. Specifically, we ap-
ply a generator G(·) to reconstruct the original image xi
by using each sample’s discriminative and disentangled em-
beddings. Instead of using the KL-divergence in variation
auto-encoders [25], we equally add a regularizer with Gaus-
sian noise of a fixed variance to the residual embedding gr

i .
Thus, the objective of embeddings optimization is defined
as

Lopt =

n∑
i=1

ℓ(G(di, gci , gr
i + zi)), xi)+ #reconstruction

λ · (||gc
i ||2 + ||gri ||2) #sparse reg.

(1)

where ℓ(·) denotes ℓ2 loss for synthetic data and VGG per-
ceptual loss for real images. λ is the penalty weight of the
capacity of the disentangled embeddings. zi ∼ N (0, σ2I).
In this way, we can learn the disentangled embeddings
di, gci , gri without any adversarial learning involved, that is,

d̃i, g̃ci , g̃r
i = argmin

di,gci ,g
r
i

Lopt. (2)

For training sets with annotations, d̃i is given.

3.3. Encoder Pre-training

After learning the optimized embeddings, we need to
train a generalized encoder during the pre-training stage. In

order to optimize the encoder f(·), we reconstruct the origi-
nal image xi with the output embeddings from f(·), and the
loss function is calculated as

Lrec =

n∑
i=1

ℓ

(
G
(
hd

(
f(xi)

)
, hc

g
(
f(xi)

)
, hr

g
(
f(xi)

))
, xi

)
(3)

where ℓ(·) denotes ℓ2 loss for synthetic data and VGG per-
ceptual loss for real images. hd(·), hc

g(·), hr
g(·) denote the

head for generating the discriminative, content-level, and
residual-level embeddings. To learn more disentangled in-
formation in the discriminative and disentangled embed-
dings, we use the learned embeddings in the first stage as
the supervision and define the objective as:

Lsup =

n∑
i=1

||hd(f(xi))− d̃i||2+ #discriminative

||hc
g(f(xi))− g̃ci ||

2+ #content-level

||hr
g(f(xi))− g̃r

i ||
2 #residual-level

(4)

where d̃i, g̃ci , g̃r
i denote the learned representations from the

first optimization stage, respectively.
Content-level Contrastive Loss. To learn more
disentangled content embeddings across examples in
the dataset, we feed a content momentum queue
{xkey

1 , xkey2 , · · · , xkeyk , · · · , xkeyK } of one query sample
xqueryi into a momentum encoder fm(·). The illustration of
the content-level contrastive learning is shown in Figure 2
(left). As can be seen, we generate the content embeddings
gck, k ∈ {1, 2, · · · ,K} from the momentum queue, and gcq
from the query sample xquery

i . Then we calculate the simi-
larity between the original content embedding gc

i and gcq, gck
for content-level contrastive loss. Finally, the content-level
contrastive loss is defined as

Lcon =

n∑
i=1

− log
exp(gci · gcq/τ)

exp(gci · gcq/τ) +
∑K

k=1 exp(gci · gck/τ)
(5)

where K denotes the number of negative samples in the
momentum queue. τ is a temperature hyper-parameter. In
the backward process, we update the parameters of the en-
coder f(·) according to the gradient of this loss. The pa-
rameters of the momentum encoder f c

m(·) is updated by
fm(·) ← mfm(·) + (1 − m)f(·), where m ∈ (0, 1] is a
momentum coefficient.
Residual-level Contrastive Loss. In order to further disen-
tangle the residual part in the disentangled embeddings, we
introduce a residual momentum encoder fr

m(·) to receive
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Figure 1. The overall framework of our proposed ContraLORD model.

the residual momentum queue and generate a set of resid-
ual embeddings grk, k ∈ {1, 2, · · · ,K}. Thus, the residual-
level contrastive loss is defined with key embeddings gr

k,
query embedding grq , and the original embedding gri as

Lres =

n∑
i=1

− log
exp(gr

i · grq/τ)
exp(gri · grq/τ) +

∑K
k=1 exp(gri · grk/τ)

(6)
where K denotes the number of negative samples in the
momentum queue, and τ is a temperature hyper-parameter.
The gradient of this loss is also used to update the parame-
ters of the encoder f(·). We update the parameters of the
momentum encoder fm(·) by fm(·) ← mfm(·) + (1 −
m)f(·), where m ∈ (0, 1] is a momentum coefficient.

