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Abstract

A number of recent self-supervised learning methods
have shown impressive performance on image classifica-
tion and other tasks. A somewhat bewildering variety of
techniques have been used, not always with a clear under-
standing of the reasons for their benefits, especially when
used in combination. Here we treat the embeddings of im-
ages as point particles and consider model optimization as
a dynamic process on this system of particles. Our dynamic
model combines an attractive force for similar images, a lo-
cally dispersive force to avoid local collapse, and a global
dispersive force to achieve a globally-homogeneous distri-
bution of particles. The dynamic perspective highlights the
advantage of using a delayed-parameter image embedding
(a la BYOL) together with multiple views of the same image.
It also uses a purely-dynamic local dispersive force (Brow-
nian motion) that shows improved performance over other
methods and does not require knowledge of other particle
coordinates. The method is called MSBReg which stands
for (i) a Multiview centroid loss, which applies an attrac-
tive force to pull different image view embeddings toward
their centroid, (ii) a Singular value loss, which pushes the
particle system toward spatially homogeneous density, (iii)
a Brownian diffusive loss. We evaluate downstream clas-
sification performance of MSBReg on ImageNet as well as
transfer learning tasks including fine-grained classification,
multi-class object classification, object detection, and in-
stance segmentation. In addition, we also show that ap-
plying our regularization term to other methods further im-
proves their performance and stabilize the training by pre-
venting a mode collapse.

1. Introduction
A good representation should include useful features

(those that facilitate downstream prediction tasks) while ig-
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Figure 1. Our proposed MSBReg for SSL contains the following
three regularization terms. (1) A Brownian diffusive loss (red),
which induces a random motion of embeddings. This provides an
implicit contrastive effect, preventing collapse of emebddings and
stretching weaker links more on average than strong ones. (2) A
Multiview centroid loss (green), where we train our online net-
work to minimize the distance between centroids of online and
target network embeddings of different views of the same image.
(3) A Singular value loss (blue), which decorrelates the different
feature dimensions to disperse embeddings uniformly in the em-
bedding space. Positive pairs are indicated with the same shapes.

noring “nuisance” features [3]. Among the best known
self-supervised methods, contrastive methods combine an
attractive term between similar images (typically different
perturbations of the same image) with an explicit repulsive
term between distinct pairs. Recently, BYOL [14] utilized
siamese neural networks (referred to as the online and tar-
get) with lagged (moving averaged) parameters in the tar-
get network, and simply minimized distance between on-
line and target network embeddings. While there was no
explicit repulsive term in BYOL, it was later shown to be
highly dependent on the use of BatchNorm layers. The ac-
tivation normalization in BatchNorm and other methods can
be viewed as a global, dimension-wise dispersion of the
set of embeddings, a desirable feature of a representation.
However, other normalization methods such as LayerNorm
were shown to be much less effective in BYOL suggesting
the story is more complicated than normalization and global
dispersion [1, 21, 11, 23].

Inspection of the gradients in BatchNorm reveals that
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they have a strong stochastic component (beyond the global
“normalizing” component) that depends on differences be-
tween image activations and their batch centroid (i.e. on
whatever other images happen to be in the same minibatch).
From our perspective, these forces provide a local (stochas-
tic) dispersive force between embeddings. Thus Batchnorm
implements two of the desirable features of a good repre-
sentation (local and global dispersion of embeddings), but
in a suboptimal way. Here we define separate loss terms for
local and global dispersion and apply them to the embed-
ding layer only (as opposed to other intermediate network
layers). By moving dispersion to loss layers, we allow net-
work normalization layers (which ideally impact network
training and stability but not losses) to be independently de-
signed. We can also separately define and optimize the local
and global dispersion losses.

If we assume that the optimization method used to train
the network is either stateless or sufficiently “fast” (e.g. the
optimizer uses momentum=0.9 for an effective time con-
stant of 10 steps), then the embeddings are part of a second-
order dynamical system. The embeddings are defined by the
parameters of the two networks (online and target), together
with corresponding input images. The moving parameter
average implemented on the target network, together with a
fast optimizer which functions as an integrator of loss gradi-
ents, defines a second-order dynamical system. We exploit
the dynamics of this system in two ways: by using “fast-
slow” optimization for attractive and dispersive forces, and
by showing that stochastic energy injected into the system
should “stretch” attractive links with equal potential energy
on average - so weaker attractive links will be stretched fur-
ther.

