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Abstract

Visual microscopic study of diseased tissue by pathol-
ogists has been the cornerstone for cancer diagnosis and
prognostication for more than a century. Recently, deep
learning methods have made significant advances in the
analysis and classification of tissue images. However, there
has been limited work on the utility of such models in gener-
ating histopathology images. These synthetic images have
several applications in pathology including utilities in edu-
cation, proficiency testing, privacy, and data sharing. Re-
cently, diffusion probabilistic models were introduced to
generate high quality images. Here, for the first time, we in-
vestigate the potential use of such models along with priori-
tized morphology weighting and color normalization to syn-
thesize high quality histopathology images of brain cancer.
Our detailed results show that diffusion probabilistic mod-
els are capable of synthesizing a wide range of histopathol-
ogy images and have superior performance compared to
generative adversarial networks.

1. Introduction
Histopathology is a diagnostic science that relies on the

visual examination of cellular and tissue characteristics in
magnified tissue slides[17]. Recently, high-throughput dig-
ital pathology scanners have been developed that can pro-
vide gigapixel high-resolution images(∼ 100K×100K pix-
els) of microscope slides at objective magnifications of up
to 40×. Furthermore, histological staining of tissues with

*Equal Contribution

various stains (e.g., hematoxylin and eosin, silver nitrate,
carmine, hematin, etc.) is used to emphasise the properties
of the tissues and improve their contrast for examination
[1]. Figure 1 shows a sample of digital pathology images.

Scanning

5x 10x 20x

Figure 1: 3 sampled patches at different magnifications
from a whole slide image

The most commonly used stain material is Hematoxylin
and Eosin (H&E), which stains the nucleic acid within the
cell nuclei with purplish blue and extracellular matrix and
cytoplasm by pink color. Afterwards, pathologists examine
the cytological and tissue characteristics of the sample for
cancer diagnosis and staging. The histopathological diag-
nosis of cancer is time-consuming and is prone to subjec-
tive differences[44], as it is heavily reliant on pathologists’
experiences and prior exposure to various histological vari-
ants (i.e., subtypes). However, some of these variants are
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rare, and pathologists do not get the opportunity to examine
them during their training. In addition, there is a scarcity
of samples for certain subtypes in various parts around the
world.

Following the success of deep learning models in the
past decade in other applications, various models have
been developed in recent years to improve the quality of
histopathology diagnosis and assist pathologists in the de-
cision making process. However, majority of the research
efforts have been on developing discriminative models with
more emphasis on classification tasks [37]. Wang et
al. [41], for example, employed an accelerated deep convo-
lution neural network for both cell identification and clas-
sification. Mathur et al. [27] developed a multi-gaze at-
tention network with multiheaded self-attention for renal
biopsy image categorization tasks. Segmentation is another
frequent application of deep models in histopathology. The
authors in [15] presented their multi-resolution UNet-based
approach for detecting breast cancer metastasis. Another
example is the use of a deep learning algorithm for the pre-
diction of patients’ outcomes[29].

Compared to discriminative models, utilizing generative
models in pathology is still in its infancy. Generative mod-
els can be used to create synthetic images and have numer-
ous potential applications in pathology and can entail dis-
covering patterns and regularities that may give more infor-
mation about distinctions across subtypes.

Histology generative models have a significant educa-
tional value and they can also be utilized to synthesize
histology images for proficiency testing applications. [23].
Specially for some rare cancers there is a shortage of di-
verse examples for training pathologists. Histology gen-
erative models are able to provide a limitless number of
new images for teaching and examination in those cancers.
In addition, these images can tackle the privacy concerns
of sharing pathology images, which is one of the emerg-
ing challenges with patient privacy and data protection[8].
Although, unlike genomics data, it is not possible to iden-
tify patients from their histopathology slides, still due to
very strict data privacy regulations in healthcare, sharing
the original histopathology slides between institutions is
extremely difficult. Histology generative models are the
best way for overcoming such restrictions. There are a few
distributed-based learning methods for histopathology that
have recently been developed [25] and Rajotte et al. [34]
showed an approach for addressing this problem is to train
generative models on local private data and only share only
the synthetic data or the generative model itself.

