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Abstract

For aiming at a more accurate appearance-based gaze
estimation, a series of recent works propose to use trans-
formers or high-resolution networks in several ways which
achieve state-of-the-art, but such works lack efficiency for
real-time applications on edge computing devices. In this
paper, we propose a compact model to precisely and ef-
ficiently solve gaze estimation. The proposed model in-
cludes 1) a Neural Architecture Search(NAS)-based multi-
resolution feature extractor for extracting feature maps with
global and local information which are essential for this
task and 2) a novel multi-resolution fusion transformer as
the gaze estimation head for efficiently estimating gaze val-
ues by fusing the extracted feature maps. We search our
proposed model, called GazeNAS-ETH, on the ETH-XGaze
dataset. We confirmed through experiments that GazeNAS-
ETH achieved state-of-the-art on Gaze360, MPIIFaceGaze,
RTGENE, and EYEDIAP datasets, while having only about
1M parameters and using only 0.28 GFLOPs, which is sig-
nificantly less compared to previous state-of-the-art models,
making it easier to deploy for real-time applications.

1. Introduction

Human gaze is an important indicator of human atten-
tion. A wide range of applications use eye-gaze estimation
from monocular images, which attracts a significant inter-
est in computer vision for understanding human cognition
[33] and human behavior [15]. It is also commonly used in
driver fatigue estimation [42, 21], human-computer interac-
tions [46, 32], and virtual reality [31, 40]. The conventional
model-based methods estimate the human gaze by building
a geometric eye model [19].

In recent years, appearance-based gaze estimation meth-
ods, that directly learn a mapping function from human
face expressions to the human gaze, have made significant
progress. Since the face appearances vary a lot due to per-
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Figure 1. Comparisons of angular error and FLOPs of state-of-the-
art methods on different gaze estimation datasets. Here blue is for
MPIIFazeGaze, red is for EYEDIAP, violet is for RTGENE, green
is for Gaze360, ◦ is for Our GazeNAS, □ is for GazeTR, △ is
for Gaze360, ⋄ is for CADSE and ⋆ is for RTGENE. The optimal
model should be near origin having both a low error and a small
number of FLOPs

sonal or environmental factors such as head poses and il-
luminations, the problem of an appearance-based gaze es-
timation has inevitable complications [7]. Thus, learned
mapping functions should be highly non-linear to attend
the whole appearance and catpure appearance-based com-
plications. The recent development of convolutional neu-
ral network (CNN) based methods show convincing results
[49, 8]. Meanwhile, several large scale datasets are prepared
and made publicly available to facilitate the gaze estimation
research [45, 48, 23, 18, 27].

Recently, transformers, originally proposed by [37] for
the natural language processing tasks, are used for the gaze
estimation task. As transformers are capable of captur-
ing the global context, their applications in computer vi-
sion tasks demonstrate an excellent performance. GazeTR
[9] uses a hybrid ViT [17] for appearance-based gaze esti-
mation tasks and achieves state-of-the-art results in several
datasets. In [3], authors show the effectiveness of several
HR-Net [38] based methods for the gaze estimation task.
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The HR-Net and transformers based works are compu-
tationally expensive and hence are not feasible for the real
time applications in practice. On the other hand, NAS based
methods are quite popular due to their efficiency in other
tasks such as object detection [1], segmentation [5] and hu-
man pose estimation [12]. Recently, in HR-NAS [16], they
use HR-Net[38] based search space with light-weight trans-
formers and achieve state-of-the-art results in several tasks
with a reasonable computational cost.

For the real time applications of gaze estimation, we
need a efficient and accurate neural architecture. With a re-
cent development of NAS in other major tasks, extending its
applicability to the problem of gaze estimation is the main
topic of our work. In this paper, we propose to solve this
problem by using a NAS based efficient feature extractor
with powerful gaze estimation head. The proposed model
includes 1) a NAS-based multi-resolution feature extractor
for extracting feature maps with global and local informa-
tion which are essential for this task and 2) a novel multi-
resolution fusion transformer as the gaze estimation head
for efficiently estimating gaze values by fusing the extracted
feature maps.

Instead of searching models on every dataset of gaze es-
timation task, we propose to search a model on only one
dataset then validate it on other datasets. This significantly
reduces the training time. Our searched neural architecture,
called GazeNAS-ETH, is searched on ETH-XGaze [45]
which has a wide range of gaze values and head poses and a
large size of dataset. Experiments show that the GazeNAS-
ETH outperforms state-of-the-art methods on several gaze
estimation benchmarks with the least computational budget.
In fact, our GazeNAS-ETH requires only 1.027M parame-
ters and 0.28GFLOPs enabling it to be used for real time
applications.