Multiview contrastive training, where more than two
augmentations are compared, works very effectively with
a lagged-arm network. Dispersive forces act in the network
to situate embeddings with globally uniform density. While
loss-gradients act as forces applied to the online network,
online embeddings experience a strong viscous “drag” from
their corresponding target network embeddings which they
are attracted to. So embeddings move globally at the time
constant of the lagged network, which is typically thou-
sands to tens of thousands of time steps. On the other
hand, embeddings within the same group, i.e. embeddings
of views of the same image, experience no “drag” relative
to their centroid. They collapse and are maintained close
together at the time constant of the online network.

Given a lagged-arm, siamese architecture inspired by
BYOL, we explore Multiview, Singular value, Brownian
Diffusive regularizations. These three loss terms address
respectively, (i) fast-slow attractive/dispersive optimization,
(ii) global, uniform, dispersion of embeddings (iii) local dis-
persive force.

We evaluate our approach on visual benchmarks includ-

ing ImageNet-100 [8], STL-10 [7], and ImageNet [8]. We
show that our model significantly outperforms prior work in
the image classification task. Also, we show that joint lo-
cal/global dispersive forces lead to a larger dissimilarity of
negative pairs compared to other approaches. We summa-
rize our contributions as follows:

• We analyze and optimize self-supervised learning us-
ing a dynamic model of embeddings.

• To optimize the placement of embeddings, we propose
a MSBReg loss that consists of 1) Multiview centroid
loss and 3) Singular value loss 3) Brownian diffusive
loss and MSBReg outperforms other baselines by a
significant margin.

2. Related Work

Self Supervised Learning. Recent works suggest that a
state-of-the-art image representation can be successfully
and efficiently learned by a discriminative approach with
self supervised learning. These methods originally relied on
a contrastive loss that encourages representation of differ-
ent views of the same image (i.e. positive pairs) to be close
in the embedding space, and representations of views from
different images (i.e. negative pairs) to be pushed away
from each other. Contrastive methods often require a care-
ful treatment of negative pairs, which need a large mem-
ory overhead as they need to be sampled from a memory
bank [27, 15] or from the current mini-batch of data [5]. The
contrastive approach is also unsatisfying from a modeling
perspective - the fact that images are distinct does not imply
that they are different - but the contrastive approad applies
large repulsive gradients to distinct, close image pairs.

Motivated by a desire to overcome the difficulties of con-
trastive approaches, recent works [14, 6] use two neural net-
works (referred to as online and target networks) are trained
to minimize the distance between their embeddings of the
same image. Some works use a moving average on param-
eters of one arm [14] while others use the same parame-
ters [15, 6]. These methods have been effective but their
success is somewhat mysterious since there is no obvious
force to prevent collapse of embeddings since forces are
only attractive. It turn out that as batch normalization [17]
was an important element of the success of BYOL. In con-
trast we employ explicit local and global dispersive losses
in addition to attractive forces on groups of multiple image
views.
Regularizing Consistency of Singular Value. Whitening
is the most similar approach to regularizing consistency of
singular values. Recently, whitening output embeddings
has received attention as a method to avoid a mode collapse.
Whitening removes redundant information in input and pre-
vents all dimensions of embeddings from being encoded
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Figure 2. The architecture overview of MSBReg . This architecture is inspired by BYOL’s architecture. Each model takes K augmented
views as its inputs. MSBReg minimizes (1) multiview centroid loss, (2) singular value loss, (3) Brownian diffusive loss and . The first
makes the online network predict the target network’s representation of the centroid of K views. The second loss favors a spatially uniform
(spherical) distribution. The last one induces noise into embedding space and makes the embeddings repulse each other on average,
preventing the model from converging to collapsed solutions.

