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Figure 1: Sample qualitative comparisons with single image atmospheric turbulence mitigation methods as well as generative
restoration models on the LRFID[27] dataset.

Abstract
Although many long-range imaging systems are de-

signed to support extended vision applications, a natural
obstacle to their operation is degradation due to atmo-
spheric turbulence. Atmospheric turbulence causes sig-
nificant degradation to image quality by introducing blur
and geometric distortion. In recent years, various deep
learning-based single image atmospheric turbulence miti-
gation methods, including CNN-based and GAN inversion-
based, have been proposed in the literature which attempt
to remove the distortion in the image. However, some of
these methods are difficult to train and often fail to re-
construct facial features and produce unrealistic results es-
pecially in the case of high turbulence. Denoising Diffu-
sion Probabilistic Models (DDPMs) have recently gained
some traction because of their stable training process and
their ability to generate high quality images. In this paper,
we propose the first DDPM-based solution for the prob-
lem of atmospheric turbulence mitigation. We also pro-
pose a fast sampling technique for reducing the inference
times for conditional DDPMs. Extensive experiments are
conducted on synthetic and real-world data to show the
significance of our model. To facilitate further research,

all codes and pretrained models are publically available at
http://github.com/Nithin-GK/AT-DDPM

1. Introduction
Autonomous vehicles and surveillance systems utilize

long-range imaging systems to capture faraway scenes. Im-
ages captured by such systems are prone to degradation due
to variations of the refractive index of air. Atmospheric tur-
bulence is a ubiquitous phenomenon that causes spatially
and temporally random variations in the air’s refractive in-
dex [34, 14]. This introduces random geometric distortions
and blur to the images captured and significantly degrades
the performance of computer vision tasks like object detec-
tion [32], tracking and recognition [5] applied on these im-
ages. Modeling atmospheric turbulence degradation is an
extremely complex task. Various methods have been pro-
posed in the literature that attempt to model deformations
caused due to turbulence. Under the assumption that the
scene and the imaging sensor are both static and degrada-
tions caused are due to atmospheric turbulence alone, the
degradation due to atmospheric turbulence is modelled as

Tk = Dk(Hk(I))) + nk, k = 1, 2, ..., N, (1)
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where Tk is the degraded image at the kth time instant, I
is the clean latent image, Dk is the deformation operator
which is assumed to deform randomly, nk is additive noise,
and Hk is air turbulence-caused blurring operator [16, 17,
47, 3, 12] .

Mitigating the effect of atmospheric turbulence and
restoring the latent clean image is extremely challenging
due to its ill-posed nature that arises due to both blur and
geometric distortions. Restoring images affected by atmo-
spheric turbulence is an extensively researched topic in the
literature. To mitigate these effects, there exists two classi-
cal solutions – adaptive optics [33, 38, 34] and image pro-
cessing [10, 47, 1, 39, 2, 26, 19]. In this paper we focus on
the latter and propose an image processing-based strategy
for atmospheric turbulence mitigation.

In recent years, various deep learning-based methods for
mitigating atmospheric turbulence have been proposed in
the literature [16, 19, 42]. [42] proposes a deep network
utilizing blur and degradation priors to restore the clean im-
age. [16] uses two parallel paths to remove blur and degra-
dation and finally concatenates them to remove the effect of
turbulence. These methods tackle atmospheric turbulence
degradation on facial images but focus on removing the dis-
tortion and does not have enough generative power to gener-
ate a realistic face for strong turbulence distortions. More-
over these methods fail to generalize well in case of real
world images. Generative prior-based face reconstruction
has gained much attention in recent years due to their ability
in modelling the distribution of clean facial images [40, 24].
This is usually performed by utilizing Generative Adversar-
ial Networks (GANs) for modelling the distribution of clean
faces and then utilizing these GANs as a pretrained prior to
generate realistic facial images while performing restora-
tion. But training of GANs is unstable and may also fail
due to mode collapse. In this paper, we propose a generative
modeling-based solution using Denoising Diffusion Proba-
bilistic Models (DDPMs)[37, 13]. DDPM-based methods
have already achieved state-of-the-art results in image gen-
eration tasks [9]. When compared to GANs, their training
process is also much more stable[13, 9]. Motivated by their
ability to perform exact sampling and generating high qual-
ity images, we use them as generative priors to restore sin-
gle facial images degraded by atmospheric turbulence.