Our main contributions are: (1) We are the first to em-
ploy and analyse NAS for the gaze estimation task. (2) We
propose a novel multi-resolution fusion transformer based
gaze regression head which is efficient as well as accurate to
predict gaze values from multi-resolution features. (3) We
propose to use ETH-XGaze [45] as the dataset for searching
neural architectures for the gaze estimation tasks. (4) Ex-
tensive experiments show that our GazeNAS-ETH achieves
state-of-the-art results while having a computationally effi-
cient architecture for real time applications.

2. Related Work

2.1. Gaze Estimation

Recently, several CNN-based approaches are proposed
with a significant performance improvement [47]. In [10]
the authors explore the asymmetry between two eyes and
propose asymmetric regression on a four-stream CNN to es-
timate gaze from eye images. The work in [29] proposes to

Figure 2. The proposed method called GazeNAS. We extract
multi-resolution features from face image using multi-resolution
feature extractor searched through NAS. These multi-resolution
features are then fused to estimate gaze value using our multi-
resolution fusion transformer.

estimate gaze from the pictorial representation of eye im-
ages. A dilated convolutional network to capture subtle
changes in eye images is proposed in [6]. In [39], a CNN-
based approach is used to align the feature extracted with
adversarial learning and also incorporate bayesian inference
for improving prediction accuracy.

A coarse-to-fine network to integrate face and eye im-
ages is proposed in [8], where a basic gaze is estimated from
face images and refined with eye images. A recent use of
HR-Net [38] achieves a competitive accuracy in [3]. Re-
cently [28] introduced self-attention with convolution and
de-convolution to solve low generalization problem of gaze
estimation. However, all of these methods are not efficient
enough for real time applications. Therefore, more efficient
gaze estimation models are still required for the real time
applications.

2.2. Transformers

Transformer is originally introduced by [37] for natural
language processing (NLP) tasks. The transformer architec-
ture contains only self-attention layers, layer normalization
and multi-layer perceptron layers. Compared with recurrent
networks, the self-attention layers have global computations
and perfect memory to make transformers more suitable for
long sequence tasks. The transformer-based methods are
the current state-of-the-art methods for NLP tasks [14].

Transformers are recently quite popular in computer vi-
sion tasks as well. Recent works integrate CNNs with trans-
formers to achieve a better performance in object detection
and instance segmentation tasks [4] [11] [50]. The Vision
Transformer (ViT) is proposed by [17], where they divide
an image into non-overlapping patches and apply a conven-
tional transformer architecture into these patches for image
classification.

For the gaze estimation task, transformers are applied in
GazeTR [9], where they apply ViT on the feature maps from
a CNN and achieve state-of-the-art results effectively in var-
ious gaze estimation benchmarks.
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Figure 3. Architecture of search block containing a lightweight
transformer path denoted by dark gray region, a MixConv path
with 3× 3, 5× 5 and 7× 7 kernels denoted by light grey region,
and a residual connection

2.3. Neural Architecture Search for efficient models

For efficient neural architecture search, early approaches
mainly used reinforcement learning [51] and evolution al-
gorithms [34, 25]. Usually, these methods are computation-
ally expensive. To improve the efficiency of the search pro-
cess, differentiable search methods were proposed by works
such as Darts [24, 22, 41] and ProxylessNAS [2]. Here, they
formulate the search space as a super-graph where the adop-
tion of an operator depends on the probability represented
by a continuous importance weight, allowing to use gradi-
ent descent for an efficient search of the architecture. Due
to the multi-scale feature modeling capability of mixed con-
volution [36, 26], it is also adopted in NAS search spaces.
Recently, model expansion based methods are proposed
to expand the search space from operators to other hyper-
parameters such as input resolutions, channel numbers, and
layer numbers [1, 43]. In order to search for efficient mod-
els, the existing methods usually borrow efficient operators
from manually designed networks, such as depth-wise con-
volution and Inverted Residual Block[35]. Recently, HR-
NAS [16] incorporated transformer into the search space to
have more powerful operators and achieve state-of-the-art
performance in various tasks.