Attractive force
Spring (initial length = 0)

Brownian diffusive force

(A) Attractive force (B) Diffusive force

Figure 3. (A) Multiview centroid loss applies attractive force to
embeddings generated by online network. The solid shapes are
embeddings generated by online network and the shapes with
dashed line are the geometric centroids of the embeddings gener-
ated by target network. We can model such system as spring-mass
system. (B) Brownian diffusive loss induces the random walk of
embeddings, preventing the model from admitting collapsed solu-
tions.

with the same representation. Whitening features induces
the contrastive effect of the embeddings by scattering them.
This [9] performs a explicit whitening via Cholesky decom-
position. Performing Cholesky decomposition, which re-
quires the computation of inverse of the sample covariance
matrix is not only computationally expensive but unstable.
This method [29] computes cross-correlation matrix and
makes it close to identity matrix in Frobenius norm. This
paper [2] suggested a similar approach. Unlike the meth-
ods mentioned above, which compute the covariance ma-
trix with the only positive pairs, singular value loss term in
MSBReg computes the covariance matrix along the batch
dimension (with the negative pairs) and helps global dis-
persion of embeddings by making the embeddings be dis-
tributed isotropically. To emphasize this aspect, we coinage
our loss as singular value loss, which regularizes the consis-
tency of singular values of the empirical covariance matrix.

Multiview Loss. In supervised learning settings, batch rep-
etition method [16] is proposed to improve the image clas-
sification performance as well as training efficiency. Recent
self-supervised learning based on contrastive learning usu-
ally uses two views of the same image as positive pairs.
And it is trained to minimize the distance or maximize sim-
ilarity of embeddings of those two views. Recent work [4]
suggested multi-crop method which maximizes the similar-
ity between views more than 2. To reduce computational
cost, it generates 2 views with high resolution (224 × 224
for ImageNet) and several other views with low resolution
(96×96 for ImageNet). This method [9] generates multiple
positive views to perform whitening among them. In con-
trast, our method uses multiple views of the positive views
of the same images to compute the centroid and distance
between embeddings and the centroid. We discuss the re-
lationship between batch repetition method and multiview
centroid loss in the appendix.

Uniformity of Embeddings. Our work is aligned with [25]
in that our method also seeks to distribute the embeddings as
uniformly as possible on the embedding space. That work
claims that the contrastive learning is to make embeddings
be distributed uniformly on the hypersphere. Similarly, our
work also tries to distribute the embeddings uniformly on
the embedding space. That method reformulates contrastive
loss as the sum of alignment loss and uniformity loss. The
first term, alignment loss, aligns positive views. The sec-
ond term, uniformity loss, makes the embedding distribu-
tion uniform on the surface of unit sphere. The uniformity
loss is defined by Gaussian kernel. The difference to our
method is that 1) [25] is based on constrastive method and
2) [25] hypothesizes the embedding space is hypersphere.
However, our method seeks more general embedding space
with the dynamical system modeling. The advantage of
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modeling dynamical system is that we can study the mo-
tion of embeddings and control them with this model. We
further study the effect of our loss terms to uniformity and
alignment trade-off in depth in the appendix.

3. Method

3.1. BYOL Architecture

We follow the recent BYOL architecture [14] that learns
a joint embedding of an image x ∈ X with two networks
– consists of two neural networks referred to as the online
(or fast learner) and target (or slow learner) network. For
completeness, we summarize some of the key details of the
BYOL architecture. As shown in Figure 2, the online net-
work is trained to predict the target network’s representation
of the augmented view of the same image. This online net-
work is parameterized by a set of learnable weights θ and
consists of three consecutive components: a backbone fθ,
a projection head gθ, and a prediction head hθ. The target
network is parameterized by a set of weights ξ and consists
of two components: a backbone fξ and a projection head gξ.
The parameter ξ is updated by the bias-corrected exponen-
tially weighted moving average of the online network’s pa-
rameter θ at each training step, i.e. ξt+1 = τtξt+(1− τt)θt
where τt ∈ [0, 1] is a target decay rate.

Two augmented views v ≜ t(x) and v′ ≜ t′(x) are
generated by applying image augmentations t ∼ T and
t′ ∼ T ′ given two distributions of image augmentations
T and T ′. The online network outputs z ≜ gθ(fθ(v)) from
the first augmented view v, while the target network pro-
duces z′ ≜ gξ(fξ(v

′)) from the second augmented view v′.
A prediction from the online network p ≜ hθ(z) is then l2-
normalized to compute the cosine similarity loss Lbyol by
measuring mean squared error between the normalized pre-
diction p and the normalized target predictions z′:

Lbyol(θ, ξ;X ) := ∥p̂− ẑ′∥22 = 2− 2
⟨p, z′⟩

||p||2 · ||z′||2
(1)

where p̂ = p/∥p∥2 and ẑ′ = z′/∥z′∥2. Note that the loss
Lbyol is optimized with respect to θ only, but not ξ. The gra-
dient does not back-propagate through the target network as
depicted by stop-gradient in Figure 2. After training, both
the prediction head hθ and the projection head gθ are dis-
carded and the representations z of the online network are
used for downstream tasks.