We first train a DDPM model to learn the distribution of
facial images by training on a large dataset[15]. We then
adapt this model to learn the transformation for the sim-
pler restoration problem of image super resolution by using
knowledge distillation. With the super-resolution model in
hand, we adapt these weights again for the transformation
from turbulent images to clean faces by performing knowl-
edge distillation with the super-resolution model. The could
be thought of as a continual learning based strategy[45].
Where, the final model has access to information about the

manifold of realistic faces, hence being able to produce real-
istic face outputs even for strong distortions. Restoration of
images degraded by atmospheric turbulence is an ill-posed
problem. Hence, multiple possibilities of clean faces exist
while reconstructing using a DDPM model that has access
to the distribution of clean facial images. Moreover, the
inference process of DDPMs is quite slow and time con-
suming. To this end we enforce a constraint to ensure that
the facial features present in the restored image are closer to
the ones present in the distorted image during inference by
starting from noise turbulence-distorted image rather than
pure Gaussian noise.

This paper makes the following contributions:

• We propose the first generative prior-based image
restoration method using DDPM for the task of atmo-
spheric turbulence mitigation.

• We propose a progressive training(PT)-based learning
framework for better reconstruction and introduce a
new sampling procedure for efficient inference.

• We qualitatively and quantitatively evaluate our
method on both synthetic and real-world datasets and
show that it performs better than the existing state-of-
the-art single image-based atmospheric turbulence re-
moval methods.

2. Related Works
Image Processing methods. “Lucky Imaging” techniques
[2, 39] are the earliest techniques for mitigating atmospheric
turbulence. Lucky imaging works by selecting a few good
frames from turbulence degraded videos and fusing them to
restore the latent sharp image. Anantrasirichai et al. [1]
proposed a method to extract regions with fewer degrada-
tions from the good frames and fuse them using a dual-
tree complex wavelet transform to remove turbulence degra-
dations. Methods based on registration-fusion approaches
like [47, 12, 19] were proposed in later years, where a
good reference image is initially determined, and the con-
sequent frames are aligned and fused to remove geometric
distortions, after which a deconvolution algorithm is applied
to remove blur. Zhu et al. [47] use a B-spline registra-
tion algorithm and temporal kernel regression to compute a
degradation-free image. Lou et al. [22] proposed a method
to reduce deformations between images in a video by apply-
ing a temporal smoothing algorithm on video frames sharp-
ened using Sobolev gradient flow. Xie et al. [41] used a
low-rank image as an intermediate reference image and then
obtained the sharp image through a variational model.
Atmospheric turbulence mitigation using deep net-
works. With the success of CNN-based models in address-
ing image restoration tasks[25], a few models have been
proposed in the literature to remove atmospheric turbulence.
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Chak et al. [4] utilize an effective data augmentation al-
gorithm to model turbulence, then filter out the corrupted
frames using a sub-sampling algorithm, and finally use a
Generative adversarial Network (GAN) to restore the clean
image. Recently some methods [42, 16, 18, 30] have been
proposed for restoring a single face image from a turbulence
degraded observations. Lau et al. [19] use the commutative
relationship between blur and geometric distortions to gen-
erate blur and degradation-free images. They further disen-
tangle these images to obtain the clean output. Yasarla &
Patel [42] propose a turbulence removal network that esti-
mates blur and degradation priors using Monte Carlo simu-
lations and use them to restore the sharp image.

