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Abstract

Rapid dissemination of misinformation is a major soci-
etal problem receiving increasing attention. Unlike Deep-
fake, Out-of-Context misinformation, in which the unaltered
unimode contents (e.g. image, text) of a multi-modal news
sample are combined in an out-of-context manner to gener-
ate deception, requires limited technical expertise to create.
Therefore, it is more prevalent a means to confuse readers.
Most existing approaches extract features from its uni-mode
counterparts to concatenate and train a model for the mis-
information classification task. In this paper, we design a
self-supervised feature representation learning strategy that
aims to attain the multi-task objectives: (1) task-agnostic,
which evaluates the intra- and inter-mode representational
consistencies for improved alignments across related mod-
els; (2) task-specific, which estimates the category-specific
multi-modal knowledge to enable the classifier to derive
more discriminative predictive distributions. To compen-
sate for the dearth of annotated data representing varied
types of misinformation, the proposed Self-Supervised Dis-
tilled Learner (SSDL) utilizes a Teacher network to weakly
guide a Student network to mimic a similar decision pat-
tern as the teacher. The two-phased learning of SSDL can
be summarized as: initial pretraining of the Student model
using a combination of contrastive self-supervised task-
agnostic objective and supervised task-specific adjustment
in parallel; finetuning the Student model via self-supervised
knowledge distillation blended with the supervised objec-
tive of decision alignment. In addition to the consistent out-
performances over the existing baselines that demonstrate
the feasibility of our approach, the explainability capacity
of the proposed SSDL also helps users visualize the reason-
ing behind a specific prediction made by the model.

1. Introduction

The spread of misinformation whether in the form of a
full-fledged news article or just a small tweet has raised sig-

nificant concern in various domains e.g., politics, finance,
society, and others[1, 2]. According to Weibo’s 2020 an-
nual report, [42], 76, 107 news contents shared on Weibo
social media platform were identified as false by the author-
ity all year round. As an emerging field of research, eval-
uating misinformation has attracted attention of researchers
across multiple disciplines (Social Science, Communica-
tion, Journalism, Computer Science). To ensure maximum
impact in its audience, content creators of such mislead-
ing news articles frequently utilize multi-modal informa-
tion, e.g. texts and images, to describe topics. A spe-
cific type of malicious multi-modal manipulation efforts,
deep fakes [27, 39, 6, 12], has received significant attention
from researchers, who attempt to develop automated meth-
ods for detecting such distortions. Nevertheless, a common
phenomenon in recent years, popularly known as Out-of-
Context images [15, 36], is far more prevalent a means to
spread misinformation. It leverages existing unaltered im-
ages as is, but represents an irrelevant and misleading fact
via newly coupled text.

Unlike deep fakes, generating an out-of-context multi-
modal news content requires very limited technical exper-
tise [23]. In fact, such a manipulation is more difficult to
identify as none of its unimode contents is distorted in itself,
and there are humongous ways of generating such mislead-
ing contents. While the present practices for verification
rely significantly on manual fact-checking efforts, an auto-
mated mean to facilitate the process is a need of the hour.
A set of existing methods [40, 45, 46] attempt to identify
such misinformation by leveraging available evidence like
entities, context, social media responses/reactions to posts,
etc. However, many of these methods restrict their focus
to text-based metadata to validate the claim, whereas vali-
dating the cross-modal correspondences may be critical to
success in detecting such image repurposing events. While
some recent works [41, 3] aim to approximate this multi-
modal relation, many of these rely on the consistency of
non-optimal factual information (e.g. named entities infor-
mation) or external open-domain evidences to support the
fact-checking task. Nonetheless, in reality the availability
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of such auxiliary information may not be a feasible option
for all kinds of news contents due to many reasons including
being cost-prohibitive.