3.2. MSBReg

Built upon BYOL architecture, we use the following loss
L(θ, ξ;X ) (instead of using Lbyol) that consists of the fol-
lowing three loss terms: (i) multiview centroid loss Lc, (ii)
singular value loss Ls, and (iii) Brownian diffusion loss Lb.

The overall loss is defined as follows:

L(θ, ξ;X ) = Lc(θ, ξ;X ) + λsLs(θ;X ) + λbLb(θ;X )
(2)

Multiview Centroid Loss. As opposed to BYOL, we train
the online network to predict the target network’s centroid
representation of differently augmented multi-views of the
same image. Given an image x ∈ X , we generate K dif-
ferently augmented views (i.e. multi-view): vj ≜ tj(x) and
vl ≜ tl(x) for j, l ∈ {1, 2, . . . ,K} by applying stochas-
tic image augmentations tj , tl ∼ T . Given K outputs from
the target network, z′l = gξ(fξ(v

′
l)), we use the geomet-

ric center of these K outputs as the centroid representation,
i.e. 1

K

∑K
l=1 ẑ

′
l where ẑ′l = z′l/∥z′l∥2. Lastly, we compute

the sum of L2 loss between the target network’s centroid
representation of embeddings of K different views {ẑ′l}K1
and the online network’s representation – thus, this loss ap-
plies an attractive force to pull together multiple augmented
representations of the same image (positive pairs) into the
geometric centroid as the pivot to cluster embeddings.

Ultimately, we the following multiview centroid loss Lc:

Lc(θ, ξ;X ) =
1

K

K∑
j=1

∥∥∥∥∥p̂j − 1

K

K∑
l=1

ẑ′l

∥∥∥∥∥
2

2

(3)

where p̂j = pj/∥pj∥2 is l2-normalized predictions from the
online network for the augmented view of the same input,
i.e. pj = hθ(gθ(fθ(vj))). Note that, minimizing Eq. 3
is mathematically identical to minimizing pairwise distance
between {p̂′j}K1 and {ẑ′l}K1 . Therefore, this loss generates a
stronger attractive force that aggregates the embeddings of
the same image that BYOL loss in Eq. 1.
Brownian Diffusion Loss. We use a dispersive loss, called
Brownian diffusion loss, that induces a Brownian motion
(or a random walk) of the online network’s representation
pj of j-th augmented view of an input. A d-dimensional
random vector n ∈ Rd is sampled from unit normal distri-
bution, i.e. n ∼ N (0, Id) with an identity matrix Id. Our
Brownian diffusion loss is defined as follows:

Lb(θ;X ) =
1

K

K∑
j=1

⟨n̂, p̂j⟩ (4)

where n̂ = n/ ∥n∥2. The noise vector n̂ drives a diffu-
sive motion by pushing particles in the embedding space
in radial direction, which is uniformly sampled on the unit
hyper-sphere.

Importantly, we use the same random vector n̂ for the all
augmented embeddings of the given image. This implies
that the positive pairs which share the similar semantics are
not spread apart. In contrast, the views from the different
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image moves to the different direction and the direction is
likely to be orthogonal to other images’ moving direction.
I.e. Brownian diffusion loss disperses the embeddings lo-
cally, which gives implicit contrastive effect between em-
beddings of different images.

We observe that our Brownian diffusion loss is critical
to prevent mode-collapse [14]. As the target network’s pa-
rameter is updated by the exponentially weighted moving
average of the online network’s parameter at each training
step (given a high target decay rate), the change of the target
network’s representation is relatively slower than that of the
online network (effectively 1

1−τ times slower). Such an im-
balance may cause a mode collapse as the online network’s
representation can quickly collapse into a single point with-
out any repulsive force between them.