In comparison to normal images, several factors, such as
time, labor, and economic costs, make having fully labeled
medical images more difficult [22], causing the model to
suffer from overfitting. Synthesized histology images can
be used to augment the datasets and improve the perfor-

mance of trained models. Taken together, they have the
potential to improve the educational, assessment, security,
and generalization aspects of the histology field.

Generative Adversarial Networks (GAN) introduced by
Goodfellow et al.[13] and its later variants are currently
the most common models for generating synthetic images.
However, GANs have several drawbacks, such as mode col-
lapse and difficulties in training.

Starting from Ho et al.[16] several studies showed that
diffusion probabilistic models can generate high-fidelity
images comparable to those generated by GANs [32, 10, 7].
Diffusion probabilistic models offer several desirable prop-
erties for image synthesis, such as stable training, easy
model scaling, and good distribution coverage. However,
their performance has not been explored for histopathology
images.

The goal of this paper is to explore the utility of diffu-
sion probabilistic models for synthesizing histopathology
images and comparing these models with state-of-the-art
for quality of the generated images and lack of artefacts.

The contributions of this paper are as follows:

• In this paper, for the first time, we propose exploit-
ing diffusion probabilistic models to generate synthetic
histopathology images.We use genotype data as class
labels to show the power of generative models in syn-
thesizing subtle differences corresponding with geno-
types in one single cancer type. This is a more chal-
lenging task compared to generating images of differ-
ent cancer types. Nevertheless, genotype is not a re-
quirement for the model and it can work with any data
label.

• We also benefit from color normalization to force our
end-to-end model to learn morphological patterns and
from perception prioritized weighting (P2) [7], which
aims to prioritize focusing on diffusion stages with
more important structural histopathology contents.

• We conduct an extensive empirical study using a low
grade glioma (LGG) dataset and compare the per-
formance of the proposed generation method against
a state-of-the-art study that utilized GANs for hist-
pathology image analysis, using a variety of metrics.
Our results show that the introduced method is su-
perior in all of them, and it produces highly realistic
pathology images. The used dataset and our results are
described in section 4.

2. Related Works

Generating Histopathology images has been getting pop-
ular in recent years because of advances in digital pathology
imaging and computational infrastructures as well as the in-

2001



Genotypes 
Data

~
Whole Slide Images

Normalized
Color Space

x - image

g - genotype

t ~ (0, T)

Z ~ Gaussian Noise

Diffusion 
Probabilistic Model 

Initial Color Space

Sampling 

Color Normalization 

Color 
Normalization

Module

t-embed

Unet Based
Backbone

-

Loss: 

෍

𝒕

𝝀𝒕
′ 𝑳𝒕 + 𝒄෍

𝒕

𝑳𝒕

𝒙𝒕,𝒈𝒎

𝒙𝒕−𝟏,𝒈𝒎

g-embed

Forward
Diffusion

Morphology 
Prioritizer

Figure 2: The overview of proposed approach for generating histopathology images with genotypes guidance

troduction of powerful deep generative models that are able
to tackle specific difficulties in this domain.

In 2018, Kapil et al. [18] utilized generative learning
to enable automated tumor proportion scoring. Zhou et
al. [46] employed a U-net based GAN to augment and
generate high-resolution image from low-resolution histol-
ogy patches. More recently, the Progressive GAN model
has shown considerable potential in generating high quality
histopathological images [23, 45].

GAN models, on the other hand, suffer from mode col-
lapse and instabilities due to directly producing images
from complex latent spaces in a single shot and easily over-
fitting of their discriminator[43], which make them unsuit-
able for generating samples from rare conditions or imbal-
anced datasets.

However, diffusion probabilistic models were recently
introduced and used for several applications. Amit et al.[2]
used a diffusion model for performing image segmentation.
Other examples are the use of diffusion probabilistic mod-
els for converting text to speech[33] and generating online
handwriting[26]. As diffusion models divide the process
into several relatively simple denoising diffusion steps and
make strong conditioning on input images at each step, they
soften the data distribution, which results in models with
higher stability. These models also are able to generate
more diverse images with better distribution coverage, are
less probable to get overfitted, and are easy for scaling [43].