In contrast, we aim to design an explainable classifier
that categorizes multi-modal news content as ‘Falsified’ (if
their unimodal contents are not pairwise consistent among
one other) or ‘Pristine’ (if pairs of unimodal contents are
consistent). Unlike previous work [5], no image in the train-
ing collection is required to have two or more captions to
illustrate an inconsistency. In addition to being explain-
able, which helps the model justify its decision by high-
lighting the query image-regions contributing (or detract-
ing) to its veracity attributes, the proposed Self-Supervised
Distilled Learner (SSDL) adopts a two-phased Self Super-
vised Learning (SSL) strategy. It utilizes a weak guidance
from text-modal input on the accompanying image to build
an initial classifier. This then works as a baseline Student
model for the second phase of learning. To further enhance
the generalization capacity of this initial Student network,
at the second phase, the proposed self-supervised knowl-
edge distillation strategy leverages a Teacher network (sep-
arately pretrained in a SSL setting, but remains frozen dur-
ing the knowledge distillation phase) and the baseline Stu-
dent model is further finetuned to mimic a similar decision
pattern as the Teacher over an identified set of data samples.
In particular, the primary contributions of the work include
the followings:

1. A multi-modal multi-task SSL framework that com-
bines language driven in-content information and self
supervision to evaluate the veracity factor of a given
news content.

2. A process of Knowledge Distillation within a self-
supervised scenario that helps transfer knowledge
from a larger Teacher network to a specialized yet
smaller Student model, for multi-modal misinforma-
tion identification.

3. Evaluation with Explanation Visualization scheme
that enables the model to attribute the decision making
(e.g. image sub-regions or text segments influencing
inconsistency decision).

2. Related Work
A significant number of works have focused on detecting

fakenews and rumor, wherein the objective has primarily
been on evaluating a uni-modal news content[7, 43, 33, 24,
30]. Some recent works have leveraged multi-modal infor-
mation to improve the decision precision[47, 8]. However,
in this work we address the identification of another impor-
tant kind of misinformation, in which none of the unimode
content of a multi-modal news sample is altered, but the al-
teration appears only in its manipulated the image-text cor-

respondence. This is often categorized as a type of Cheap-
fake, which being easy to create, is more prevalent and dam-
aging than Deepfake [29]. In this section, we review of re-
cent literature in this and other relevant topics to highlight
the unique contribution of the proposed SSDL model.

Multi-modal Information Verification: A set of works
[28, 23, 9, 5], closely related to the works on image re-
purposing [21], explore generic semantic correspondence
between the constituent unimode components (i.e. text-
image) of a multi-modal news content to verify its content
veracity. To describe the huge spectrum of data patterns
and the lack of a sufficiently representative data collection,
oftentimes, existing literature [32, 26] use synthetic data
collection, by randomly combining real images with real
captions of other news contents (but not its own) to gener-
ate the out-of-context image samples. It is imperative that
such synthetic data collection may not sufficiently reflect
the challenges of a real-life problem scenario, as the exis-
tence of a weak/no relation between an image and a random
text caption may provide an easy and explicit cue toward
its inconsistencies. In a recent work, Aneja et al. [5] uti-
lize a specially tailored data collection (wherein each news
sample is a real image combined with a pair of captions col-
lected from distinct news resources) and their objective is to
establish if two captions accompanying an image are con-
sistent. While the assumptions on the availability of such
dataset may impact the model’s plausibility in a generic test
setting, its disproportionate reliance on text-mode may also
lead to an increased decision level bias. Furthermore, none
of these methods address the explainability issue, which
may specifically be critical for such socially sensitive use-
case settings.

However, many of these methods were evaluated in sim-
ulated (real captions are replaced by a random caption to
generate a ‘Falsified’ sample) or specially tailored dataset
(each image present in the dataset may be accompanied
by two captions from two different sources), are not re-
ally appropriate to take on the real-world malpractice chal-
lenges. Another category of works introduces multi-modal
fact checking methods, which leverage external knowledge
base for information validation[26, 47]. Sahar et al. [3]
collect evidences for both visual and textual components to
perform the cycle consistency checks. However, relying on
such external information for validity check makes the en-
tire approach very expensive, complex, memory intensive,
and difficult to deploy in a generic test setting. Furthermore,
in this use case setting the primary objective is to early ver-
ify the content of a news item. Therefore, availability of
enough evidences related to this news topic in web may not
be assured in general.