Singular Value Loss. Lastly, we use the singular value loss
Lw that decorrelates the different feature dimensions of the
projections p̂ to prevent these dimensions from conveying
the same information, thus avoid a dimension collapse. We
minimize the following Euclidean distance between the em-
pirical covariance matrix of the embeddings and the iden-
tity matrix Id – thus, we penalize the off-diagonal coeffi-
cients of the covariance matrix and make the distribution
ball-shaped. Let the pij be i-th batch and j-th augmented
embeddings. Then the empirical covariance matrix of j-th
augmented embeddings Sj is:

Sj =
1

n− 1

n∑
i=1

(pij − p̄j)(pij − p̄j)
T (5)

where n is the number of batches and p̄j = 1
n

∑n
i=1 pij .

Then we define singular value loss as:

Ls(θ;X ) =
1

K

K∑
j=1

∥Sj − Id∥2F (6)

=
1

K

K∑
j=1

d∑
i=1

(σij − 1)2 (7)

where σij is singular values of the covariance matrix, Sj .
We found that this loss improves when corporated with
Brownian diffusion loss.

Some prior works [2, 9, 29] justify whitening loss as re-
moving correlations between different embeddings. In our
method however, we treat singular value loss as a dispersive
force that encourages uniformity of the embedding distribu-
tion. Even though Brownian diffusion loss addresses local
dispersion in the embedding space, singular value loss ex-
erts the force to regularize the shape of embedding distribu-
tion to be globally spherical at large scale.

4. Experiments

4.1. Evaluation of Representations with MSBReg

Evaluation on ImageNet-100 and STL-10. Following the
linear evaluation protocol, we train a simple linear classifier
with the frozen representations from our encoder, which is
pre-trained with our MSBReg . We first evaluate the per-
formance of the encoder on a small-size ImageNet-100 [22]
and a mid-size STL-10 datasets. We observe in Table 1 that
the performance of MSBReg generally outperforms other
state-of-the-art approaches on both datasets, especially we
observe a large gain on the STL-10 dataset. The perfor-
mance gain is more apparent that the following three ap-
proaches, MoCo, SimCLR, and Wang and Isola, use a more
expressive ResNet-50-based backbone than our ResNet-18-
based backbone. We also observe that the quality of the
learned representation improves as the number of views K
increases (compare bottom two rows).

Evaluation on ImageNet. We further evaluate the repre-
sentations obtained after self-supervised pre-training with
MSBReg on the large-scale ImageNet dataset with two eval-
uation metrics: 1) linear evaluation protocol and 2) semi-
supervised learning with the subsets of ImageNet and 3)
kNN classification. For linear evaluation protocol, likewise
to Table 1, dashed-line means that the original paper did not
report the corresponding value. We observe in Table 2 that
the performance of MSBReg outperforms other approaches
and gets the result compatible to SwAV with multi-crop,
which may confirm that the effectiveness of MSBReg for
learning the better visual representation. Especially, com-
pared to other baselines which are trained for 400 epochs,
our method is only trained for 300 epochs. This implies that
it has enough room to improve a lot. Again, note that ours
uses a smaller batch size than alternatives except MoCo-v2
(i.e. 512 vs. 4096 or 1024), but shows the matched or better
performance.

To evaluate semi-supervised leaning ability of our
method, we report top-1 and top-5 accuracy over 1% and
10% of ImageNet subsets. The experiment results are in
Table 3. For both 1% and 10% subsets, our method out-
performs baselines, when we compare methods with top-1
accuracy. Especially, in the fine-tuning result with 1% sub-
set of ImageNet dataset (see 1st column in Table 3), our
method surpasses with the large margin. For top-5 accu-
racy, our method gets matched performance with [13] and
outperforms other methods.

kNN evaluation results are in Table 4. We report the ac-
curacy of 20-NN and 200-NN classification results. Our
method outperforms baselines.
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Table 1. Classification accuracy (top-1 and top-5) of a linear classifier and 5-nearest neighbors (5-NN) classifier for different loss functions
on two visual benchmarks: ImageNet-100 [8] and STL-10 [7]. Note that BYOL (1st row), W-MSE 4 (5th row), and ours (the bottom 2
rows) are based on a ResNet-18 encoder, while others on a more expressive ResNet-50 encoder. †: scores are from our reproduction.