3. Methodology

In order to solve gaze estimation both precisely and effi-
ciently, we propose to use a NAS based efficient feature ex-
tractor with powerful gaze estimation head as shown in Fig.
2. Inspired by successful applications of high-resolution
network[38] in [3] for gaze estimation, our feature extractor

is a modified version of HR-NAS[16]. To efficiently predict
gaze values from multi-resolution feature maps, we propose
a multi-resolution fusion transformer architecture as the
gaze estimation head. In this section, firstly, we briefly de-
scribe the NAS-based feature extractor. We then introduce
our multi-resolution fusion transformer which acts as the
regression head. Finally, we summarize the entire pipeline
along with the resource-aware search strategy.

3.1. NAS based feature extractor

In this section we briefly describe our NAS based feature
extractor. We modify and adapt the feature extractor pro-
posed in HR-NAS[16] for the gaze estimation task. Here we
describe the search block and super-net architecture used in
NAS.

3.1.1 Search block

As shown in Fig. 3, the search block contains three
paths: a MixConv[36], a residual path, and a light-weight
transformer[16] for extracting more global context. The
number of convolution channels in the MixConv and the
number of tokens in the lightweight transformer are search-
able parameters.

For simplicity here we define a search block with 3× 3,
5×5, 7×7 kernels. In the rest of this paper, we call a chan-
nel of the depthwise convolutions or a token in lightweight
transformers a search unit. Let the input of search block be
of c feature channels. A Squeeze-and-Excitation (SE)[20]
block is applied to input to enhance its feature representa-
tion. In the MixConv path, the input channels are expanded
by a point-wise 1 × 1 convolution to (r3 + r5 + r7)c di-
mension, where ri is the expansion ratio for i × i convolu-
tion. The output is split accordingly, which are then fed into
depth-wise convolutions with kernel sizes 3×3, 5×5, 7×7
respectively. Then the outputs from all the convolutions are
concatenated, which is followed by another 1 × 1 convolu-
tion layer to reduce the channels to desired output channels
c′.

In the lightweight transformer path, a Projector, which
is used to reduce the computational cost, is applied on in-
put features by projecting input features of size c × h × w
to a reduced size of n × s × s. Here, n denotes the num-
ber of queries and s × s is the reduced spatial size. Now,
the transformer is applied over the projected input. Then
an inverse Projector is applied on the output of transformer
to inversely project it to desired output size. More impor-
tantly, there is a residual connection in the search block to
handle the case when all search units of a search block be-
come zero during the search. The residual connection has a
point-wise 1×1 convolution to get desired output size. The
outputs from the MixConv path and lightweight transformer
are added along with residual connection to get the output
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Figure 4. Architecture of our Multi-resolution Fusion Transformer.
Here, MHSA is the Multi-head Self Attention layer, FFN is Feed
Forward Network, GAP is Global Average Pooling layer, and MLP
is Multi-layer Perceptron

of the search block.
Inspired by MixConv[36], where the authors use a differ-

ent set of kernels at different stage of the network. Similarly
we also adapt our search block by having different combi-
nations of kernels at different stages of the network. We
detail these modifications in 3.4.

3.1.2 Super-Net Architecture

Inspired by [3, 38, 16], we design a multi-branch search
space that contains both multi-scale features and global
contexts while maintaining high-resolution representations
throughout the network.

The super-net architecture is shown in Fig. 5. The net-
work consists of two modules: the parallel module and the
fusion module. Both of the two modules are constructed
with our search block. The parallel module obtains larger
receptive fields and multi-scale features by stacking search
blocks in each branch. A fusion module is used after a
parallel module to exchange information across multiple
branches. An extra lower-resolution branch is also gen-
erated from the previously lowest resolution branch. For
each output branch, all its neighboring input branches are
fused by using the search block to unify their feature maps.
For example, a 1/8 output branch integrates information of
1/4, 1/8, and 1/16 input branches.

As shown in Fig. 5, after two convolutions which de-
crease the feature resolution to 1/4 of the input image size,
we start with this high-resolution branch and gradually
add high-to-low resolution branches through fusion mod-
ules, and connect the multi-resolution branches in parallel
through parallel modules. Finally, we reduce the channel

dimension of multi-branch features by applying a point-
wise 1×1 convolution layer to decrease computation of the
estimation head and then connect the output to our multi-
resolution fusion transformer.

3.2. Multi-resolution fusion transformer

After obtaining the multi-branch features, an intuitive so-
lution is to resize and aggregate features and connect it to
transformer encoder directly. The transformer architecture
utilizes its self-attention mechanism to capture the correla-
tions across patches.