Self-supervised Learning: With the recent advances in
Contrastive learning, Self-supervised learning has emerged
as an effective learning model, which leverages inter-
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Figure 1. Overview of our proposed method

nal structural and appearance consistencies among differ-
ent data regions to drive training of a predictive model
[16, 10, 18, 44, 25]. Different types of contrastive objec-
tives have also been proposed to enhance the discriminabil-
ity of SSL-based feature representation [17, 11]. To max-
imize the learning effect in this limited yet widely varied
data environment, in this work we leverage the strength of
SSL architecture in a semi-supervised multi-task learning
setting with two complementary objectives: task agnostic
(learning without class labels) and task-specific (learning
with class labels).

Knowledge Distillation: To address the challenges of
overfitting in a neural network model, knowledge distilla-
tion [20] attempts to transfer knowledge from a larger net-
work (often referred as Teacher Network) to another smaller
one (often referred as Student Network), without having to
bear the burden of learning from scratch. A set of works
formulates knowledge distillation using different learning
objectives[4, 38, 34] to enhance feature discriminability.
However, most of these methods adopt a supervised learn-
ing scenario, where the Student Network gets a task-specific
transferred knowledge from the Teacher Network, rather
than the task-agnostic knowledge components. The pro-
posed SSDL introduces a multimodal representation learn-
ing in self-supervised manner, in which cross-modal con-
sistency is verified at various levels of details.

3. Proposed Method

3.1. Problem Statement

The overview of the proposed model is shown in Fig-
ure 1. Given a multi-modal news content (v, t) (with its
visual component v and text component t), the objective
of the proposed Self Supervised Distilled Learner (SSDL)
is to estimate its cross-modal consistency status in terms

of a binary class label (‘Pristine’ or ‘Falsified’). To en-
able maximum utilization of the limited size of annotated
data collection, SSDL designs a self-supervised learning
approach, which uses both Task Specific and Task Agnos-
tic constraints by leveraging the multi-modal training col-
lection Dtrain = {ni}|Dtrain|

i=1 to train an initial Student
classifier Sinit. In Dtrain, each multi-modal news sample
ni := (vi, ti, li) represents an instance of the category li
(which can be ’Pristine’ or ’Falsified’) using a visual com-
ponent vi and text component ti. The baseline Sinit is
then finetuned following a knowledge distillation process
for transferring the domain-specific multi-modal knowledge
to further enhance the overall learner capacity.

3.2. Multi-modal Multi-task Self-Supervised
Learning

Given a pre-trained vision-language model (e.g., CLIP
[31]), we represent its encoder function as f(.|θc). Un-
less specified otherwise, for notation simplicity, we will
omit θc and denote the function as f() instead. In fact,
the encoder f() combines knowledge of English-language
concepts (represented using the text component t) with se-
mantic knowledge (represented using the image compo-
nent v) from a raw multimodal input (v, t) to the fixed-
dimensional multi-mode descriptor (f(v), f(t)).While the
model is generic and does not rely on the specific choice
of the pretrained vision-language models, we have chosen
CLIP encoder due to their improved performance compared
to the other non-contrastive options [35, 13]. These descrip-
tors are then used to learn Sinit by means of a non-linear
function g(·) (e.g. deep projection head). For each sample
ni ∈ Dtrain, during this first learning phase, several views
of its visual component vi are created to be validated for
consistency with ti and their mutual self-consistencies via
two types of loss components: Task Agnostic and Task Spe-
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cific.
Given an image vi each of its augmented (we have used

random crop, color distortion, and Gaussian blur for aug-
mentation) pairs xji and xki are encoded via CLIP to obtain
their derived representations cji and cki , which we represent
with cli = f(xli) for l = 1, 2. These descriptors are then
used as input to g() to generate the resulting contrast en-
hanced descriptors zji and zki .