The overall objective of our ContraLORD is optimized
in an end-to-end manner as

L = (Lrec + Lsup) + λcon · Lcon + λres · Lres (7)

where λcon, λres denote the weight of the content-level and
residual-level contrastive loss, respectively. We set them to
1 in default. Extensive ablation studies are conducted to
explore the effects of each loss on the final performance of
our ContraLORD. We summarize the overall algorithm of
our training approach in Algorithm 1.

3.4. Smoothness of Embeddings

To measure the smoothness of embeddings pre-trained
by the encoder, we borrow the idea of uniformity property

in the instance-wise contrastive learning and introduce the
Gaussian potential kernel [1] to calculate the average pair-
wise Gaussian potential as:

smoothness = E(gi,gj)∼pc
[e−t||gi−gj ||

2

]

+E(gi,gj)∼pr
[e−t||gi−gj ||

2

]
(8)

where pc, pr denotes the distribution of content and residual
embeddings in the hyper-sphere, and t is a positive factor to
define the weight of the ℓ2 distance between embeddings gi
and gj . In our experiments, we follow previous work [42]
and set t=2.

4. Experiments
4.1. Datasets & Configurations

Following previous methods [19, 4], we evaluate the
linear classification of the encoder pre-trained by our
ContraLORD on three widely-used benchmarks, including
CIFAR-10, CIFAR100, ImageNet-100 [9, 41]. In terms of
disentanglement [14, 15], we evaluate the disentangled em-
beddings on four synthetic: Shapes3D [23], Cars3D [40],
dSprites [20], SmallNorb [27]; And three real datasets:
CelebA [30], AFHQ [8], CelebA-HQ [22].

Specifically, Shapes3D [23] contains 4 shapes, 8 scales,
15 orientations, 10 floor colors, 10 wall colors, and 10 ob-
ject colors. Cars3D [40] includes 183 car CAD models with
24 different azimuth directions and 4 elevations, where 163
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Figure 2. Content-level (left) and residual-level (right) contrastive learning designed in our ContraLORD.

Algorithm 1 ContraLORD main learning algorithm
Input: generator G(·), encoder f(·), momentum en-
coders f c

m(·), fr
m(·), heads hd(·), hg(·).

1: Initialize the parameters G(·), f(·), f c
m(·), fr

m(·), hd(·),
hg(·),

2: Initialize the embeddings di, gci , gr
i , i ∈ {1, 2, · · · , n}

3: # Embedding Optimization
4: for each epoch do
5: Apply G(·) to reconstruct original images
6: Calculate the optimization loss in Eq. 1
7: Update di, gc

i , gri
8: end for
9: # Encoder Pre-training

10: for each epoch do
11: Apply f(·), hd(·), hg(·) to reconstruct original im-

ages and calculate the loss in Eq. 3
12: Apply embeddings d∗

i , g∗i as supervision and calcu-
late the loss in Eq. 4

13: Apply f(·), fc
m(·) to encode content features gc

q, gc
k

and calculate loss as in Eq. 5
14: Apply f(·), fr

m(·) to residual features grq, gr
k and

calculate loss as in Eq. 6
15: Compute the total loss in Eq. 7
16: Update the parameters of f(·), hd(·), hg(·)
17: Update the momentum parameters of f c

m(·), fr
m(·)

18: Update the content and residual momentum queue
19: end for

Output: f(·), hd(·), hg(·)

models are for training and 20 for testing. dSprites [20] con-
tains 3 shapes, 6 scales, 40 orientations, 32 x positions, and

32 y positions. SmallNorb [27] consists of 50 toys with 5
generic classes, 6 lighting conditions, 9 elevations, and 18
azimuths. CelebA [30] includes 10,177 celebrities, in to-
tal 202,599 images, where we use 9,177 images for training
and 1,000 images for testing. AFHQ [8] is an animal face
dataset with 15,000 high-quality images of three categories:
cat, dog, and wildlife. CelebA-HQ [22] contains 30,000
high-quality images from CelebA with gender as the class,
and masks are used for the hairstyle disentanglement.

For a fair comparison, we follow the same setting as pre-
vious work [14, 15]. During embedding optimization, we
set d=256, g=128, K=12800, and λ=0.001. The genera-
tor is optimized by Adam [24] optimizer with a learning
rate of 0.0001. We train the encoder with a learning rate
of 0.001. For the regularized Gaussian noise, we set σ=1.
For encoder pre-training, we closely follow MoCo [19]
and use the same data augmentation. This data augmenta-
tion includes RandomResizedCrop, RandomGrayscale, and
RandomHorizontalFlip. For the encoder networks, we ex-
periment with the commonly used encoder architecture,
ResNet-50. We train the system at batch size 256 for 200
epochs to control the total time consumption of the training
progress. For instance, on the ImageNet-100 benchmark
with 120k images, we have 52 hours on the first stage and
71 hours on the second stage with 8 V100-32G GPUs.