Method Backbone ImageNet-100 [22] STL-10 [7]

Top-1 (%) Top-5 (%) 5-NN (%) Top-1 (%) 5-NN (%)

BYOL† [14] ResNet-18 71.56 91.18 63.18 89.50 85.15
MoCo [15] ResNet-50 72.80 91.64 - - -
SimCLR [5] ResNet-50 - - - 90.51 85.68
Wang and Isola [25] ResNet-50 74.60 92.74 - - -
W-MSE 4 [9] ResNet-18 79.02 94.46 71.32 91.75 88.59

Ours (K = 4) ResNet-18 80.38 94.92 74.30 93.00 90.38
Ours (K = 8) ResNet-18 81.56 95.20 75.24 93.19 90.56

Table 2. Downstream task result comparison on ImageNet. The
backbone architecture for all the methods is ResNet-50. Note that
the baseline results are from [6] and [9]. Bold face is the best
accuracy and the underline is the second best accuracy. † means
that our model is trained 300 epochs.

Method Batch Size Epoch

100 200 400

BYOL [14] 4,096 66.5 70.6 73.2
SimCLR [5] 4,096 66.5 68.3 69.8
MoCo-v2 [15] 256 67.4 69.9 71.0
W-MSE 4 [9] 1,024 69.3 - 72.56
SwAV [4] (w.o. multi-crop) 4,096 66.5 69.1 70.7
SwAV [4] (with multi-crop) 4,096 72.1 73.9 74.6
SimSiam [6] 256 68.1 70.0 70.8

Ours (K = 4) 512 70.7 73.8 74.6†

Table 3. Semi-Supervised classification result comparison on the
subsets of ImageNet. We finetune the classifier and the encoder
with 1% and 10% of labeled data of ImageNet. We report top-1
and top-5 accuracy. Bold face is the best accuracy.

Method Top-1 (%) Top-5 (%)

1% 10% 1% 10%

SimCLR [5] 48.3 65.6 75.5 87.8
BYOL [14] 53.2 68.8 78.4 89.0
VICReg [2] 54.8 69.5 79.4 89.5
SwAV [4] (with multi-crop) 53.9 70.2 78.5 89.9
Barlow Twins [29] 55.5 69.7 79.2 89.3
OBoW [13] - - 82.9 90.7

Ours (K = 4) 58.6 70.6 81.9 90.1

4.2. Transfer Learning on Various Downstream
Tasks

We further evaluate the transferability of the features
trained with MSBReg on ImageNet via transferring the fea-
tures to various downstream tasks. In Table 5, we com-
pare the performance of MSBReg with baselines. We

Table 4. kNN classification result comparison on ImageNet. We
report accuracy with 20-NN and 200-NN.

Method 20-NN (%) 200-NN (%)

NPID [26] - 46.5
LA [31] - 49.4
PCL [18] 54.5 -
VICReg [2] 64.5 62.8
SwAV [4] (with multi-crop) 65.7 62.7

Ours (K = 4) 66.2 63.0

Table 5. Evaluation of the representations pretrained with MS-
BReg on various downstream tasks: 1) the performance linear
classifier on top of frozen ResNet-50 backbone and 2) object de-
tection with fine-tuning. For the linear probing, we report mAP for
VOC07 [10] benchmark, Top-1 accuracy (%) for Places [30] and
iNaturalist2018 [24] benchmarks. For the object detection task,
we report AP50, AP75, and APall for VOC07+12 benchmark.

Method Classification (%) VOC Detection

VOC07 Places iNat18 AP50 AP75 APall

BoWNet [12] 79.3 51.1 - 81.3 61.1 53.5
MoCo v2 [15] 86.4 51.8 38.6 82.4 63.6 57.0
PIRL [19] 81.1 49.8 - 80.7 59.7 54.0
OBoW [13] 89.3 56.8 - 82.9 64.8 57.9
BYOL [14] 86.6 54.0 47.6 81.4 61.1 55.3
SimSiam [6] - - - 82.4 63.7 57.0
Barlow Twins [29] 86.2 54.1 46.5 82.6 63.4 56.8
SwAV [4] 88.9 56.5 48.6 82.6 62.7 56.1
PixPro [28] - - - 83.8 67.7 60.2