3.2.1 Task Agnostic Self-Supervised learning Objec-
tive

To learn a semantically relevant multi-modal representa-
tion with a training collection {(vi, ti)}i, we adopt self-
supervised learning approach SimCLRV2 [11] to con-
trastively learn a multimodal descriptor by maximizing two
components: the intra-mode consistency between two dif-
ferent augmented visual components of the same image; the
inter-mode consistency using the ratio of the pairwise con-
sistency of each augmented visual component with the ac-
companying text component compared to the overall image-
text cross-modal consistency. Following a mini-batch learn-
ing framework, the contrastive loss between zji and zki is
defined as follows:

Lselfvis (zji , z
k
i ) = −log

(
esim(zj

i ,z
k
i )/τ∑B+1

p=1 I(p 6= j)(esim(zj
i ,z

p
i )/τ )

)
(1)

where I is the indicator function, τ is a temperature parame-
ter, sim() is the similarity function (e.g. scaled cosine sim-
ilarity), and p iterates through B + 1 batch size. The rela-
tive consistency between xji and its accompany text compo-
nent ti compared to the cross-modal consistency between
the whole image vi and ti is defined as follows:

Lselftext(z
j
i , ti) = −log

(
esim(zj

i ,h(ti))/τ∑B+1
p=1 I(p 6= j)esim(zp

i ,h(ti))/τ + si

)
(2)

where h = g ◦ f and si = exp(sim(h(vi), h(ti))/τ) is the
overall image-text cross-modal consistency.

3.2.2 Task Specific Consistency Learning Objective

To evaluate the model’s task specific understanding and
its cross-modal correspondence at the fine-grained details,
we compare the consistencies between the category-specific
predictive distributions of the augmented samples generated
from the same dataset instance. In particular, as the multi-
modal samples, both (cji , f(ti)) and (f(vi), f(ti)) should
report similar category-specific prediction distributions. To-
ward this, we utilize cross-entropy based CLIP-like multi-

modal losses [31], defined as:

Llcls(z
j
i , h(ti), li) = −lilog(m

l,j
i )− (1− li)log(1−ml,j

i )
(3)

for l = 1, 2 and m1,j
i = sim(zji , h(ti)

T ), m2,j
i =

sim(h(ti), (z
j
i )
T ), and li is the label. As mentioned be-

fore, sim(, ) is the scaled cosine similarity between its two
argument vectors. Intuitively, we expect the function g() to
demonstrate higher discriminability via its learned unimode
descriptors zji and h(ti), so thatml,j

i is higher when the cor-
responding augmented sample (cji , f(ti)) is generated from
a training sample (vi, ti) representing the category ‘Pris-
tine’. Then the comprehensive task-specific consistency

loss component is computed as Lclscomp = 1−min(a
j
i

ai
, ai
aji
),

where aji = L1
cls(z

j
i , h(ti), li)+L2

cls(z
j
i , h(ti), li) and ai =

L1
cls(h(vi), h(ti), li) + L2

cls(h(vi), h(ti), li). While the
term ai quantifies the cross-modal category-specific simi-
larity observed in the unimode components for (vi, ti), we
assume that aji (which quantifies the cross-modal similar-
ity of the unimode components for the augmented sample
(xji , ti)) and ai would typically demonstrate nearly iden-
tical cross-modal similarity patterns. Therefore, minimiz-
ingLclscomp is equivalent to maximizing the category-specific
cross-modal consistency in the learned descriptor via g().

Finally, the total loss function deployed for learning
Sinit is computed as: Ltotinit = Lselfvis + Lselftext + Lclscomp.
While several scaling configurations can be employed to
weigh each of these components, we have not used any scal-
ing in our experiments.

3.3. Self-supervised Knowledge Distillation

To further improve the generalization ability of this base-
line Student classifier Sinit, we introduce a self-supervised
knowledge distillation that may, leveraging the limited-
sized data collection in Dtrain, transfer knowledge from
a finetuned larger Teacher network to enhance discrim-
inability of Sinit. The pretrained vision-language encoder
f() (which we have designed using CLIP network) is fine-
tuned by the annotated data collection Dtrain to define the
Teacher network, fte(.|θte).

Given the sample ni := (vi, ti, li) from Dtrain, its vi-
sual component vi is used to generate a batch of its aug-
mented versions {xji}Bj=1. Then we expect the distribu-
tion of similarity scores between ti and the elements of
batch {xji}j , obtained from the Teacher network and that
computed by the Student network represented by fst(.|θst)
(which was initialized by Sinit), should be similar. For
notation simplicity, again we will omit the correspond-
ing learnable parameters of Teacher (and Student) net-
work and represent it as fte() (and fst). In particu-
lar, this intuitive understanding is formulated by mini-
mizing the Kullback-Leibler(KL) divergence between the
Student and the Teacher’s similarity score distributions.
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Figure 2. Some example results from the NewsClipping
Dataset[23]