4.2. Evaluation Metrics

For evaluation metrics, we use top-1 and top-5 accuracy
for linear classification. In terms of evaluating the disentan-
gled embeddings, we use three mainly-used metrics in the
literature: DCI [12], SAP score [26], and MIG [3]. DCI
measures the disentanglement, completeness, and informa-
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Table 1. Comparison results of linear classification on CIFAR-10, CIFAR-100, ImageNet-100, and TinyImageNet-200 datasets.

Dataset Method Arch. Epochs Top-1 Top-5

CIFAR-10

MoCo ResNet-50 200 93.30 99.85
SimCLR ResNet-50 200 92.00 99.81
LORD ResNet-50 200 85.13 96.22
OverLORD ResNet-50 200 91.62 98.61
ContraLORD (ours) ResNet-50 200 94.01 99.89

CIFAR-100

MoCo ResNet-50 200 71.70 90.23
SimCLR ResNet-50 200 71.58 90.11
LORD ResNet-50 200 63.32 87.05
OverLORD ResNet-50 200 69.96 89.53
ContraLORD (ours) ResNet-50 200 72.67 90.97

ImageNet-100

CMC ResNet-50 200 66.20 88.75
MoCo ResNet-50 200 72.80 91.04
LORD ResNet-50 200 67.32 89.26
OverLORD ResNet-50 200 70.16 90.45
ContraLORD (ours) ResNet-50 200 76.23 92.52

Table 2. Disentanglement performance on Shapes3D, Cars3D, dSprites, and SmallNorb datasets.

Dataset Method D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)

Shapes3D

Locatello et al. 0.03 0.03 0.22 0.01 0.02 0.15
LORD 0.54 0.54 0.54 0.15 0.43 0.48
Gabbay et al. 1.00 1.00 1.00 0.30 0.96 0.82
ContraLORD (ours) 1.00 1.00 1.00 0.42 1.00 0.96

Cars3D

Locatello et al. 0.11 0.17 0.22 0.06 0.04 0.16
LORD 0.26 0.48 0.36 0.13 0.20 0.27
Gabbay et al. 0.40 0.41 0.56 0.15 0.35 0.33
ContraLORD (ours) 0.51 0.56 0.71 0.25 0.41 0.45

dSprites

Locatello et al. 0.01 0.01 0.16 0.01 0.01 0.12
LORD 0.16 0.17 0.43 0.03 0.06 0.18
Gabbay et al. 0.75 0.75 0.68 0.13 0.48 0.52
ContraLORD (ours) 0.85 0.84 0.79 0.24 0.62 0.67

SmallNorb

Locatello et al. 0.02 0.08 0.18 0.01 0.01 0.13
LORD 0.01 0.03 0.30 0.01 0.02 0.17
Gabbay et al. 0.27 0.39 0.45 0.14 0.27 0.29
ContraLORD (ours) 0.36 0.51 0.56 0.26 0.42 0.48

tiveness of the generative embeddings. SAP score refers
to a separated attribute predictability score that captures
one generative factor in only one disentangled dimension.
MIG is the mutual information gap to calculate the differ-
ence between the top two latent factors with the highest
mutual information. In the meanwhile, we follow previous
works [14, 15] and evaluate our ContraLORD on FID and
LPIPS. FID measures how the disentangled embeddings are
translated to the target domain, while LPIPS is used for cal-
culating the quality of transferred content embeddings in
terms of perceptual similarity.

4.3. Experimental Results

In this part, we conduct extensive experiments to evalu-
ate the discriminative and disentangled embeddings learned
by our ContraLORD, which demonstrates the advantage of
our approach against previous work [14, 15] to learn dis-
criminative and disentangled representations via content-
level and residual-level contrastive loss.

Evaluation of discriminative embeddings. We evaluate
the quality of the discriminative embeddings on linear clas-
sification. Specifically, we train the linear model on frozen
features from various self-supervised methods and report
the experimental results in Table 1. Our ContraLORD sub-
stantially outperforms baselines [14, 15] in terms of top-
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Table 3. Disentanglement performance on CelebA, AFHQ, and CelebA-HQ datasets.