These advantages can significantly improve the
histopathology image generation domain as imbalanced
datasets with rare subtypes is one of the main issues in
this domain. Although diffusion probabilistic models are
used within different areas for multiple tasks, they are not
exploited to generate synthetic histopathology images yet.
Therefore, we hypothesize that such models could generate
high quality histopathology images that may address some
of the challenges of GAN-based models.

3. Method
3.1. Problem Definition

The objective of this paper is to enable the generation of
histopathology images that are represented by various mor-
phologic features. Synthesizing these pathology images is
a challenging task compared to typical images in other do-
mains.

Assume gi=1,2,..k indicates the i-th available genotype.
For each genotype, there is:

Setgi = {images j}, j = 1,2, ...,N & image j ∈ Rc×h×w, (1)

which:
genotype(image j) = gi, (2)

The purpose is to have an estimator function fest that:

fest{gi,n ∼ Noise}= imagegi,out , (3)

while:

imagegi,out ∈ Rc×h×w, imagegi,out ∼ D(Setgi) , (4)

where D(Setgi) is the distribution of the images associated
with gi. we tackle LGG, which account for the majority of
pediatric brain tumors [35] and they are classified by com-
bining the histopathological features with genotype features
since 2016[24] including isocitrate dehydrogenase (IDH)
and co-deletion of 1p19q which are the short arm of chro-
mosome 1 and the long arm of chromosome 19[31, 6]. Di-
agnosis of LGG is done through histopathologic examina-
tion of tissue. Figure 2 summarizes our proposed end-to-
end solution for generating histology images.

3.2. Color normalization

One of the main challenges related to H&E images is the
lack of consistency in the staining due to variances in site-
specific staining protocol or digital scanning platforms and
methodologies. Color normalization strategies are able to
boost histological discriminative models’ performance.[4].
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Reference NormalizedInput

Figure 3: Color Normalization Visualization

We propose employing the same strategies to convert the
input images to a same color domain in order to derive the
diffusion model focus on learning the morphological pat-
terns and other vital pathology aspects such as cell shape,
density, and distribution rather than stain differences.

For color normalization, we used the structure-
preserving color normalization scheme introduced by Va-
hadane et al.[39] that transfers source images to the tar-
get domain while preserving their own stain concentration.
A Complete theoretical description of color normalization
module is available in section 1.1 of supplementary mate-
rial.

Figure 3 visualizes the performance of the color normal-
ization method on three extracted patches of histopathology
images for a same reference.

3.3. Diffusion Probabilistic Model

The diffusion model can be summarized in two main
processes: forward diffusion and parameterized reverse
diffusion. Figure 4 illustrates the two directions of diffusion
probabilistic models. The model in the former process
gradually generates noisier samples from real data using
Gaussian noise kernel. The later process makes the model
able to iteratively retrieve data from noise which can be
employed to produce synthetic data from random noise.

3.3.1 Forward Diffusion

Let x0,gm be the real input data from the m-th genotype gm
and xt ,gm be the noisy images for gm produced at time t =
1,2, ...T . Latent xt ,gm can be derived directly from x0,gm as
following [16]:

xt ,gm =
√

αtx0,gm +
√

1−αtε, (5)

0 < β1,β2, ...,βT < 1 are fixed noise scales for each time
step t and αt := ∏

t
s=1(1−βs). Also, the distribution of theε

is as ε ∼ N (0, I). (Details are in section 1.2 of supplemen-
tary material)

3.3.2 Parametrized Reverse Diffusion

In order to generate a random sample in the reverse pro-
cess, the latent xT ,gm needs to be roughly an isotropic Gaus-
sian distribution. The diffusion probabilistic model can
be viewed similar to variational auto-encoders (VAE)[7],
where the reverse process pθ is learned by a neural network(
section 3.3.5) and is equivalent to the decoder network in
VAE. Contrary to VAE, the encoder in the diffusion model
is a fixed forward diffusion process.