For the batch {xji}Bj=1, we define their pairwise similar-
ity distribution with ti, as obtained by the Teacher net-
work as ptei = [pte,1i , ..., pte,ji , ...., pte,Bi ], where pte,ji =

sim(fte(x
j
i ), fte(ti)). Similarly, the pairwise similar-

ity distribution of the batch of augmented visual compo-
nents with ti, as obtained by the Student network, is de-
fined as psti = [pst,1i , ....., pst,ji , ...., pst,Bi ], where pst,ji =

sim(fst(x
j
i ), fst(ti)).

Then the proposed knowledge distillation loss in a self-
supervised learning scenario is formulated by optimizing
the Kullback-Leibler (KL) Divergence[22] between ptei and
psti , as:

Lselfdis (vi, ti) = psti · log
(
psti
ptei

)
(4)

Nevertheless, to leverage the available label information
from Dtrain, we also combine the distillation loss with the
ground-truth labels of ni ∈ Dtrain and define the total dis-
tillation loss (Ltotdis) is as the combination of the visual-text
class inconsistency (Llcls) and the knowledge distillation
loss (Lselfdis ) and computed as follows:

Ltotdis(ni) =
∑

l∈{1,2}

B∑
j=1

Llcls(fst(x
j
i ), fst(ti)), li)+L

self
dis (vi, ti)

(5)

4. Experiments
In this section, we will discuss the experimental details

and the performance of the proposed method using large-
scale public dataset.

Dataset: The proposed SSDL is evaluated using the re-
cent, large-scale NewsCLIPpings Dataset[23], which con-
tains multimodal (i.e. each sample has a text caption accom-
panied by an image component) news samples from two

categories: ’Pristine’ and ‘Falsified’. A sample represent-
ing ‘Falsified’ category is comprised of an image, which
does not align with its text caption component. It lever-
ages the recently introduced VisualNews corpus that con-
tains news from four different sources: BBC, The Guardian;
The Washington Post; USA Today. Based on the details
of how these samples were generated, the entire collection
is considered as four mutually disjoint subsets: Split 1 (or
Semantics / CLIP Text-Image subset) was created by us-
ing CLIP embeddings to find the highest similarity between
nonmatching text-image pairs to create a falsified pairing;
Split 2 (or Semantics/CLIP Text-Text subset) was created by
using CLIP embeddings to find samples with similar tex-
tual embeddings to create out-of-context pairings; Split 3
(or Person / SBERT-WK Text-Text subset) was created by ac-
quiring person entities, then matching an out-of-context im-
age by finding the most semantically different, correspond-
ing caption as determined by SBERT-WK score; Split 4:
(or Scene / ResNet Place subset) was created by matching
scenes with high Places365 image similarity as determined
by the dot product of ResNet embeddings. Finally, the Bal-
anced split mixes equal number of samples from all subsets
to develop a more realistic sample collection and consists of
71, 072 train, 7, 024 validation, and 7, 264 test examples.

Experimental Settings: The proposed method relies on
CLIP [31] to build the baseline for the study. The classifi-
cation performances over the comprehensive Balanced split
as well as all the other individual splits are reported using
the Accuracy metric. To compare the performance of SSDL
against the existing baselines, we report the Accuracy scores
for the entire test collection. We also separately report the
‘Falsified’ category to specifically evaluate the system abil-
ity to identify misinformation.

Initial pretrained models are obtained from OpenAI and
Facebook [25],[31]. The OpenAI implementation is pre-
trained on a dataset of 400 million image-text pairs. The
Facebook model is pretrained on a filtered YFCC100M
dataset [37], [31], which is dubbed YFCC15M [25] and
consisted of 15 million image-text pairs. The learning us-
ing Adam optimization technique is based on the learning
rate in the range [10−6, 10−5]. The batch-size is used as 16.
For the finetuning process, the pretrained descriptor is fed
into a 2-layer multi-layer perceptron (MLP) classifier. The
learning process uses Cross-entropy loss, repeated for 90
epochs with an option for early stopping, and the learning
rate is initiated to 5 × e−5 with AdamW optimization. For
the entire set of experiments, we have used τ = 30.

