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Abstract

Reliable and precise detection of ocean eddies can sig-
nificantly improve the monitoring of the ocean surface and
subsurface dynamics, besides the characterization of local
hydrographical and biological properties, or the concentra-
tion pelagic species. Today, most of the eddy detection algo-
rithms operate on satellite altimetry gridded observations,
which provide daily maps of sea surface height and surface
geostrophic velocity. However, the reliability and the spa-
tial resolution of altimetry products is limited by the strong
spatio-temporal averaging of the mapping procedure. Yet,
the availability of high-resolution satellite imagery makes
real-time object detection possible at a much finer scale,
via advanced computer vision methods. We propose a novel
eddy detection method via a transfer learning schema, using
the ground truth of high-resolution ocean numerical mod-
els to link the characteristic streamlines of eddies with their
signature (gradients, swirls, and filaments) on Sea Surface
Temperature (SST). A trained, multi-task convolutional neu-
ral network is then employed to segment infrared satellite
imagery of SST in order to retrieve the accurate position,
size, and form of each detected eddy. The EddyScan-SST
is an operational oceanographic module that provides, in
real-time, key information on the ocean dynamics to mar-
itime stakeholders.

1. Introduction

Eddies, dynamical structures are to the oceans what
weather systems are to the atmosphere. By transporting
heat, momentum and mass from their regions of formation
to distant areas, they affect they biological productivity [4],
water transport [35], local hydrographic properties [7] and

the movement of pelagic species [19]. Mesoscale eddies,
with radii of tens of kilometers and timescales on the order
of months, amount for an oceanic energy partition on the or-
der of the large ocean circulation [12, 35]. This makes their
detection and characterization crucial, both for the study
of the climate evolution as well as day-to-day, operational
oceanography.
The advances in Satellite Altimetry, measuring the Sea Sur-
face Height (SSH) has led to 40 years of development of al-
timetric eddy detection [13], revealing the prevalent role of
eddies on ocean dynamics [5]. As a result, many altimetric
eddy detection and tracking algorithms [14, 27, 20, 16, 28]
have been recently developed. These algorithms, employ an
objective function to detect eddies either on the SSH field
or the derived geostrophic velocity field, which also stems
from altimetry. Despite the importance of standard altimet-
ric eddy detection, strong limitations have been evoked: by
simulating satellite altimetry products, Amores et al. [1]
showed that altimetric detection only captures 6 to 16 % of
eddies in the North Atlantic Ocean and Mediterranean Sea
respectively. In addition, they have calculated a constant
bias of artificially larger detected eddies compared to their
real size. In a study of the Mediterranean Sea, Stegner et al.
[32] showed that altimetric detection has a Missed (False
Negative) rate of 34% and a Ghost (False Positive) rate of
10% for large ( R > 20km ) eddies. These limitations of
standard detection stem mainly from the altimetric observa-
tion, due to the strong spatio-temporal interpolation of SSH
maps (15km resolution), creating strong uncertainties in ar-
eas not covered by satellite tracks. Thus, the error of the
altimetric data is of a larger order of magnitude than the er-
ror of the standard detection algorithms per se. On Figure 1
(a) we plot the contours detected on a simulated altimetric
geostrophic velocity field and compare them to those of the
reference geostrophic velocity field at panel (b). Standard
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Figure 1. Examples of eddy detections on different satellite data. Blue (red) contours depict predicted anticyclones (cyclones). Black (grey)
contours depict the mesoscale (submesoscale) reference geostrophic velocity eddies. (a) Standard eddy detection on simulated altimetric
geostrophic velocity field (OSSE). (b) Reference contours and geostrophic velocity field with superimposed standard altimetric detections.
(c) EddyScan CNN detections on SST data. (d) Reference contours and geostrophic velocity field with superimposed EddyScan detections.