In the reverse process, our neural network εθ with pa-
rameters of θ learns to denoise the given xt ,gm and output
the xt−1,gm . With iterative subtraction of the noise predicted
by the neural network (εθ ), and starting with xt−1,gm which
have standard Gaussian distribution, xT ,gm can be written
as[16]:

xt−1,gm = C1 (xt ,gm −C2εθ (xt ,gm , t,gm))+σtz, (6)

where:

C1 = (
√

1−βt)
−1,C2 = βt(

√
1−αt)

−1,βt = αt
2 (7)

Similarly, x0,gm which is the generated image at the end of
iterations, can be written as:

x0,gm =
1√

1−β1

(
x1,gm − β1√

1−α1
εθ (x1,gm ,1,gm)

)
+σ1z,

(8)

3.3.3 Training Loss

The final objective for training the utilized Diffusion
probabilistic model is a combination of score matching
losses [40] that can be summarized as the following:

Loss = Lsimple + cLvlb, (9)

where:
Lsimple = ∑

t
λtLt , Lvlb = ∑

t
Lt , (10)

Lt is a score matching loss for the time step t which looks
at the difference between the two Gaussian distributions. It
can be written as:

Lt = DKL(q(xt−1,gm |xt ,gm ,x0,gm)
∣∣pθ (xt−1,gm |xt ,gm))

= Ex0 ,gm ,ε [
βt

(1−βt)(1−αt)
∥ε − εθ (xt ,gm , t)∥2],

(11)
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Figure 4: The illustration of the forward(0 to T) and re-
verse(T to 0) diffusion process

Lsimple was initially proposed by Ho et al. [16] and use the
following wights:

λt =
(1−βt)(1−αt)

βt
. (12)

Considering the λt values, Lsimple refers to a mean-squared
error(MSE) loss defined on the difference of the actual and
estimated noise, but Nicole et al. [32] added the second term
to the loss function to learn the σt and showed that a small
value for c can significantly improve the model’s capacity.

3.3.4 Morphology Levels Prioritization

Signal-to-noise-ratio (SNR) of the noisy image at the time
step t (xt ,gm ) based on Equation 5 is equivalent to the fol-
lowing:

SNR(t) =
αt

1−αt
, (13)

Given the diminishing nature of SNR(t), it is demonstrated
that the model concentrates rough and coarse properties
during the early phases of the reverse diffusion process
(when SNR is lower). Then, in the middle steps, it fo-
cuses on the image’s perceptual components, while the lat-
ter stages (with the highest SNR) are dedicated to imper-
ceptible minutiae [7]. Histology images are fairly sensitive
that requires more accurate features. Similarly, our model
should be focused on learning pathological and morpholog-
ical markers that pathologists need to make a diagnosis at
intermediate steps before performing minor denoising tasks
at the end. For morphology prioritization, the λt weights
can be utilized to devote heavier weights to the loss at earlier
levels to emphasise perceptual contents and lower weights
to the later levels. We observed empirically that perception
prioritized weighting provided by Choi et al. [7] can result
in generating higher detailed histopathology images:

λ
′
t =

λt

(k+SNR(t))γ
, (14)

where k and γ are used to keep the λ ′
t from extraordinar-

ily increasing for very low SNR values and to control the
concentration on clean-up details, respectively.

3.3.5 The Architecture

We chose the backbone neural network similar to the Unet
based model improved by Dhariwal et al. [10], which is in-
spired from the Unet model introduced by Ho et al. [16] for
diffusion models. This model contains attention at three
various resolutions that allows the model to concentrate
on tiny features related to cells(e.g., cell shape or small
blood veins) or larger elements like how cell distribution,
the texture of the stroma or the overlaying tissue. It also
benefits from BIGGAN downsampling/upsampling resid-
ual blocks[5] to maintain the model free of artefacts like
checker boxes or aliasing, which may not be a vital issue
for typical images but can completely disrupt the subtle and
accurate patterns that should exist in histopathological im-
ages. It also uses embedding layer to inject timestep to the
neural network. The rest of the weights of the model are
shared between all the time steps. Moreover, genotypes are
given to the model with a separated embedding layer similar
to timesteps.