Although the transformer encoders can inherently model
the multi-resolution features jointly to some extent with a
simple concatenation, the strong correlations between dif-
ferent resolution features are not fully exploited by the
vanilla transformer since features are concatenated together.
To address this we introduce our multi-resolution fusion
transformer, referred as MRFT.

The proposed MRFT structure is shown in Fig.4. For
3 branches in the network, MRFT has Xi as inputs, where
i ∈ [1, 3]. Here Xi ∈ Rhi×wi×ci , where (hi, wi) is the
resolution of the ith input feature map and ci is the num-
ber of channels. As in ViT[17], we reshape every input
feature map Xi into a sequence of flattened 2D patches
xi ∈ Rni×(pi

2·ci), where (pi, pi) is the resolution of each
feature patch, and ni = hiwi/pi

2 is the resulting number of
patches, which also serves as the effective input sequence
length for the transformer encoder.

Each sequence of flattened 2D patches is mapped to three
matrices: feature query matrix qi, key matrix ki and value
matrix vi by linear transformations. The transformer query
matrices are defined as:

Q1 = T1(q2++ q3), Q2 = T2(q1++ q3), Q3 = T3(q1++ q2)

where ++ is the channel wise concatenation operation and
Ti is the transformation function to transform input to same
size as ki. By doing this, the high resolution features
are empowered by the other low resolution features mostly
comprising of local features. On the other hand, the low res-
olution features are provided with global information from
other high resolution features.

The outputs Xout
i are represented as follows:

x′
i = LN(MHSA(Qi, ki, vi) + xi)

Xout
i = LN(FFN(x′

i) + x′
i)

(1)

where MHSA(.) represents the Multi Head Self Atten-
tion block, FFN(.) denotes the Feed Forward Network,
LN(.) is the layer normalization operator. Here we apply
only one-layer of Transformer encoder to have less compu-
tation cost. The final gaze values are predicted by applying
global average pooling (GAP) layer and MLP layer on out-
puts Xout

i . The main difference between our MRFT and
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Figure 5. Architecture of our Super-Net. Here ConvBNReLU is a 3 × 3 convolution with Batch-Normalization and ReLU activation.
Different search blocks are used in the parallel module. We show Search block architecture in Fig. 3 and MRFT in Fig. 4

ViT[17] lies in the usage of GAP layer rather than an extra
learnable classification token and better fusion strategy than
simple concatenation.

3.3. Baseline

To analyze NAS methods for gaze estimation tasks,
we propose two baseline models having diffrenet number
of branches in the super-net architecture. As our single-
branch baseline model we use feature extractor from Atom-
NAS with a vanilla transformer encoder as estimation head.
As our multi-branch baseline architecture we use an HR-
NAS[16] feature extractor coupled with a vanilla trans-
former encoder[17] as estimation head. The vanilla trans-
former is inspired from the GazeTR[9] work. The multi-
resolution features from HR-NAS are resized and concate-
nated before connecting to the vanilla transformer.

3.4. GazeNAS

First, we describe our GazeNAS and its difference with
HR-NAS. Then, we briefly describe the search strategy.
Finally, we describe the loss functions used to search the
model.

As shown in 5, our GazeNAS has a 3 branch struc-
ture, since we have not observed significant performance
gains from using a 4 branch structure like HR-NAS[16]. In
MixConv[36] the convolution options in search block differ
by the size of the feature maps. Basically, the lower resolu-
tion features are provided with large kernels options for bet-
ter accuracy and high resolution features are provided with
only small kernels to save computation cost. Inspired by
this, in our parallel module the search block of 1st branch
has only 3× 3, 2nd branch has 3× 3, 5× 5 and 3rd branch
has 3 × 3, 5 × 5, 7 × 7 kernels. In the fusion module, the
search block contains 3× 3, 5× 5, 7× 7 kernels for a better
fusion of features across branches. All search blocks con-
tains lightweight transformers.

In summary, the main difference between feature ex-

tractor of HR-NAS[16] and our GazeNAS lies in 1) dif-
ferent kernel options in the search block depending on the
feature map size 2) the number of branches in the network
3) Use of Squeeze and Excitation (SE)[20] block in search
block

Search strategy: For the search strategy, we adopt
a progressive shrinking NAS paradigm which generates
lightweight models by discarding some of the convolution
channels and Transformer queries during training. Follow-
ing Darts[24], we introduce an importance factor α > 0
that can be learned jointly with the network weights for
each search unit of the searching block. We then progres-
sively discard those with low importance while maintaining
overall performance. Inspired by [44, 26, 16], we add a
resource-aware L1 penalty on α, which effectively pushes
importance factors of high computational costs to zero.
Specifically, the L1 penalty of a search unit is weighted by
the amount of the reduction in computational cost ∆ > 0
(i.e. FLOPs in this case):