detection struggles to capture small and submesoscale ed-
dies, because of the low resolution of the altimetry fields,
while also miss-detects many larger eddies in areas not cov-
ered by tracks. To surpass these limitations, other sources
of satellite data should be considered: the Sea Surface Tem-
perature (SST) are high-resolution (1km) observations on
the infrared spectrum where the signature of eddies is por-
trayed through gradients, swirls, and filaments.
Convolutional Neural Networks (CNNs) have been success-
fully employed to detect eddies on satellite data. Most of
the work using CNNs is applied to altimetric data to per-
form semantic segmentation of maps of eddies [10, 17, 9].
Yet, these successful implementations of Machine Learn-
ing stumble upon the inherent uncertainties of the altimetric
observation data and the best of CNNs will only manage to
replicate the best of standard eddy detection models. Two
more studies [18, 15] have employed CNNs that fuse SSH
and SST data to improve semantic segmentation character-
izing eddies as warm or cold core. They showed that adding
SST as an independent source of data can lead to an im-
provement of eddy detection. However, the SST training
data used need to be hand labeled or inferred by altimetric
detections resulting in sparse/noisy labeling. Finally, classi-
fication of eddy signatures has been performed successfully

by independently treating SST [23] and Synthetic Aperture
Radar (SAR) data [8]. On Figure 1 (c) we show the detec-
tions on the SST field of the CNN proposed in this paper,
EddyScan-SST on SST, and compare them with the refer-
ence velocity field. Due to the high-resolution and accurate
signatures of eddies on the SST, we manage to capture cor-
rectly most of the mesoscale eddies and an important part
of the submesoscale (black and grey contours respectively;
Figure 1 (d)).

To perform an efficient operational eddy detection with
CNNs two learning problems need to be treated success-
fully: the uncertainty of altimetric (SSH) eddy detections as
ground truth, and the sparsity of ground truth in SST data.
In this work we present EddyScan-SST, a pixel-wise seg-
mentation CNN applied on SST data to detect with high
precision the position, size, and form of eddies, without the
need of an altimetry input. Our work provides several nov-
elties in the task of eddy detection:

• Using CNNs, we infer from SST data the dynamical
contours of eddies, which are local topological proxies
of the field of velocities.

• As infrared satellite images are not linked with an ac-
curate dynamical ground truth, we use a transfer learn-
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ing schema, using ground truth from ocean numerical
model simulations, to learn representations of eddy dy-
namical contours on SST data.

• We use a multi-task learning schema to perform con-
tour detection with correct position, size and form on
both numerical model data and satellite infrared im-
ages.

• By testing on numerical model data and satellite im-
ages, we find that the CNN applied on SST greatly
outperforms standard altimetric eddy detection when
infrared observations are available.

• We provide a hand-labeled dataset of satellite infrared
images containing eddy signatures and their corre-
sponding dynamical contours for use by the oceano-
graphic and vision communities. The dataset can be
found here.

2. Data: Simulation and Observation
2.1. The CROCO Numerical Model

The CROCO Numerical Model of the Ocean built upon
the ROMS model [30] is a realistic numerical simulation
of the ocean circulation, carried here on the domain of the
Mediterranean Sea. CROCO is able to resolve very fine
scales of ocean dynamics and their interactions with larger
scales. The model solves the primitive equations on an grid,
with a horizontal resolution of 2km in both longitudinal and
latitudinal direction. We use in this study the SSH output of
the numerical model as a reference (SSH REF) on which the
Geostrophic Velocities are computed. We also use the out-
put SST maps that correspond to the simulated dynamical
field. These Numerical Model outputs serve as a reference
ground truth for our experiments. Examples of the SSH and
SST outputs of the CROCO Numerical Model are seen in
panels (c) and (d) of Figure 1.

2.2. Observing System Simulation Experiment

The reference ground truth provided by the CROCO
model simulations, as seen in Figure 2 (a), needs to be
downsampled in an inhomogeneous manner, in order to re-
produce the exact observation error found in the satellite
altimetry. To do so, we perform an Observing System Sim-
ulation Experiment (OSSE) in a four-satellite configuration,
composed of the reference mission Jason-3 and three other
missions Sentinel3-A, Sentinel3-B, and Cryosat-2. Syn-
thetic satellite tracks are reproduced through the SWOT
simulator software [11], providing realistic measurement
errors and noise. Example synthetic satellite tracks cover-
ing the CROCO model numerical field are depicted in Fig-
ure 2 (b). The resulting synthetically observed field is then
processed to compute gridded fields with the same interpo-
lation schema that is utilized for the production of gridded

Figure 2. An OSSE consists of (a) Retreiving a high-resolution
numerical model field of SSH (b) Sampling the field via synthetic
satellite tracks which simulate observation by altimeters (c) In-
homogenous spatio-temporal interpolation between the sampled
points to receive the OSSE field. In our experiment grid resolution
is degraded from 2km to 15km.