4. Experimental Evaluation and Results
In this section, we assess the performance of the pro-

posed approach for utilizing diffusion probabilistic models
on generating synthetic histopathology images and compare
it against one of the closest works.

4.1. Data

We utilized a dataset of 344 whole slide images (WSIs)
of low grade gliomas representative of its three major ge-
nomic subtypes from the Cancer Genome Atlas (TCGA)
archive [14]. The dataset includes 297 cases with IDH mu-
tations and 47 IDH Wild Type cases. The IDH Wild Type
group has no IDH mutations and is labeled as IDHWT. Fur-
thermore, the 297 IDH mutant slides are further divided into
two groups: with no 1p19q chromosomal codeletion (173
slides) and with 1p19q codeletion (124 slides) labeled as
IDHNC and IDHC, respectively. Each WSI is a large scale
image with the size of ∼ 100K × 100K pixels. Moreover,
mutations associated with each patient were obtained from
cbioportal (https://www.cbioportal.org/).

Each slide is pixel-wise annotated with an emphasis on
the tumor-rich areas and attempted to avoid artefacts and
empty spaces by a board-certified pathologist or a pathology
resident under the supervision of a board-certified patholo-
gist using our online annotation tool. These annotations will
be made available to other researchers.

Annotated tumor areas from each slide were divided into
small image tiles (referred to as patches) at specified ob-
jective magnification levels to improve computing perfor-
mance. A maximum of 100 512×512 pixel patches from
the tumor annotated regions were taken from each slide
at original magnification of 40× with a stride of 512 and
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Figure 5: Selection of generated patches with diffusion and ProGAN models. First row represents synthesized images by
ProGAN and second row refers images produced by diffusion model. Each dual columns together shows the generated
samples representing one of the three different subtypes, namely IDHC, IDHNC, and IDHWT.

scaled to 128×128 patches, resulting in a final magnifica-
tion of 10×. The pixel size at full-resolution was ∼ 0.25µm
and down sampled to ∼ 1µm. Finally, a total of 33,777
128×128 pixel patches (at 10× magnification) were ex-
tracted from the WSIs and used to train various conditional
diffusion probabilistic models. Table 2 and Figure 1 in sup-
plementary material provide the breakdown of the extracted
patches based on genomic subtypes and show examples of
extracted patches.

4.2. Experiments

We evaluate the model’s performance in different unique
scenarios to thoroughly examine the various objectives that
the model should achieve. We also utilize several objective
metrics to assess the quality of generated images based on
each experiment’s specific requirements. Model implemen-
tation and training details are available at Table 1, section
1.2 in the supplementary material.

4.2.1 Experiment I

The objective of this experiment is to compare and con-
trast the quality of the synthesized images by our diffusion
probabilistic model against a state-of-the-art study in which
Levine et al. [23] utilized ProGAN [19]. In their study,
the authors showed the superiority of histology images gen-
erated by ProGAN relative to other generative models such
as variational autoencoder [11], enhanced super resolution
GAN (ESRGAN) [42], and deep texture synthesis [12].

For a fair comparison, we utilized similarly normalized
patches and due to the nature of our problem, we, in-
spired by [28], slightly modified ProGAN to generate his-
tology images conditioned on genotypes. We also trained

both models on all the available extracted patches. We
present samples of synthetic images generated by both mod-
els in Figure 5 (more images at Figure 2 in supplementary
material). By zooming in this figure, unfavorable artefacts
are clearly noticeable in the ProGAN generated images, es-
pecially in the top first and last images that cells are com-
pletely distorted and deformed. These samples demonstrate
higher quality of the images synthesized by our model com-
pared with those generated by ProGAN.