Ours (K = 4) 87.8 56.4 47.9 83.0 63.5 56.7

first report the linear classification result on VOC07 [10],
Places205 [30] and iNaturalist [24] visual benchmarks.
Each of benchmarks is to evaluate 1) multi-label classi-
fication 2) scenic scenario and 3) fine-grained classifca-
tion. We evalute the performance of linear classifier on
top of the frozen ResNet-50 encoder pretrained with MS-
BReg method. We report mAP for VOC07 dataset and top-
1 accuracy (%) for other benchmarks. We observe that our
method shows generally matched results compared with al-
ternatives.
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Table 6. Comparison of the quality of representations between
BYOL [14] and ours on the STL-10 dataset [7]. The Top-1 clas-
sification accuracy is reported with different types of normaliza-
tion techniques: a batch normalization (BN) [17] and a layer norm
(LN) [1]. To see the effect of our proposed Brownian Diffusive
Loss, Lb, we also report scores of BYOL with Lb (4th row).

Method Norm. Layer Batch Size λb Top-1 (%)

BYOL BN 256 0 89.5
Ours BN 256 5× 10−2 91.4

BYOL LN 256 0 10.6
BYOL + our Lb LN 256 5× 10−3 75.3
BYOL LN 1024 0 10.6

Ours LN 256 5× 10−4 80.7
Ours LN 256 5× 10−3 82.3
Ours LN 256 5× 10−2 78.7

For object detection task, we finetune pre-trained
ResNet-50 backbone with the PASCAL VOC07+12 object
detection benchmark [10]. We use Faster R-CNN [20] with
C4 backbone as our baseline model. We report AP50, AP75,
and APall. We observe in Table 5 that our model shows
generally matched results compared with alternatives ex-
cept for PixPro [28], which is proposed for . For AP50,
our method performs better than the baselines, while our
method shows matched or slightly lower performance than
other approaches.

We report instance segmentation result on COCO dataset
in the appendix.

4.3. Brownian Diffusive Loss against Mode Collapse

BYOL [14] successfully uses only pairs of positives,
but the reason why the online and target networks can
avoid a so-called mode collapse, i.e. representations of
all the examples are mapped to the same point in the
embedding space, is not yet clearly explained. Existing
work [11, 6, 22, 21] discussed that the use of the Batch
Norm (BN) implicitly contributes to avoiding generating a
collapsed representation. Especially, the original authors
of [14] show that BYOL works without BN [21]. How-
ever, those methods are impractical in terms of restricting
the network architecture design and this fact implies that
these approaches are suboptimal. In our work, we propose
to use Brownian diffusive loss, Lb, which pushes embed-
dings into the radial direction to be uniformly sampled on
the unit hyper-sphere. This helps to avoid collapsed repre-
sentations without the need of using the Batch Norm (BN).
We further discuss this in the appendix.

In Table 6, we empirically observe that BYOL suffers
from a mode collapse when we replace the Batch Norm
(in the prediction and projection heads) with another nor-
malization technique, a Layer Norm (compare 1st vs. 3rd
row). The top-1 classification accuracy is largely degraded
from 89.5% to 10.6%, i.e. mode collapsed. Ours with the
Brownian diffusive loss Lb was not the case (compare 2nd

vs. 6th row). Though we observe a slight degradation in
the top-1 classification accuracy, ours sufficiently avoid col-
lapsed representations. Further, we evaluate the BYOL with
our Brownian diffusive loss to demonstrate its effectiveness
against a mode collapse. We observe that our Brownian
diffusive loss helps avoid collapsed representations (com-
pare 3rd vs. 4th rows). We also observe that the quality
of representations depends on the strength of the hyper-
parameter λb where we obtain the best performance with
λb = 5 × 10−4. We observe a tension as we see a smaller
or larger λb slightly degrades the quality of representations.

4.4. Comparison with Multi-Crop Method

We further compare Multiview centroid loss with the
multi-crop method. The main difference between multiview
centroid loss and multi-crop in SwAV is that our method
uses the same resolution across all views while multi-crop
uses low resolutions. We observe in Table 7 that a BYOL
model with the multi-crop method shows a degradation
(compare 1st vs. 2nd row), while MSBReg improves the
performance of BYOL with a large margin (compare 1st vs.
3rd). This fact is also reported in [2].