Method CelebA AFHQ CelebA-HQ
Id (↑) Exp (↓) Pose (↓) FID (↓) LPIPS (↑) FID (F2M,↓) FID (M2F,↓)

LORD 0.48 3.2 3.5 97.1 0 - -
OverLORD 0.63 2.7 2.5 16.5 0.51 54.0 42.9
ContraLORD (ours) 0.61 2.6 2.3 15.8 0.53 54.2 42.6

Table 4. Ablation study on the effects of each loss.

Lrec Lsup Lcon Lres D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)
✗ ✗ ✗ ✗ 0.02 0.01 0.13 0.01 0.01 0.09
✓ ✗ ✗ ✗ 0.26 0.29 0.31 0.08 0.15 0.22
✓ ✓ ✗ ✗ 0.54 0.54 0.54 0.15 0.42 0.48
✓ ✓ ✓ ✗ 0.91 0.89 0.88 0.37 0.85 0.75
✓ ✓ ✓ ✓ 1.00 1.00 1.00 0.42 1.00 0.96

1 and top-5 accuracy on all benchmarks. Particularly, we
achieve the performance gain over LORD [14] by 8.88%,
9.35%, 8.91%. In the meanwhile, we surpass a concurrent
work [15] using the class embeddings with a higher dimen-
sion. This demonstrates the superiority of our ContraLORD
incorporating content-level and residual-level contrastive
learning into latent optimization. Furthermore, our Con-
traLORD outperforms the pure contrastive self-supervised
methods [19, 4], which also validates the effectiveness of
latent optimization in learning more generalized and dis-
criminative embeddings for linear classification.

Evaluation of disentangled embeddings. Following ex-
isting work [14, 15], we evaluate the disentanglement per-
formance of disentangled embeddings with 100 labels on
four synthetic datasets. Table 2 reports the comparison re-
sults. As can be seen, our ContraLORD still outperforms
existing methods in terms of all metrics, including DCI,
SAP, and MIG. This shows that our ContraLORD with the
content-level and residual-level contrastive loss is superior
to learning more disentangled information in the disentan-
gled embeddings. In the meanwhile, we follow the set-
ting in OverLORD [15] and conduct experiments on three
real benchmarks in Table 3. We can observe that our Con-
traLORD achieves the best performance in terms of 5 out
of 7 evaluation metrics. For the other two metrics, we
still achieve comparable results when compared to Over-
LORD [15]. These results further validate the effective-
ness of our ContraLORD in learning disentangled represen-
tations with more disentangled information.

Smoothness of content and residual embeddings. We si-
multaneously measure the smoothness score of content, and
residual embeddings pre-trained by the encoder and report
the results in the last column of Table 2. We can observe that
our ContraLORD outperforms existing methods by a large
margin (0.14, 0.12, 0.15, 0.19) on all four benchmarks in
terms of the smoothness score, which shows the advantage

of our ContraLORD on learning disentangled embeddings
that are more uniformly distributed on the hyper-sphere.
In the meanwhile, our smoothness score is positively cor-
related with the previous disentanglement metrics. This
demonstrates the effectiveness of learning uniformly dis-
tributed embeddings of disentangled information for repre-
sentations of disentanglement.

5. Ablation Study
In this section, we perform comprehensive ab-

lation studies to explore the effect of each loss
(Lrec,Lsup,Lcon,Lres), batch size, and the number of neg-
ative samples (K) on the final performance of our Con-
traLORD. Unless specified, we conduct all ablation studies
on the Shapes3D dataset.
Effect of each loss. To explore how each proposed loss af-
fects the final performance of our method, we ablate each
module on the final loss and show the disentanglement re-
sults in Table 4. Without four losses in the encoder pre-
training stage, we achieve the worst performance. Adding
Lsup to only Lrec boosts the results by 0.24, 0.28, 0.18,
0.07, 0.14, and 0.13. By combining Lcon with Lsup and
Lrec, we achieve a performance gain of 0.37, 0.35, 0.34,
0.22, 0.43, and 0.27. These results demonstrate the effec-
tiveness of our content-level and residual-level loss in learn-
ing disentangled embeddings. Finally, our ContraLORD,
with all losses, achieves the best performance in terms of all
disentanglement metrics and the smoothness score, which
validates the rationality of each loss on learning disentan-
gled representations.
Effect of batch size. Table 5 reports the exploration study
results of batch size. Specifically, we vary the batch size
from 16, 32, 64, 128, 256, 512 during the encoder pre-
training stage. From the results, we can observe that our
approach performs the best when the batch size is 512. With
a smaller batch size of 256, our ContraLORD does not have
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Table 5. Ablation study on the effects of bath size.