3. Background

3.1. Denoising Diffusion Probabilistic models

Denoising Diffusion Probabilistic Models (DDPMs) [13,
37] are a class of generative models that perform image
generation through variational inference using a Markovian
process with a finite number of timesteps ‘T ′. Each step
in this Markovian process is a denoising process. DDPMs
consists of two stages – a forward process and a reverse
process. In the forward process, a clean image y0 is
sampled, and small Gaussian noises of variance schedules
{β1, . . . , βT } are added over ‘T ′ timesteps. The overall for-
ward process and each forward step are defined as
q(y0,1....T ) := q(y0)Π

T
t=1q(yt|yt−1) (2)

q(yt|yt−1) = N
(
yt;

√
1− βtyt−1,

√
βtI

)
(3)

=
√
βtyt−1 + ϵ

√
1− βt, ϵ ∼ N (0, I), (4)

where yt and yt−1 are noisy samples generated at timesteps
t and t− 1 and {βi} refers to the variance schedules. Since
the sum of t zero mean Gaussians with different variance
schedules is again a Gaussian, this Markovian process could
be effectively represented in terms of the initial data sample
y0 and expressed as

q(yt|y0) := N (yt;
√
ᾱty0, (1− ᾱt) I)

=
√
ᾱty0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I), (5)

where αt = 1 − βt. In the reverse process we define the
joint distribution pθ(y0:T ) with parameters θ. Similar to the
forward process, the reverse process is also a Markovian
process which is defined as follows

p(yT ) := N (0, I) (6)

p(yt−1|yt) := N
(
yt−1;µθ(yt, t),

√
βtI

)
. (7)

For optimizing the parameters of the network θ, we min-
imize the variational lower bound of the the negative log
likelihood of the distribution of clean images y0. In this
paper, we use the simplified training objective of DDPMs
proposed by Ho et al.[13]. For training our model we sam-
ple a timestep t ∼ U [1, T ] and produce the noisy sample

corresponding to this timestep using equation(3), defined
by

yt :=
√
ᾱty0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I). (8)

The network pθ(.) predicts the noise ϵ in this image taking
yt and t as the inputs. The training objective is defined as,

Lsimple := Et∼[1,T ],ϵ∼N (0,I)

[
∥ϵ− ϵθ (yt, t)∥2

]
. (9)

3.2. Conditional Diffusion Probabilistic Models

The equations mentioned above are developed for the
task of image generation. For utilizing DDPMs for low level
vision tasks like image restoration, the conditional distribu-
tion of the clean image has to be modelled. Saharia et al [35]
have proposed a simple technique for modelling the condi-
tional distribution of clean image given the corresponding
degraded image. In conditional DDPM, the forward pro-
cess remains the same as that of the unconditional model.
Given a clean image sampled from the dataset, we add ran-
dom Gaussian noise based on a randomly sampled timestep
t. During the reverse process, along with the noisy image
and the time t, we also pass the degraded image(x) as input
to the neural network. Hence the denoising model is defined
by pθ(yt, x, t) and the reverse process is defined by

p(yT ) = N (0, I) (10)

p(yt−1|yt, x) = N
(
yt−1;µθ(yt, x, t),

√
βtI

)
. (11)

The mean µθ(yt, x, t) is estimated according to,

µθ(yt, x, t) =
1√

(1− βt)

(
yt −

βt√
1− ᾱt

ϵθ(x, yt, t)

)
.

(12)

3.3. Proposed method

In this section we detail our proposed method and the
training process. For training our model, we perform a multi
stage training process as shown in Figure 2. Given a dataset
containing clean facial images, we train a diffusion model
pθ(.) for the task of unconditional generation of facial im-
ages. [6, 9] have already released models trained on large
amounts of facial data. Hence we make use of this model as
the starting point. Once we have a model that has learned
the distribution of clean facial images, it is easier to adapt
those weights to model the conditional distribution where
we aim to restore a slightly degraded image and recover the
clean image by conditioning on the distorted image.