Results: Figure 2 shows some qualitative results. As
we observe, there is a clear correlation between the enti-
ties mentioned in the text and the objects present in their
respective visual components. The top two examples repre-
sent the system predictions using two test queries from the
‘Falsified’ category. While the text components appear to
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Figure 3. Comparative performance of the proposed SSDL against
CLIP [23] in the combined test set shown using Accuracy metric,
when a single model (using ViT-B/16 as the backbone) was learned
using all the available training samples, available from all the splits
in the dataset. The left plot shows the performance of SSDL in the
‘Falsified’ category and the right plot shows the performance of
SSDL in the entire test collection.

have evidences of veracity, due to lack of correspondences
between its two mode-specific representations, the system
is able to correctly identify the multimodal queries as ‘Fal-
sified’, a system characteristic that is aligned to the goal of
this project, which is to combine truths and falsehoods to
create a more convincing message. For the third and fourth
queries, there are no serious mismatches between textual
and visual information. The resulting “Pristine” classifica-
tions are therefore unsurprising. The Fifth and Sixth exam-
ples represent two misclassifications. For example, in the
Fifth case, where the text component is “Rahaf Hasan ...
holds a drawing”, the cues related to the drawing being held
up, contributes to a ‘Pristine’ classification. Meanwhile the
buildings and people in the background contribute to a ‘Fal-
sified’ classification decision. A clear connection can be
drawn between the word “drawing” and the highlighted re-
gion that covers drawing, contributes as detractions. How-
ever, the contributions towards ‘Falsified’ is less clear. One
possible reason is the lack of a clear corresponding entity
in the text, leading to an inconsistency. In the Sixth ex-
ample, the model finds several consistencies between text
and image: candles, tributes, monument, and a little bit of
Parisians. Although, this sample was actually ‘Falsified,’
there are very few indicators that the text and image are in-
consistent. As humans, we can notice that a few people in
the audience are smiling and region does not seem like the
Place de la Republique. Nevertheless we can’t be sure with
so few scenic indicators. Since such facial expression anal-
ysis or external information on the entities were not taken
into consideration by the proposed SSDL, with such small
indicators, the system was unable to discern the true label.

The performance of the proposed SSDL, is compared
against the recent CLIP [31] model with different back-
bones ViT-B/16 [14] and RN50 [19]. Figure 3 compares the
general performance of the proposed multimodal misinfor-
mation identification method using ViT-B/16 as the back-
bone, which learns an initial Student classifier and later im-
proves it via proposed self-supervised knowledge distilla-
tion module to build the full SSDL model.

Figure 4. Comparative performance of the proposed SSDL in the
combined test set shown using Accuracy metric, when a single
model (using ResNet50 as the backbone) was learned using all
the available training samples, available from all the splits in the
dataset. The left plot shows the performance of SSDL in the ‘Fal-
sified’ category and the right plot shows the performance of SSDL
in the entire test collection.

Unified Model Performance: Following the experimen-
tal protocol by Radford et al. [31], we evaluate a single
model trained on all the combined training set from all the
splits, so that it is balanced with respect to both the cat-
egories. Based on the results reported in the left plot of
the figure, SSDL shows a remarkable performance gain
(around 7% improvement over all the four splits and
10% improvement in the Balanced split) in the ‘Falsi-
fied’ category. The right plot of the figure, which shows
the comparative performance of SSDL in the entire test
collection, reports around 2 − 4% improved accuracy
score in 3 out of 4 splits. We also note that in the Bal-
anced split (which by its very structural definition, may
be regarded as an aggregated snapshot of all types of mis-
information samples available in the dataset), SSDL re-
ports around 3% improvement compared to CLIP in
the experiments conducted using the entire test collec-
tion. A similar performance is also observed in Figure 4,
wherein the model is built using Resnet50 as its backbone
and the performance of SSDL is compared against the base-
line CLIP model. As observed in the right plot of the Figure
4, SSDL shows around 1.2% average performance gain
across all four splits and also reports around 1.5% im-
provement in the Balanced split. In fact, per the statistics
in the left plot of Figure 4, while CLIP shows a deterio-
rated performance trend in the ‘Falsified’ category of vari-
ous dataset splits (e.g. CLIP reported average Accuracy
of around 70.1% Vs. SSDL reported average Accuracy
of 72.7% using Resnet50 backbone), SSDL demonstrates
uniformly superior performances across all splits. Finally,
we see a boost of 3% in the performance of SSDL for
the Balanced split. In both figures 3 and 4, the initial Stu-
dent classifier, learned in a multi-task self-supervised, semi-
supervised scenario, exhibits consistently improved perfor-
mances over CLIP. Then the consequential self-supervised
knowledge distillation module, which specifically enables
the model amplify its discriminability capacity in the chal-
lenging ‘Falsified’ category, helps SSDL enhance ts gener-
alization capacity further.
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Figure 5. Comparative performance of the proposed SSDL in the
split-specific test sets against the baseline [23] shown using Ac-
curacy metric. We train a distinct classifier (using ViT-B/16 as
the backbone) for each split. The left plot shows the performance
of SSDL in the ‘Falsified’ category and the right plot shows the
performance of SSDL in each split specific test collection.