SSH satellite data [33]. It consists of an inhomogeneous
spatiotemporal interpolation between the sampled points by
the synthetic tracks, shown in Figure 2 (c). The resolution is
thus downgraded from 2km of the initial numerical model
field to 15km of the OSSE field. A preprocessing is also car-
ried out on the CROCO simulation data to filter large scale,
high-frequency signals derived from atmospheric forcing
fields [3].

2.3. Satellite Data

By collating measurements made by multiple infrared
sensors, high-resolution (1km) super-collated SST maps of
the Mediterranean Sea are received from the Copernicus -
Marine Environment Monitoring Service (CMEMS), Ultra
High Resolution L3S SST Dataset, produced by the CNR -
Italy and distributed by CMEMS. The process of supercol-
lation uses SST measurements derived from the LSTR and
AVHRR instruments on board Sentinel-3A/-3B and NOAA,
VIIRS, MetOp-B, MODIS AQUA and TERRA, and SE-
VIRI on board the MSG satellite and are representative of
nighttime SST values [26].

3. Methods and Learning
3.1. Standard Eddy Detection

The geostrophic velocity fields are derived from the SSH
fields of the Reference Model simulation and the OSSE
altimetric simulation, velocities being proportional to the
gradient of the SSH. To represent dynamics on other non-
dynamical variables such as SST (and therefore in imagery),
we employ a topological proxy of the velocity field, the
maximum velocity eddy contour. This contour is defined as
the closed isoline around an eddy where its velocity is maxi-
mum (Vmax). The plotted contours in this work correspond
to the maximum velocity contour. To receive eddy contours
and dynamical properties we use in this study the Angular
Momentum Eddy Detection and Tracking Algorithm [16],
which is employed on the calculated geostrophic velocity
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Figure 3. Schematic of the Neural Network used for Deep Eddy Scan. (a) The UNet-type architecture learns the mapping of an SST Input
(a.1) via a downsampling branch (a.2) and three upsampling branches (a.3) to a dynamical contour (a.4). Skip connections are employed
between the downsampling branch and each of the upsampliing branches. (b) The SST Input follows a donwsampling branch then leads to
three upsampling branches predicting the (b.1) Mask Segmentation (b.2) Eddy Contours and (b.3) Distance to Eddies.

fields.
The identification of potential eddy centers by AMEDA
is performed by computing the Local Normalised Angular
Momentum (LNAM) [21] of the velocity field. Only eddy
centers with at least one closed contour of the stream func-
tion of the velocity field are selected. A radial profile of
the velocity for each detected eddy center is calculated by
computing the average velocity and radius at each closed
streamline around it:〈

V
〉
=

1

Lp

∮
V⃗ d⃗l (1)

where V⃗ is the local geostrophic velocity field and Lp is
the streamline perimeter. The radius R of the characteristic
contour is obtained by considering a circular contour of an
equivalent area A:

〈
R
〉
=

√
A

π
(2)

The radii considered for sizing the eddies in this study cor-
respond to the radius of the maximum velocity contour.
Eddy centers and radius are are important parameters used
to retrieve SST patches for training and testing the Neural
Network.

3.2. Convolutional Neural Network

We employ a CNN to learn the relation between the SST
signature of an eddy (monochromatic image) with a corre-
sponding maximum velocity dynamical contour. We treat
this contour detection task, through a semantic segmenta-
tion of an image into regions of Anticyclones, Cyclones and
No Eddies. Detected contours are subsequently extracted
from the labeled regions.
UNET encoder-decoder architectures [29] have been suc-
cessful in mapping low and high-resolution features of an

input image into a ground truth, due to skip connections
between the downsampling and upsampling branches. Pre-
cisely, they have been successfully employed for the task
of eddy detection [17, 15]. Multi-task learning approaches
have proven robust on contour detection tasks [6, 34, 25].
By using additional output channels and corresponding loss
function terms the CNN converges both faster and better
to the task of contour detection. We employ an encoder-
decoder CNN with one downsampling and three upsam-
pling branches, following [25], each corresponding to a
learning task. The encoder-decoder architecture is depicted
in Figure 3 (a). The first and main learning task consists
of learning the filled mask of each eddy, depicted in Fig-
ure 3 (b.1). The second task consists of learning a contour
mask, which consists of the outline of each filled mask with
a width of 2 pixels, depicted in Figure 3 (b.2). Learning
contour masks has been reported to boost the detection of
multiple contours in a single window [6]. A softmax acti-
vation is applied on the predictions before the calculation
of the loss. For the first and the second task ( T1,T2 ) we
employ pixel-wise classification loss, for each pixel x of a
matrix:

LT1,T2 =
∑
i,j

logp
(
xi,j ;ωcc

(
xi,j

))
(3)

where p (x; l (x)) denotes the probability of predicting
a class c between No Eddy, Anticyclone and Cyclone. A
class weight ωc is tuned so that Cyclones weight three times
more than Anticyclones and No Eddy classes, as their rep-
resentations are more complex to learn (see Figure 4). This
weight tuning has been performed after experiments com-
paring validation metrics for anticyclones and cyclones, and
seeking to boost the performance for the cyclonic class.
Finally, the third task consists of calculating a distance map,
where filled masks containing eddies are labeled as zero and
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for the non-eddy pixels we calculate the euclidean distance
from the closest eddy contour, depicted in Figure 3 (b.3).
Including a distance map in the multi-task learning has re-
portedly improved the smoothness of the retrieved contours,
an important factor for realistic eddy detection [34]. A soft-
max activation function is performed to clamp the final val-
ues between zero and one before the calculation of the loss.
For this third task (T3) we calculate a pixel-wise MSE loss:

LT3 =
∑
i,j

(
D′ (x

i,j

)
−D

(
x

i,j

))2
(4)

where D(x) is the distance map of the ground truth and
D’(x) the predicted distance map. The three losses for LT1,
LT2 and LT3 are summed up and weighted with weights
λT3 = 3 ∗ λT1,2, in order to clamp values on the same order
of magnitude.

3.3. Patch Creation on the fly

As the sampled domain of the Mediterranean Sea is large
relative to the size of the eddies, we extract small windows,
cropped randomly during the training process. To increase
in the variance of the training samples while gaining in com-
putational efficiency and memory load, we extract patches
on the fly, during the training pipeline: First, patches of a
size (±1.5) ∗ 128px are cropped in a random location and
day, having more than 80% of ocean pixel values. Then,
these patches are interpolated to a constant size of 128px.
Because of the multi-modality of the distribution of SST
pixel values, patches are normalized and a mask contain-
ing the location of land values is added as a second input
channel. We use one year of numerical model simulation
of the Mediterranean sea as train data for the neural net-
work and a second year as test data. This serves to avoid
overlap between representations of the same eddy between
the train and test datasets, as well as to guarantee a bal-
ance between representation of seasonal effects, which can
affect significantly the signature of eddies on SST images
[22]. Finally, the hand-labeled dataset provided here is too
small (500 images) to use for direct supervised training and
is only employed for validation.

3.4. Training and Validation

We use the above framework to generate patches on-the
fly as the network is trained. We define an epoch as an it-
eration of 1,000 training patches generated on the computer
memory, passed to the GPU memory via batches of 16. Af-
ter the end of each epoch, the CNN is validated on a con-
stant set of 1,000 batches, extracted from the test test with
an equal distribution between seasons. The evolution of the
global train loss and the validation losses for the three tasks
(equations 3 and 4) are shown in Figure 4 (a).
We define a global validation metric through the Intersec-
tion over Union (IoU), else called the Jaccard Index, which

Figure 4. (a) Global train and validation losses for the Mask (LT1),
Contour (LT2) and Distance (LT3). Loss values are standardized
between zero and one. (b) Evolution of the global IOU metric on
the validation set. On both x-axes is the number of patches iterated
at training.

evaluates the global accuracy on the form of detected ed-
dies. The IOU is calculated on each pixel-wise segmenta-
tion mask (T1) as:

IoU (R,P ) =
|R ∩ P |
|R ∪ P |

(5)

where R is the reference and P is the predicted mask.
Training with 500k patches takes 4 hours on 8GBs of GPU.
However, we finally retrieved the trained model at 100k
patches where validation loss gradients reduce significantly
(Figure 4), in order to avoid overfit on numerical model
data, as the final goal consists of an application on infrared
satellite imagery. The asymmetry between the IOU scores
for anticyclones and cyclones in the CNN validation can be
explained by the more intrinsically complex signatures of
cyclones on the SST images as well as their globally smaller
size. These effects are linked with the different dynamical
structure between anticyclones and cyclones as explained in
[32].
We also evaluate the performance of the multi-task learning
setup, by performing individual training runs for different
combinations of learning tasks, for 100k patches each. Con-
sidering the three different tasks T1 (Mask Segmentation),
T2(Eddy Contours) and T3 (Distance to Eddies) we train
for the combinations T1, T1+T2 and T1+T2+T3, the latter
corresponding to the EddyNet-SST. We report the Global
IOU scores of these three runs in Table 1, demonstrating
the advantage of learning on both three tasks, in order to
accurately detect the eddy form.

Training Task T1 T1+T2 T1+T2+T3
IOU Score 0.4239 0.4257 0.4396

Table 1. Global IOU scores for different multi-task learning se-
tups, training on combinations of tasks T1 (Mask Segmentation),
T2(Eddy Contours) and T3 (Distance to Eddies)
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Figure 5. (a) An sample SST patch of the test set (size: 2562 pixels) where the EddyScan CNN is applied. Negative likelihood heatmaps
for the (b) No Eddy (c) Anticyclone and (d) Cyclone class. (d) Predicted pixel-wise segmentation mask (Task 1)

4. Results and Evaluation

4.1. Performance on Model Data

We first explore the network’s performance on the test
dataset of the numerical model. An ensemble of 10,000
patches, of a size of 2562 pixels each, is generated via the
random window method from the numerical model simula-
tion on the test year. By applying the EddyScan CNN on
each SST patch - Figure 5 (a), we calculate the heatmaps
of the output for task one (see Figure 3 (b.1)), for each of
the three classes, as seen in Figure 5 (b)-(d). Segmentation
is performed by retreiving the largest value, pixel-wise be-
tween the three heatmaps, as depicted in Figure 5 (e). On
the pixel-wise classified image, we apply a contour detec-
tion algorithm to extract the boundaries of every eddy.
Additionally, a simple colocalization schema between pre-
dicted and reference eddies is performed on every patch.
For each predicted eddy, we search for a barycenter of a
reference eddy contour inside the predicted contour. If at
least a reference eddy is found, we considered the predicted
eddy as correctly detected. In this case, we calculate the
position and size errors (see below) between the predicted
eddies and all colocalized references and we match it with
the one that is closest in position and size. If a predicted
eddy has no colocalized reference eddy it is considered a
Ghost. Finally, the eddy contours of the references which
correspond to no predictions are named Missed.
As the eddy detection task is an object detection with un-
derlying physical properties, we define relevant metrics to
evaluate the performance of the CNN:

• An overall Precision and Recall metric.

• A metric on the error on the position of each eddy de-
tection.

• A metric on the error of the size of each eddy detection.

The precision and recall scores are defined as:

Precision(c) =
|Ri,c ∩ Pi,c|

|Pi,c|

Recall(c) =
|Ri,c ∩ Pi,c|

|Pi,c|

(6)

The scores are calculated for each eddy object i and for
each eddy class c, i.e. Anticyclones or Cyclones. Ri,c