Batch Size D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)
32 0.82 0.81 0.79 0.36 0.82 0.72
64 0.89 0.87 0.86 0.38 0.88 0.79
128 0.93 0.91 0.91 0.39 0.91 0.85
256 1.00 1.00 1.00 0.42 1.00 0.96
512 1.00 1.00 1.00 0.45 1.00 0.97

1024 0.99 0.98 0.98 0.41 0.99 0.93

Table 6. Ablation study on the number of negative samples.

K D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)
1600 0.62 0.63 0.61 0.26 0.61 0.52
3200 0.81 0.79 0.77 0.33 0.79 0.68
6400 0.88 0.86 0.87 0.37 0.87 0.77

12800 1.00 1.00 1.00 0.42 1.00 0.96
25600 0.96 0.95 0.95 0.41 0.95 0.89
51200 0.87 0.85 0.85 0.36 0.86 0.75

a large performance decline (0.03, 0.01) in terms of SAP
score and Smoothness score. When the batch size is set
to 32, our method has an obvious performance decrease,
which shows the importance of suitable batch size in our
content-level and residual-level contrastive loss by intro-
ducing negative samples across the same batch. When we
increased the batch size to 1024, the performance of our ap-
proach on all disentanglement metrics and the smoothness
score is deteriorated by the confusion of too many negative
samples in the same batch.
Effect of negative samples. In order to explore the effect
of negative samples on the final performance of our Con-
traLORD, we vary the number of negative samples from
1600, 3200, 6400, 12800, 25600, 51200 for the content
and residual momentum queue. We show the experimen-
tal results in Table 6. As can be seen, with the increase of
the number of negative samples in the momentum queue,
our ContraLORD achieves better performance in terms of
all metrics. However, too many negative samples, i.e.,
a large number of negative samples, degrades the perfor-
mance of our approach since it is hard for the content-level
and residual-level contrastive loss to discriminate hard neg-
ative samples in the momentum queue with many negative
samples. This further demonstrates the importance of nega-
tive samples in learning generative embeddings with disen-
tangled information.

6. Conclusion

Summary. In this work, we propose the ContraLORD, a
simple yet effective approach by incorporating contrastive
learning into latent optimization for representation disen-
tanglement. Specifically, we first use a generator to learn
discriminative and disentangled embeddings via latent op-

timization. Then an encoder and two momentum encoders
are applied to dynamically learn disentangled information
across a large number of samples with content-level and
residual-level contrastive losses. Finally, we tune the en-
coder with the learned embeddings in an amortized manner.
We conduct extensive experiments on ten benchmarks to
demonstrate the effectiveness of our ContraLORD on learn-
ing disentangled representations. Comprehensive ablation
studies also validate the rationality of each contrastive loss
proposed in our approach. We also empirically observe the
importance of negative samples across a large number of
samples in learning generative embeddings with disentan-
gled information.
Limitations. In this work, we observe performance im-
provement without fine-tuning the loss weights λcon and
λres in Eq. 7 (i.e. we use 1.0 for both loss terms). There-
fore it is not clear how the contrastive learning approach
will affect the baseline disentanglement model. We con-
jecture that, contrastive loss not only improves the gener-
alization of the encoders in unseen images but also helps
to discover disentangled factors in training data. We will
continue working on this topic in future work.
Border impact. The combination of representation dis-
entanglement and contrastive learning that works well in
practice helps learn useful feature representations in many
downstream vision tasks. Especially, our proposed ap-
proach shows good scalability when employed to larger
datasets such as ImageNet, which sheds light on disentan-
gling more complicated real-world data.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and
Michal Valko. Bootstrap your own latent - a new approach
to self-supervised learning. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[18] Naama Hadad, Lior Wolf, and Shimon Shahar. A two-step
disentanglement method. pages 772–780, 2018.

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9729–9738, 2020.

[20] Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework. In
Proceedings of International Conference on Learning Rep-
resentations (ICLR), 2017.

[21] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and
Ian Reid. Deep subspace clustering networks. In Proceed-
ings of Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In Proceedings of International Conference on
Learning Representations (ICLR), 2018.

[23] Hyunjik Kim and Andriy Mnih. Disentangling by factoris-
ing. In Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[25] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2014.

[26] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakr-
ishnan. Variational inference of disentangled latent con-
cepts from unlabeled observations. In Proceedings of In-
ternational Conference on Learning Representations (ICLR),
2018.

[27] Y. LeCun, Fu Jie Huang, and L. Bottou. Learning methods
for generic object recognition with invariance to pose and
lighting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages II–104
Vol.2, 2004.
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