∆i =


3× 3× h× w if i is a 3× 3 conv
5× 5× h× w if i is a 5× 5 conv
7× 7× h× w if i is a 7× 7 conv
OT (n

′)−OT (n
′ − 1) if i is a transformer token

where OT is the FLOPs of the transformer defined in HR-
NAS[16], n′ is the number of remaining tokens. Note that
∆’s for search units of convolutions are fixed, while in the
Transformer, ∆’s is a function of the number of remaining
tokens. It is worth mentioning that, although FLOPs is not
always the best measure of latency, we use it anyway as it is
the most widely and easily used metric. This can be easily
adapted to use other metrics, e.g., latency and energy cost.

With the added resource-aware penalty term, the overall
training loss is:

L = L1(gt, gp) + λ
∑
i∈A

∆i|αi|
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where L1 denotes the standard L1 loss, gt denotes the
ground truth gaze value, gp denotes the predicted gaze
value, λ denotes the coefficient of the L1 penalty term, and
A denotes the set of all available search units in the network.

During training, after every few epochs, we progres-
sively remove the search units whose importance factors are
below a predefined threshold ϵ and re-calibrate the running
statistics of Batch Normalization (BN) layers. Note that if
all tokens of a search block are removed, the search block
will degenerate into a residual path, as shown in Fig. 3.

When the search ends, the remaining structure not only
represents the best accuracy-efficiency trade-offs, but also
has the optimal low-level/high-level and local/global feature
combination for the gaze estimation task.

4. Experiments

4.1. Implementation details

4.1.1 Dataset for NAS & pre-training

In order to search an efficient neural architecture for the
gaze estimation task, we use ETH-XGaze[45] dataset. It
contains a total of 1.1M images of 110 subjects. We use the
training set in ETH-XGaze for pre-training, which contains
765K images of 80 subjects. The evaluation set is divided
into within-dataset and person specific evaluations, each in-
cluding 15 people. We used the within-dataset as the test
set for pre-training validation. The dataset provides the nor-
malized data, which we directly fed into the model.

4.1.2 Datasets for evaluation

For the comprehensive evaluation of the searched neu-
ral architecture using GazeNAS, we select the following
datasets for evaluation: MPIIFaceGaze[48], Gaze360[23],
EyeDIAP[27] and RT-GENE[18]. For the direct compari-
son with state-of-the-art methods on these datasets, we keep
the datasets similar to the previous works. More specifi-
cally, we follow [9] to process all the datasets as well as
the evaluation protocol. After data-preprocessing, MPI-
IFaceGaze contains 45K images of 15 subjects. We perform
leave-one-person-out evaluation on it. EYEDIAP contains
16K images of 14 subjects. We perform four-folder cross
validation on it. Gaze360 contains 84K images of 54 sub-
jects for training and 16K images of 15 subjects for test. RT-
GENE contains 92K images of 13 subjects. A three-folder
cross validation is performed in RT-GENE. The EYEDIAP
and MPIIFaceGaze datasets have relatively limited head
pose and gaze range, therefore assumed as benchmarks in
a controlled environment. Gaze360 and RT-GENE has rel-
atively wide head pose and gaze range and hence represent
performance in unrestrained environments.

4.1.3 Training

We search for an efficient neural architecture by using
GazeNAS on ETH-XGaze (GazeNAS-ETH). The whole
code structure is implemented using PyTorch[30]1 and
trained on NVIDIA Tesla A100 GPUs. The input size is set
to 224 × 224. The initial learning rate is set to 0.001 with
the batch size 369 on 3 Tesla A100 GPUs for 50 epochs,
and decays by 0.97 every 5 epochs. We adopt an Adam
optimizer with momentum 0.9 and weight decay 1e-5. We
also employ the exponential moving average (EMA) with
decay 0.9999. By setting the coefficient of the L1 penalty
term λ to 1.0e-5, we get our GazeNAS-ETH model.

As for the evaluation of GazeNAS-ETH on evaluation
datasets, we freeze the model architecture and train on eval-
uation datasets. We use pre-trained weights on ETH-XGaze
as the initial values of parameters. The λ is set to 0, as no
further pruning is required. For all four evaluation datasets,
the learning rate is set to 0.0005 and RMSprop optimizer is
used to train the model. All other hyper-parameters remain
same as before.