and Pi,c denote, respectively, reference and predicted ed-
dies of each class. Through these metrics, we define the
Ghost eddy rate, i.e. false positive detections Ghost(c) =
1−Precision(c) and the Missed Eddy rate i.e. false nega-
tive detections as Missed(c) = 1−Recall(c).
The precision and recall scores are shown in Figure 6 (a)
and (b) respectively. We compare the scores of the Eddy
Scan CNN, applied on SST images, with those of the Stan-
dard Eddy Detection applied on simulated altimetry fields.
The latter, are received through an OSSE (see Figure 2)
and our standard eddy detection experiment corresponds
to those described by Amores et al. [1] and Stegner et
al. [32]. The EddyScan CNN generally outperforms the
standard eddy detection, as the eddy signatures on the SST
are much closer to the reference dynamical field than those
found in altimetric observations (Figure 1). The precision
for Anticyclones is constantly higher for all eddy sizes,
while cyclones have a lower ghost rate for radii up to 25km.
On the recall metric, the CNN greatly outperforms standard
eddy detection both on the mesoscale and submesoscale de-
tections. For instance, the CNN missed rate 30% (40%)
for small submesoscale Anticyclones (Cyclones) compared
with 90% of missed small eddies by standard detection, due
to the low resolution of the altimetry fields [1]. For large,
mesoscale eddies with radii bigger than 25km, the CNN
has a miss rate lower than 5% (10%) for Anticyclones (Cy-
clones). It is noted that the missed rate shown for the Stan-
dard Eddy Detection for large cyclones is overestimated:
due to the colocalization schema followed, large cyclones
of the altimetry corresponding to multiple smaller reference
detections, are falsely labelled as correctly detected. This is
portrayed in the increased error in size estimation for large
cyclones in Figure 6 (d).
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Figure 6. Performance indicators: (a) Precision (1-Ghost Rate) and (b) Recall (1 - Missed Rate). (c) Position (barycenter) and (d) Size
(radius) mean errors normalized by the reference radius. Straight (dashed) lines correspond to the performance of the EddyScan-SST CNN
(Standard Altimetric Detection). Blue (red) lines correspond to performance for anticyclones (cyclones).

We additionally quantify the error in the position and size
of the correctly detected eddies. For the position error we
consider the distance between the barycenters of two colo-
calized eddy contours, normalized by the radius of the ref-
erence eddy contour:

Epos =

√
(xbar

pred − xbar
ref )

2 + (ybarpred − ybarref )
2

rref
(7)

For the size error we consider the difference between the
radii of the two colocalized eddy contours, normalized by
the radius of the reference eddy contour:

Esize =
|rpred − rref |

rref
(8)

The mean errors, over all correctly detected eddies, on the
position and the size are plotted in Figure 6 for both the
EddyScan CNN and the Standard Altimetric Detection. On
average, the EddyScan has an error of 20% of the radius
when determining the center of an anticyclone, with an er-
ror of 30 − 50% for cyclones. Due to the degradation of
the altimetry fields, the positioning of small eddies by stan-
dard methods reaches up to one radius of error. Size error
for anticyclones does not exceed 20% for all sizes while
the size of big cyclones tends to be underestimated by the
CNN. In both cases, the EddyScan-SST outperforms the al-
timetric methods. Here again, cyclones prove more difficult
to detect than their anticyclonic counterparts, due to their
complex signatures, as discussed before.

4.2. Performance on Satellite Data

The EddyScan-SST serves as an operational oceano-
graphic module, thus needing to be applied and evaluated
on satellite observations of the ocean. In particular, infrared
imagery is a proxy to obtain observations of the SST, which
contains representations common to those learned by the
CNN. However, the satellite data possesses some key dif-
ferences from the numerical model data:

• The impact of noisy labels: As the altimetric obser-
vations of eddies often have low reliability, it is im-
possible to establish with certainty the link between a
dynamic contour (altimetry) and the infrared satellite
observation. Therefore there is a need for a transfer
learning schema, using representations from models to
train a CNN which will be applied to satellite data.

• The impact of cloud coverage: Infrared radiation can-
not penetrate clouds, leading to a constant corruption
of the observation by missing values. Furthermore,
cloud presence corrupts the observed values of nearby
pixels, creating noise in the data. Even though cloud
coverage is out of the scope of this study, it has been
demonstrated in [24] that CNNs can classify infrared
eddy signatures even when impacted by strong cloud
coverage of up to 80% .

• The need for hand labeling: stemming from the noisy
label problem. As such we have extracted 500 patches,
each one containing the ground truth of the dynamical
contour of an Anticyclone (428 patches) or a Cyclone
(72 patches). These patches are provided to the com-
munity with this paper and are used to evaluate the per-
formance of the EddyScan on infrared observations.