The same idea holds for the case of two conditional dis-
tributions where the diffusion model learns the conditional
distribution of clean facial images. For our experiments we
choose the conditional distributions as face super-resolution
and turbulence since off the shelf super-resolution model
trained on a large datasets are already available[9]. Once we
have a model that can perform (8×) super-resolution(SR),
we adapt the model for the stronger degradation of atmo-
spheric turbulence. For making the model robust to the tur-
bulence degradation, we take the model trained for super-
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Figure 2: An overview of the proposed approach, during the training process, we perform knowledge distillation to transfer
class prior information from a network trained for image super-resolution on a large dataset to the network for removing
turbulence degradation. During inference, rather than starting from pure Gaussian noise as in normal DDPM, we begin with
noised turbulence degraded images for speed-up in inference times.

resolution and adapt the model to work equally well when
the input degraded image is of strong degradation as well
as of weak degradation. Let the model trained for the
weaker-degradation be represented by pϕ(.) and the model
for restoration of strong turbulence degraded image be de-
noted by pδ(.). For optimizing the parameters δ, we sample
an ϵ ∼ N (0, I) and create the noisy sample yt of the clean
image according to Eq. 5. For each training iteration, the
parameters δ are optimized using the loss function Lfinal

defined by
LT = ∥ϵ− ϵδ (yt, xS−turb, t)∥2 , ϵ ∼ N (0, I)

LS = ∥ϵϕ (yt, xW−turb, t)− ϵδ (yt, xS−turb, t)∥2 ,
Lfinal = Et∼[1,T ] [Lt + γLS ] .

(13)
Here the term LS ensures that the model focuses on recon-
structing the same face regardless of the distortion nature.
Once the parameters δ are updated by optimizing the loss
function Lfinal, we perform an exponential moving aver-
age (EMA) based updating of the weights of the SR model.
Please not that the weights ϕ are not updated by optimizing
the loss function. The EMA-based weight update for the
weights ϕ using the estimated weights δ is according to

ϕ = γ1ϕ+ (1− γ1)δ. (14)
Hence adapting the model pϕ(.) for weaker degradation.

Efficient inference for turbulence removal: The usual in-
ference process for diffusion models is very time consum-
ing. However we observed that for the task of conditional
image generation, this is not the case and the model creates

good results even for very low number of timesteps rang-
ing T = 40 − 50. Furthermore, we noted that the initial
steps in DDPMs learn the coarse features. But these fea-
tures are already present in the turbulence distorted image.
Hence rather than starting from pure Gaussian noise, the in-
ference process could be started from the noised turbulence
distorted image. Let x denote the turbulence distorted input
image, and yt the sampled inference image after t forward
steps in diffusion. As mentioned in Eq. 11, the reverse step
starts with Gaussian noise at t = T . We start the diffusion
process from a time t = t1 than T . We explicitly assign yt1
by

yt1 = q(yt|y0), t = t1. (15)
There also exist a hidden advantage of this efficient sam-
pling strategy. Atmospheric turbulence mitigation by itself
is a highly ill-posed problem. Since the diffusion process
is also stochastic, it tends to increase the ill-posedness by
sampling a face that is close to the distorted face during in-
ference. Starting from the turbulence distorted images fixes
the coarse features in the image to be sampled hence reduc-
ing the ill-posedness.

4. Experiments

For quantitative evaluations, we utilize two different type
of metrics, namely image quality-based metrics and fa-
cial recognition-based metrics. For evaluating the recon-
structed image based on the clean target, we use Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity Index
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Figure 3: Qualitative comparisons with single image atmospheric turbulence mitigation methods (ATFaceGAN, TDRN) as
well as other generative models (ILVR,GFPGAN) on CelebA dataset[21].