Split Specific Model Performances: We report the per-
formance of the multimodal SSDL classifier in Figure 5, in
which we train distinct classifiers for each split individu-
ally. There is a noticeable tendency by CLIP to over-predict
Pristine labels, which was also discussed by Luo et al. [23].
This indicates the model’s confusion in correctly classify-
ing many falsified samples as real, with Split 3 often being
the most difficult. We note that this split models a threat
scenario that queries for a specific person, with the intent to
portray them in a false context. As observed in the left plot
of the figure, the proposed SSDL (using ViT-B/16 as back-
bone) exhibits considerably improved performance (2−6%
across all splits) in identifying ’Falsified’ samples, com-
pared to CLIP in all splits. Specifically in split 3, SSDL
reports 5% improvement gain compared to its baseline.
While several existing methods leverage external informa-
tion on named entities to recognize the validity of the news
relating to them, SSDL leverages the cross-view contexts at
the regional level for validation. As we find from the right
plot of the figure, SSDL dominates over CLIP in 3 (split 3,
split 4, and Balanced split) out of all 5 test splits. Finally,
SSDL reports an average of 2% improved accuracy score
compared to CLIP (65.1% Vs 67.1%) in all 5 test split
collections. While external information as an extra infor-
mation source could definitely be useful to further enhance
the performance, our objective in conducting these experi-
ments was to evaluate the effectiveness of the SSDL without
assuming an access to any auxiliary information sources.

Stability Analysis in Limited Data Environment As
shown in the Figure 6, in a self-supervised semi-supervised
learning scenario, the proposed SSDL attains a comparable
performance with the baseline, by using only a smaller sub-
set of whole training collection. More specifically, SSDL
achieves an average of 65.1% (and 68.2%) test Accuracy
highlighted in red (and in green) in the split-specific col-
lections using ViT-B16 (and Resnet50) as the backbone,
whereas SSDL requires only 50% (and 75%) of the whole
training collection to cross these benchmarks.

Encoder Finetuning: In a set of experiments, we ex-
plore the performance improvement due to the finetuning

Figure 6. Performance Improvement of the proposed SSDL over
increased sized training collection. Important to note that the
CLIP-based baseline model used 100% of the training collection
to attain an average of 65.1% (and 68.2%) test Accuracy high-
lighted in red (and in green) in the split-specific collections using
ViT-B16 (and Resnet50) as the backbone, whereas SSDL requires
only 50% (and 75%) of the whole training collection to cross these
benchmarks.

Figure 7. Comparing different finetuning strategies for SSDL
classification performance (test set), where AF:=All frozen,
LF:=Lower frozen, and NF - None frozen

of the pre-trained vision-language model. CLIP as our pre-
trained encoder, we analyze the results by finetuning a vary-
ing number of CLIP layers. In the Figure 7, we use three
fine-tuned models to report the results: RN50-all-frozen
(AF, no CLIP layers fine-tuned); RN50-lower-frozen (LF,
final few layers fine-tuned) 10, and RN50 (all layers fine-
tuned). From both the plots in the figure, we note that fine-
tuning all layers (RN50) does positively influence the per-
formance in general, except for the Split 3, in which the
performance slightly deteriorates. This may be due to the
fact that the other training splits are comparably larger and
therefore we can meaningfully finetune all layers whereas
in the split 3, we do not have enough contextual evidences
to do so. Nevertheless, the partial freezing does not appear
to impact the overall performance of SSDL much.