4.1.4 Evaluation

For the gaze estimation task, the most common evaluation
metric is an angular gaze error. We use it to compare with
other gaze estimation methods, where a smaller error repre-
sents a better model.

4.2. Comparison with state-of-the-art

We compare the performance of our proposed model
GazeNAS-ETH and the state-of-the-art methods, which
showed competitive performance in gaze estimation, with
the MPIIFaceGaze, Gaze360, EYEDIAP and RT-GENE
datasets. The results are shown in Table 1. In the table,
methods corresponding to category A are CNN or RNN-
based gaze estimation models namely FullFace[48], RT-
GENE[18], Dilated-Net[6], CA-Net[8] and Gaze360[23].
The methods in category B are those that use a trans-
former. There is one more difference between category A
and B models, the models in category A are ImageNet[13]
pretrained whereas the models in category B are ETH-
Xgaze[45] pretrained.

Table 2 shows the number of parameters for each method
and the FLOPs required to derive the results. The results
show that GazeNAS-ETH has better estimation of gaze val-
ues compared to state-of-the-art methods on all the evalu-
ation datasets while having only about 1.027M parameters
and using only 0.28GFLOPs. Therefore, GazeNAS-ETH
achieved state-of-the-art performance with the least com-
putational budget. More specifically, when compared to the

1To ensure reproducibility, we will release the code.
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Table 1. Comparison with State-of-the-art methods. Our proposed GazeNAS-ETH achieves state-of-the-art results in all four datasets. ∗
indicates the model backbone is pre-trained on the ImageNet dataset, † indicates the model is pre-trained on the ETH-XGaze dataset

Category Method MPIIFaceGaze[48] Gaze360[23] RT-GENE[18] EYEDIAP[27]

A

FullFace [48]∗ 4.93◦ 14.99◦ 10.00◦ 6.53◦

RT-GENE [18]∗ 4.66◦ 12.26◦ 8.60◦ 6.02◦

Dilated-Net [6]∗ 4.42◦ 13.73◦ 8.38◦ 6.19◦

CA-Net [8]∗ 4.27◦ 11.20◦ 8.27◦ 5.27◦

Gaze360 [23]∗ 4.06◦ 11.04◦ 7.06◦ 5.36◦

B
CADSE [28]† 4.04◦ 10.70◦ 7.00◦ 5.25◦

GazeTR-Hybrid [9]∗† 4.00◦ 10.62◦ 6.55◦ 5.17◦

Our GazeNAS-ETH† 3.96◦ 10.52◦ 6.40◦ 5.00◦

Table 2. Specification of the state-of-the-art models. Our proposed GazeNAS-ETH requires very less computational budget compared to
other state-of-the-art models, making it easier to deploy for real-time applications

Method # of Params. # of FLOPs Running Time(ms)
RT-GENE[18] 82.0 M 30.81 G 467
Gaze360[23] 14.6 M 12.78 G 276
CADSE[28] 74.8 M 19.75 G 379
GazeTR-Hybrid[9] 11.4 M 1.84 G N/A
Our GazeNAS-ETH 1.027 M 0.28 G 22

state-of-the-art model GazeTR[9], the performance in MPI-
IFaceGaze dataset increased by 0.04◦, in Gaze360 dataset
by 0.1◦, in RT-GENE dataset by 0.15◦ and in EYEDIAP
dataset by 0.17◦.

The proposed model’s performance can be seen in Figure
6. It visualizes some qualitative results of gaze estimation
on various face images from different dataset.

4.3. Comparison with Baseline models

As mentioned in section 3.3, we experiment with two
baseline models to observe the performance of both single-
branch and multi-branch NAS methods on gaze estima-
tion tasks. We prefer to use AtomNAS[26] over a single-
branch HR-NAS[16] due to its better performance in other
tasks. Both models are searched on ETH-XGaze. We con-
ducted evaluation experiments on four datasets. The re-
sults are shown in Table 3. The single-branch baseline
(AtomNAS+ViT) uses a smaller number of parameters and
FLOPs but the performance of the multi-branch baseline
(HR-NAS+ViT) is better by a significant margin proving
the impact of multi-branch network for gaze estimation task
as proved by previous works. Since both of these baselines
have ViT as the estimation head, their performance is com-
parable to other state-of-the-art methods due to better rep-
resentation power of transformers.