In Figure 7 we depict several examples of eddy signatures
found on infrared images: anticyclones and cyclones can
have a coherent warm or cold anomaly in their cores de-
pending on the season, as seen in panels (a)-(c). A typical
case is a dipole structure as the one in panel (d), featuring
an anticyclone rotating near a cyclone and constituting a dy-
namic ensemble. These pairs are often hard to detect on al-
timetry, as they are often formed by relatively small eddies,
and have many times intense infrared signatures. Finally, as
discussed, cloud coverage can hinder EddyScan prediction
as seen in panel (e), which is why we have limited the max-
imum cloud coverage per patch at 10% for this dataset.
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Figure 7. Samples from the Edddy Infrared Satellite Observations dataset released with this paper. Handlabeled contours are plotted with
black. Predictions of the EddyScan CNN are plotted with blue for anticyclones and red for cyclones. Cases (a)-(c) portay coherent well-
detected eddies. Case (d) portrays a typical structure of a Cyclone-Anticyclone dipole. Case (e) shows the impact of cloud coverage that
can hinder prediction.

ALL AE CE
IOU ( eq. 5 ) 0.46 0.48 0.28
Miss Rate ( eq. 6 ) 0.21 0.19 0.35
Position Error ( eq. 7 ) 0.33 0.30 0.54
Size Error ( eq. 8 ) 0.23 0.22 0.35

Table 2. EddyScan-SST performance on the hand labeled set of
500 satellite infrared images.

Applying the EddyScan on the 500 patches extracted, we
receive the metric scores presented in Table 2. The over-
all IOU is calculated between the reference eddy and the
corresponding predicted contour. All secondary contours
are filtered out, as there is only one hand-labeled reference
contour per image. Thus, ghost rate (precision) is not calcu-
lated here. The miss rate expresses how many of the patches
had no CNN detection over the reference contour. The po-
sition error (equation 7), and the size error (equation 8) are
expressed as a percentage of the radius of the reference con-
tour. As with the numerical model data, performance on
Anticyclones is significantly better than that on Cyclones,
as the latter tend to be much smaller, and with more com-
plex signatures.

5. Conclusion
In this work, we employ computer vision to perform

eddy detection on infrared satellite imagery, surpassing the
limitations of standard eddy detection methods on altime-
try. Our CNN trained on patches of SST from a simulation
of a high-resolution ocean numerical models, achieves im-
portant performance scores on the task of eddy detection
with a global IOU of 0.45 and a Miss Rate of 0 − 20%
for mesoscale eddies and 15%-40% for small and subme-
soscale eddies (< 15km). To compare the performance
of the CNN with standard detection methods we perform
a simulation of the satellite altimetry observation on numer-
ical model fields. Standard detection methods have a miss
rate of 10− 80% for mesoscale eddies, while missing com-
pletely the small submesoscale eddies due to the low reso-

lution of altimetry data.
High-resolution satellite imagery, such as infrared measure-
ments, remains largely unused for ocean structure detection,
despite the rich amount of information contained in patterns
of gradients, swirls and filaments. To extract the dynamical
information from these complex representations in infrared
imagery we utilize the topological information of eddy con-
tours as a proxy of the surface dynamics of the ocean. Our
method does not replace, but rather compliments standard
eddy detection on altimetry, especially on spatio-temporal
windows not covered by altimeter satellites, while also pro-
viding a reliability index.
We employ a transfer learning schema, using ground truth
from a numerical model simulation of the ocean, with an
almost perfect link between dynamics and temperature sig-
nature, applying afterwards the trained network on satellite
observations. This way we avoid the noisy labeling of satel-
lite data and the costly hand-labeling process. We treat the
contour detection task as a multi-task learning that aids to
retrieve information on the contours size, position and form.
Finally, the CNN is invariant of the input size, meaning that
it can be applied in any region of the globe.
The trained eddy-detecting neural network proves robust on
infrared satellite imagery with a 20% miss rate of eddies
and a mean error of 23% on their size and 33% on their
position. We release through this repository a hand-labeled
dataset containing eddy signatures on infrared observations
along with their dynamical contours.
Including multi-modal satellite data such as satellite obser-
vations on the visible spectrum and synthetic aperture radar
[8] as well as finetuning the neural network for cloud cov-
erage [24] can boost the operational performance of the Ed-
dyScan module. Employing semi-supervised learning [31]
can allow for learning with noisy-labeled satellite data. Fur-
thermore, super-resolution neural networks, fusing satellite
altimetry and infrared imagery [2] could work in conjunc-
tion with the eddy detection neural networks.
Precise and reliable eddy detection allows us to estimate, in
real-time, the local hydrographic properties and the surface
circulation in a given region, providing key information for
many applications of maritime stakeholders.
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