Next, we compared the two models by randomly gener-
ating 50,000 images by each model and calculating two sets
of metrics:

1. Common Generative Evaluation Metrics: Three
of the most widely used metrics for assessment of the gen-
erated images are: Inception Score (IS), Fréchet Inception
Distance (FID), and sFID. We briefly discuss them in the
following:

Inception Score (IS): We report Inception Score [36],
which is defined as:

IS = exp
[
Ex∼pgDKL (p(y|x)||p(y))

]
, (15)

where p(y) is marginal class probability and DKL is the KL-
divergence.

Fréchet inception distance (FID): This metric compares
the distribution of generated images with the real images’
distribution in Inception-V3 latent space[20]. The more
similar the synthetic images are to the input patches, the
lower value that FID will have. The real and synthetic data
are fed into the inception V3 model, and FID compares the
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Figure 6: Real and synthetic data are depicted by blue and
brown colors, respectively. (a) Presents the manifold for
real and generated distributions. (b), and (c) Illustrate the
Improved Recall and Precision, respectively.

mean and the standard deviation of the features extracted
from pool_3 layer. The FID is given by:

FID(µr,Σr,µg,Σg)= ∥µr−µg∥2+Tr(Σr+Σg−2(ΣrΣg)
1
2 ),

(16)
where µr and µg are the mean of the real and synthetic sam-
ples’ embeddings. Similarly, Σr and Σg refer to their covari-
ance.

sFID: This is a modified version of FID proposed by
Szegedy et al. [38] that uses the initial channels from an
intermediate layer to compare the means and standard devi-
ations.

IS may not be a suitable statistic for generative models
trained on datasets other than ImageNet, as noted by Bar-
ratt et al. [3]. As a result, evaluating the model using FID
and sFID is critical. FID is less sensitive to spatial hetero-
geneity since it is calculated using features from one of the
latest layers that compresses spatial information. However,
sFID employs intermediate features, which can detect spa-
tial similarity better than FID in some situations [30]. Re-
porting these together can measure the quality of the gener-
ated samples, which are summarized in Table 1. The results
indicate that the proposed diffusion model outperforms the
state-of-the-art across all these metrics. Also, lower values
of both FID and sFID with extracted features from different
layers make them sensitive to small changes and is able to
detect mode coverage. This shows that unlike ProGAN the
diffusion model is capable of producing perceptual features
robustly.

ProGAN Diffusion Model
Inception Score 1.67 2.08
FID 53.85 20.11
sFID 24.37 6.32

Table 1: Summary of the Inception Score, FID, ans sFID
for the first experiment

2. Improved Precision and Recall Metrics:
Kynkäänniemi et al. [21] discussed that both the quality

and distribution coverage of the produced samples are es-
sential for evaluating generative models. The authors pro-
posed two metrics; namely ”Improved Recall” and ”Im-
proved Precision” that can estimate both attributes by con-
structing non-parametric approximations of real and syn-
thetic domain manifolds. We begin by estimating feature
manifolds by computing distances to k-NN for each sample.
Following that, ”Improved Precision” refers to the percent-
age of produced samples inside the actual data manifold,
while ”Improved Recall” refers to the ratio of real samples
located in the synthetic manifold.

These two concepts are depicted in Figure 6, and the re-
sults are summarized in Table 2. We can conclude that the
proposed method produces better images than the state-of-
the-art in terms of both diversity and fidelity. Also, it shows
that our model is able to significantly differentiate morpho-
logical features of histology images.

ProGAN Diffusion Model
Improved Recall 0.4816 0.8528
Improved Precision 0.0078 0.2573

Table 2: Summary of the Improved Recall and Precision for
the first experiment

4.2.2 Experiment II

The purpose of this experiment is to compare the morpho-
logical properties of synthetic and actual images. We se-
lected an equal number of real and synthetic images gen-
erated by our diffusion model and designed a pathologist
survey consisting of the following two questions. The first
question asks if the participants believe the image is real
or synthetic, and the second question inquires about their
confidence level (more details on the survey are available at
Figure 3 and Figure 4, Section 1.5 in supplementary mate-
rial). The images were displayed according to a random or-
der. Two pathologists participated with varying levels of ex-
pertise participated in this survey: a board-certified patholo-
gist (P1) and a pathology resident (P2). The summary of the
results is given in Table 3, which shows that all participating
experts could not distinguish the real from synthetic images
generated by our diffusion model. For the majority of small
percentage of synthetic images that experts were able to cor-
rectly identify, they indicated less confidence level. Our sur-
vey results show that our synthetic histopathology images
look extremely similar to real examples, making them an
excellent candidate for a variety of real-world applications.