The HR-NAS+ViT uses a more number of parameters
and FLOPs than our GazeNAS. The possible reason for
this is the difference in number of branches as well as the
convolution options in the search block. Even after using
less computation, the performance of our GazeNAS is bet-
ter compared to HR-NAS+ViT on all evaluation datasets,
showing the impact of our MRFT based gaze estimation

head. Due to its better fusion and representation capabil-
ity of both global and local features, the number of parame-
ters required in feature extractor becomes less compared to
HR-NAS+ViT.

4.4. Ablation Study

To confirm the validity of our search block design, we
conduct the following ablation study by removing some
components from the entire pipeline: 1) without MixConv
and 2) without lightweight transformer. (See Table 3).

a) w/o MixConv To investigate the effect of the Mix-
Conv layer in our search block, we replaced the MixConv
layer with 3× 3 convolution layer in all search blocks. We
conducted experiments on four datasets to ensure consis-
tency, and the results are shown in Table 3. When the
MixConv layer was applied in the search block, the per-
formance improved from 0.20◦ to 0.70◦, which shows the
significance of MixConv in proposed method. It seems to
be because MixConv layer extracts both global and local
information more efficiently which is significant for gaze
estimation task.

b) w/o lightweight transformation To check the effect
of lightweight transformers in our search block, we replace
the lightweight transformer layer with skip connection in all
search blocks. As earlier, we conduct experiments on four
datasets and the results are shown in Table 3. The results
clearly show the impact of lightweight transformer on the
performance of our GazeNAS-ETH. More specifically, the
performance improved by 0.25◦ to 0.75◦. As lightweight
transformer enhances the global context within the search
block, it is significant in our search block for gaze estima-
tion task.
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Table 3. Ablation study and baseline models
Method Params FLOPs MPII [48] Gaze360[23] EYEDIAP[27] RT-GENE[18]
AtomNAS + ViT (single branch) 0.9M 250M 4.35◦ 10.90◦ 5.29◦ 7.50◦

HR-NAS + ViT (multi-branch) 1.1M 320M 4.25◦ 10.65◦ 5.20◦ 6.83◦

GazeNAS (MRFT) 1.027M 280M 3.96◦ 10.53◦ 5.00◦ 6.40◦

w/o MixConv 1.024M 275M 4.31◦ 10.71◦ 5.21◦ 7.10◦

w/o lightweight transformer 0.4M 233M 4.28◦ 10.88◦ 5.25◦ 7.15◦

5. Discussions

5.1. Dataset for searching models

Previous NAS works for other tasks have always used
same dataset for both searching model and testing perfor-
mance. For the case of gaze estimation, we think that
searching model on every dataset would be computationally
very expensive. Since most of the datasets in gaze estima-
tion are small and have a limited range of gaze values and
head pose. We propose to use ETH-XGaze for searching
neural architecture due to its high range of gaze values and
large dataset size. We validate the searched network archi-
tecture GazeNAS-ETH on other datasets. GazeNAS-ETH
is able to achieve state-of-the-art on other datasets. This
indicates that for gaze estimation, searched model on ETH-
XGaze is easily able to generalize to other datasets, saving
time and resources of searching models on every datasets of
the task.

5.2. NAS in gaze estimation

We follow popular AtomNAS and HR-NAS to design
feature extractors of baseline models in this paper. We use
popular ViT as the gaze estimation head. Both of these
models are able to achieve competitive results against previ-
ous state-of-the-art models. This indicates that NAS based
methods are suited for gaze estimation. In order to further
improve the performance, we propose our MRFT gaze es-
timation head in GazeNAS. Through our experiments we
validate that GazeNAS-ETH outperforms previous state-of-
the-art methods. This indicates that NAS based methods not
only requires very less computational budget but can also
achieve state-of-the-art performance. This enables real-time
applications of gaze estimation task.

5.3. Limitations

The searched model on ETH-XGaze using our GazeNAS
method is able to perform well on many datasets after fine
tuning on that dataset. One of the major limitations of
NAS based methods is a low cross-dataset performance.
We perform experiments to see the cross-dataset perfor-
mance which is not competitive enough to the state-of-the-
art method [28]. This suggests that we may need to increase
the computational budget for better cross-dataset generaliz-
ability in this task.