Here, we describe the details of experiment. For a fair
comparison, we implement the multi-crop method in the
BYOL framework. The multi-crop method generates 2
views with full resolution (224× 224 for ImageNet) and V
views with low resolution (96×96 for ImageNet). Cropping
small parts of an image is used to generate low-resolution
images. We choose V = 6 following [4]. To apply the
multi-crop method to BYOL, we reformulate BYOL loss
(i.e. Eq. 1) as follows:

Lmc-byol(θ, ξ;X ) :=

V+2∑
i,j

∥∥p̂i − ẑj
′∥∥2

2
1(i ̸= j)

=

V+2∑
i,j

(
2− 2

⟨pi, z′j⟩
||pi||2 · ||z′j ||2

)
1(i ̸= j)

which shows that the multi-crop method minimizes the dis-
tance between pairs of embeddings, while our Multiview
centroid loss minimizes the distance between each view and
the geometric centroid of multi-views.

Table 7. Comparison accuracy of downstream image classification
task on ImageNet between multiview loss and multi-crop [4]. We
apply multi-crop method to BYOL.

Method 100 epochs 200 epochs 300 epochs

BYOL [14] 65.9 70.1 72.3
BYOL+multi-crop 65.8 68.7 70.3
Ours (K = 4) 70.2 73.6 74.4
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Table 8. Ablation study to study the effect of our proposed three
regularizations: (1) Multiview centroid loss Lc, (2) Brownian dif-
fusive loss Lb, and (3) singular value loss Lw. Note that we com-
pare the top-1 classification accuracy (in %) of a linear classifier
on the ImageNet-100 dataset.

Method Lc Lb Ls Acc. (%)

BYOL ✗ ✗ ✗ 71.92
BYOL ✗ ✗ ✓ 72.84
BYOL ✗ ✓ ✗ 72.84
BYOL ✗ ✓ ✓ 72.41

Ours (K = 4) ✓ ✗ ✗ 78.24
Ours (K = 4) ✓ ✗ ✓ 79.68
Ours (K = 4) ✓ ✓ ✗ 79.74
Ours (K = 4) ✓ ✓ ✓ 80.38

Ours (K = 8) ✓ ✗ ✗ 79.54
Ours (K = 8) ✓ ✗ ✓ 79.96
Ours (K = 8) ✓ ✓ ✗ 80.28
Ours (K = 8) ✓ ✓ ✓ 81.56

4.5. Ablation Studies

Table 8 shows our ablation study to see the effect of our
proposed three regularizations: (1) Multiview centroid loss
Lc, (2) Brownian diffusive loss Lb, and (3) Singular value
loss Ls. Given the BYOL model as a baseline, we apply
different combinations of our regularizations and measure
the quality of representations following the linear evaluation
protocol. We report scores on the ImageNet-100 dataset.
We use ✓ and ✗ to indicate with and without, respectively.
Note that we set λb and λw by default as 0.5 and 4.0×10−3,
respectively.

We first observe that a significant performance gain is
obtained with our Multiview centroid loss Lc (compare 1st
vs. 5th and 9th). The quality of the learned representations
consistently improves as the number of views K increases.
Since BYOL uses 2 views (K = 2) for training, doubling
the number of views provides more than 6% performance
gain. The other two regularizations, Brownian diffusive loss
Lb and Singular value loss Ls, also consistently improve the
overall classification accuracy. For example, the classifica-
tion performance improves 0.92% with the Brownian diffu-
sive loss (compare 1st vs. 3rd) and the Singular value loss
(compare 1st vs. 2nd). Such performance gain becomes
more apparent with the Multiview centroid loss where we
obtain a larger gain: 1.44% with the Singular value loss and
1.5% with the Brownian diffusive loss. Concretely, apply-
ing all our proposed regularizations together shows the best
performance.

We further study the sensitivity of the tuning of the two
new hyperparameters λs and λb. We report the result in the
supplementary.

5. Conclusion
In this work, we have explored multiview, singular value

regularization and Brownian diffusion methods for self-
supervised learning. Each method implicitly induces con-
trastive effect, which stabilizes the the training of self-
supervised learning. Our method achieves a good down-
stream task performance for instance classification as well
as various transfer learning such as object detection, seman-
tic segmentation.
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