We also utilized two sided Fisher-exact test to exam-
ine whether there is a statistically significant difference be-
tween each pathologist observations for the real and syn-
thetic images (p-values are available in Table 4). The re-
sulting p-values demonstrate there is no statistically signifi-
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Figure 7: Examples of failed cases generated by ProGAN

cant difference between performance of the pathologists on
identifying real versus synthetic images.

Table 3: Summary of results for Exp. II

Real Real Syn. Syn. Real Syn.
Conf. High Med. Med. High All All
Real GT 0.75 0.05 0.175 0.025 0.8 0.2
Syn. GT 0.775 0.05 0.125 0.05 0.825 0.175

(a) Summary of the results for P1

Real Real Syn. Syn. Real Syn.
Conf. High Med. Med. High All All
Real GT 0.225 0.2 0.25 0.325 0.425 0.575
Syn. GT 0.325 0.25 0.2 0.225 0.575 0.425

(b) Summary of the results for P2

P1 P2
Fisher-exact’s p-value 1.0 0.26347

Table 4: Summary of the fisher test results

4.3. Visual Observation:

The bottom row in Figure 5 shows the images generated
by our diffusion model. In these images, cell nuclei stained
by purplish blue and extracellular matrix and cytoplasm
stained by pink color related to H&E staining, which sug-
gests that using the color normalization module is effective.
Although medical inspection of generated images should
be done by pathologists, there are some well known his-
tology features in LGG images that can be identified even
by an untrained person. The so-called ”fried egg” appear-
ance [9] of oligodendrogliomas is shown in the synthetic

images (such as the bottom first and second images in Fig-
ure 5, top second image or bottom fourth image at Figure
2 in the supplementary material), namely in the IDHC and
IDHWT. Another characteristic of the oligodendrogliomas
that can be seen in generated images by diffusion (such as
the bottom second column of Figure 5) is branching small,
chicken wire-like blood vessels [9], and this characteristic
can also be found in the IDHC. This suggests that the diffu-
sion model was able to learn specific known histopahologi-
cal features. However, such specific features do not clearly
exist in the images generated by ProGAN. In addition, the
IDHWT are the most uncommon among the other two, and
it appears that the lesser number of cases for the IDHWT
subtype resulted in artefacts and lower image quality of Pro-
GAN as compared to the diffusion, implying a mode col-
lapse in ProGAN (Figure 7) due to a lack of enough data
points in this subtype. However, the diffusion model could
learn these rare class-specific features. Figure 7 shows sam-
ples of failed images by ProGAN in which each image is
produced from random noise; however, they are fairly sim-
ilar to each other.

5. Conclusion and Future Work

We proposed an end-to-end method based on diffusion
probabilistic models to generate H&E stained histopathol-
ogy images. To our knowledge, this is the first work that
utilizes such models for histopathology image synthesis.
Using multiple objective and subjective metrics, we com-
pared the performance of our proposed approach to pro-
GAN, that has shown remarkable performance in generat-
ing histopathology images. Results suggest that our pro-
posed approach outperforms proGAN. Additionally, we
conducted an empirical study where pathologists partici-
pated in a survey in which they were not able to distin-
guish the synthetic from real images. Taken together, the
proposed method could facilitate the deployment of synthe-
sized histology images for many real-life educational, pri-
vacy, and data augmentation applications.

In addition, the work in this paper can be extended by op-
timising the proposed model to reduce the sampling time of
the diffusion probabilistic models, which is relatively longer
than GANs due to multiple small diffusion steps. As an in-
stance, this work can be expanded by drawing on the work
of Xiao et al. [43], who use a multimodal conditioned dis-
criminator that follows the diffusion model and can signifi-
cantly reduce the number of diffusion steps.
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