Dataset GT Result Together

MPIIFaceGaze

Gaze360

EYEDIAP

RTGENE
Figure 6. Proposed method GazeNAS-ETH’s Gaze estimation re-
sults on various dataset face images. The first row images are
ground truth for gaze, and the second row are the estimation result
by the proposed network, and third row are both shown together

6. Conclusions

For gaze estimation, we are the first to explore the
effectiveness of using the NAS-based methods. We in-
troduce a novel multi-resolution fusion transformer based
gaze estimation head, which effectively fuses global con-
text with local features for accurate gaze estimation. We
propose a modified HR-NAS based feature extractor for
the task of gaze estimation. We propose to use only one
dataset for searching neural architecture rather than indi-
vidually searching model on all datasets. We choose ETH-
XGaze [45] as the dataset for searching neural architec-
tures in the gaze estimation tasks and validate it on other
datasets. Through rigorous experiments on four public
datasets [49, 23, 18, 27], we validate that our proposed
GazeNAS-ETH outperforms other state-of-the-art methods
that are either CNN-based or transformer-based in terms
of both accuracy and computational cost. More specif-
ically, our GazeNAS-ETH uses only 1M parameters and
0.28 GFLOPs, which is much less than previous state-of-
the-art models and hence can be easily deployed for real
time applications on embedded devices at edge.

897



References
[1] Han Cai, Chuang Gan, and Song Han. Once for all: Train one

network and specialize it for efficient deployment. ArXiv,
abs/1908.09791, 2020.

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Di-
rect neural architecture search on target task and hardware.
ArXiv, abs/1812.00332, 2019.

[3] Xin Cai, Boyu Chen, Jiabei Zeng, Jiajun Zhang, Yunjia Sun,
Xiao Wang, Zhilong Ji, Xiao Liu, Xilin Chen, and Shiguang
Shan. Gaze estimation with an ensemble of four architec-
tures. arXiv, abs/2107.01980, 2021.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. ArXiv,
abs/2005.12872, 2020.

[5] Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, G. Pa-
pandreou, Barret Zoph, Florian Schroff, Hartwig Adam, and
Jonathon Shlens. Searching for efficient multi-scale archi-
tectures for dense image prediction. In NeurIPS, 2018.

[6] Zhaokang Chen and Bertram E. Shi. Appearance-based gaze
estimation using dilated-convolutions. In ACCV, 2018.

[7] Yihua Cheng, Yiwei Bao, and Feng Lu. Puregaze: Purifying
gaze feature for generalizable gaze estimation. 03 2021.

[8] Yihua Cheng, Shiyao Huang, Fei Wang, Chen Qian, and
Feng Lu. A coarse-to-fine adaptive network for appearance-
based gaze estimation. Proceedings of the AAAI Conference
on Artificial Intelligence, 34:10623–10630, 04 2020.

[9] Yihua Cheng and Feng Lu. Gaze estimation using trans-
former. arXiv preprint arXiv:2105.14424, 05 2021.

[10] Yihua Cheng, Feng Lu, and Xucong Zhang. Appearance-
based gaze estimation via evaluation-guided asymmetric re-
gression. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[11] Cheng Chi, Fangyun Wei, and Han Hu. Relationnet++:
Bridging visual representations for object detection via trans-
former decoder. In NeurIPS, 2020.

[12] Xiyang Dai, Dongdong Chen, Mengchen Liu, Yinpeng
Chen, and Lu Yuan. Da-nas: Data adapted pruning for ef-
ficient neural architecture search. In ECCV, 2020.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–
4186. Association for Computational Linguistics, 2019.

[15] Philipe Dias, Damiano Malafronte, Henry Medeiros, and
Francesca Odone. Gaze estimation for assisted living en-
vironments. pages 279–288, 03 2020.

[16] Mingyu Ding, Xiaochen Lian, Linjie Yang, Peng Wang, Xi-
aojie Jin, Zhiwu Lu, and Ping Luo. Hr-nas: Searching ef-
ficient high-resolution neural architectures with lightweight
transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021.

[18] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris. Rt-
gene: Real-time eye gaze estimation in natural environments.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018.

[19] E.D. Guestrin and M. Eizenman. General theory of re-
mote gaze estimation using the pupil center and corneal re-
flections. IEEE Transactions on Biomedical Engineering,
53(6):1124–1133, 2006.

[20] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7132–7141, 2018.

[21] Qiang Ji and Xiaojie Yang. Real-time eye, gaze, and face
pose tracking for monitoring driver vigilance. Real-Time
Imaging, 8:357–377, 10 2002.

[22] X. Jin, Jiang Wang, Joshua Slocum, Ming-Hsuan Yang,
Shengyang Dai, Shuicheng Yan, and Jiashi Feng. Rc-darts:
Resource constrained differentiable architecture search.
ArXiv, abs/1912.12814, 2019.
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