Explainability Analysis The proposed explanation visu-
alization module uses Local Interpretable Model-Agnostic
Explanations (LIME)1 to explain the decision made by the
proposed SSDL. Using Lime, we found the words and vi-
sual features that contributed most to the final decision pro-
cess. Figure 8 shows two example explanation segmenta-

1https://github.com/marcotcr/lime
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Figure 8. Examples of Explanation Visualization that highlights
the words to explain the decision made by the proposed model in a
multimodal environment. Each row in the column (a) represents an
original query and each row in the column (b) represents the query
specific explanation segmentation. The example in the top row
is correctly classified by the system as ‘Pristine‘ with probability
0.9, while the example in the bottom row is correctly classified as
‘Falsified‘ with probability 0.54. The regions contributing to the
model decision is highlighted in Green. The detracting regions are
highlighted in Red.

tion results used to interpret the classification decision of
the system. The contributing Green regions tend to focus
on objects and subjects that act as evidence for the cap-
tions. The detracting regions are highlighted in Red. As
observed, the example of the first row represents a correct
classification of ‘Pristine’ with a strong likelihood of 90%,
with the weight distribution to the caption words is nearly
uniform. The row in the bottom of the figure shows an ex-
ample, which was classified as ‘Falsified’ with a likelihood
of 54%. The word “refugee” has received a weight of 24%
followed by the word “border” receiving a weight of 15%.

Intuitively in the first example (top row of Figure 8), the
captions mention both “President Obama” and “President
George W Bush.” Both of these individuals are commonly
found in the news and the NewsCLIPpings dataset, so the
model has been trained to recognize their features. This is
further exemplified by the fact that the model focuses heav-
ily on the defining features of each individuals, namely their
face and parts of their outfits, which were identified by the
system as the contributing Green. The detracting Red re-
gions, show regions that seem inconsistent with the cap-
tions. Notably, there is a Red region encompassing George
Bush’s hand near a man’s face in the background, and the
other Red regions encompass a plain background. While

SSDL appears confident in its prediction for the example
as ‘Pristine’, the small Red regions in its image component
are detracting, possibly because they lack an audience or vi-
brant background, which are typical in presidential photos,
and there is also the lack of a gesticulating hand that most
prominent speakers possess.

For the second example (bottom row of Figure 8), the
caption mentions refugees traveling towards the Turkish
border. The image-caption pair was correctly identified as
“Falsified”, but it was a much more difficult decision. In this
case, the contributing regions focuses on cars in the back-
ground. Intuitively, a news visual rarely depicts cars when
reporting on refugees, so the proposed SSDL has found the
presence of cars in the image component to be inconsistent
with the presence of the word “refugees” in its accompany-
ing text component. The detracting red regions, on the other
hand, tend to focus more on the individuals and the road it-
self. The presence of these human subjects are consistent
with how the term “refugee” is represented in visual compo-
nent, so the region encompassing the refugees are identified
as detracting factors to the predicted category “Falsified”.

5. Conclusion

In this paper, we propose a two-phased multi-
modal multi-task self-supervised semi-supervised learn-
ing strategy that evaluates both intra-and inter-mode self-
consistencies, in conjunction with a category-specific su-
pervised objective to build an initial Student classifier. This
is later finetuned by leveraging a distilled guidance from
a larger Teacher network in a self-supervised manner and
thereby enhancing the model’s generalized fact-checking
capacity in a limited yet widely varied training data envi-
ronment. Our work outperforms the baselines and offers an
innovative benchmark of multi-modal fact-checking, which
is not just more accurate, but also better explainable. In fu-
ture we would like to extend our methods to evaluate infor-
mation veracity in video-text multimedia content. To attain
this, we intend to utilize the explanation feedback (more
specifically cross-modal consistency between the caption
and the contributing as well as detracting regions sepa-
rately) further to improve the classification capacity of the
Student classifier in an iterative manner.
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