(SSIM). PSNR might not always capture the quality of re-
constructed faces since blurry images could have higher
PSNR than clean images [46]. Hence, for evaluating the
the quality of the outputs generated by our model, we also
utilize other perceptual and no-reference quality metrics.
Specifically, we use the Naturalness Image Quality Evalua-
tor (NIQE score) [28] and the LPIPS distance [46] for eval-
uating the naturalness of the generated image and measur-
ing the perceptual similarity in the feature space. To assess
how close the images are to the distribution of clean facial
images, we utilize Fréchet Inception Distance (FID score)
[11]. As for the facial recognition-based metrics, we use
face recognition score calculated using ArcFace [7]. We use
three different recognition scores for comparing the perfor-
mance – Top-1, Top-3 and Top-5. The Top-K score refers to
the actual identity being present in the K-nearest faces when
the distance between the features of the measured face and
the faces in the gallery set is computed.

4.1. Training details

We set the number of training steps as T = 1000 and the
number of inference steps as T = 60. The inference time is
reduced by applying the time rescaling strategy mentioned
in [31] and t1 = 30 for all our experiments. γ = 0.01 and
γ1 = 0.9909 for all our experiments.

4.2. Training dataset

Various methods have been proposed in the literature for
simulating atmospheric turbulence degradation[29, 36, 20,
24, 23]. All of these models aim to generate a spatially vary-
ing Point Spread Functions (PSFs) and distort each pixel in
a clean image. In our work, we follow the model used in
Mei and Patel [24] which is based on the observation model
in Eq. 1. To create a spatially varying PSF and a geometric

distortion at the same time, we use an elastic transformation
along with a blur augmentation. Finally, we add an additive
white Gaussian noise with a standard deviation 1e−4. For
training we use 35,000 randomly sampled images from the
FFHQ dataset [15].

4.3. Testing Datasets

We evaluate our method by performing experiments on
one synthetic face dataset, and two real-world datasets (LR-
FID dataset and BRIAR dataset) consisting of facial images
degraded by atmospheric turbulence. We use the CelebA
dataset [21] and apply elastic blur [24] to create a synthetic
test set. In total, we select 100 identities from the CelebA
dataset. For each image, we resize the face to size 256×256
and introduce the degradation. For comparing the perfor-
mance in real-world scenarios, we use the LRFID dataset
[27] and the BRIAR dataset. The LRFID dataset consists of
89 videos in different atmospheric conditions correspond-
ing to 89 different individuals. We extract one image frame
randomly from each video and crop it in order to generate
the real-world test set. The LRFID dataset also has clean
images of the same individuals captured in close range con-
ditions. Since we do not have the clean target pairs of these
videos, we utilize clear images of these individuals taken in
outdoor conditions as reference and perform facial recogni-
tion using ArcFace [7] as well as other perceptual quality
metrics to compare the performance of different networks.
The BRIAR dataset is another real-world dataset consist-
ing of high-resolution video data of 343 individuals. The
videos are shot at different ranges from the individuals vary-
ing from 100m to 500m. For our experiments, we utilize a
subset of the BRIAR dataset corresponding to ranges 200m
and 400m. In total there are 130 identities with data in these
ranges. We extract a frame from one video per identity.
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Since the resolution of the captured frames are quite high,
we utilize retinaface face detection algorithm [8] to extract
faces from the center portion of each image. The testset that
we use consists of a total of 50 identities.

4.4. Results

We qualitatively and quantitatively compare our method
with various deep networks for atmospheric turbulence re-
moval and face restoration. We utilize CNN-based models,
GAN-based models and diffusion models. For CNN-based
atmospheric turbulence mitigation methods, we use MPR-
Net [44] and ATNet [43]. We also compare our method with
face enhancement networks built upon generative models.
Here, we choose two different varieties of generative mod-
els, specifically GAN-based method for atmospheric tur-
bulence removal ATFaceGAN [20] as well as two GAN
inversion-based models [24, 40] trained for removing atmo-
spheric turbulence. Finally, we compare our method with
one diffusion model for image restoration [6]. All the above
mentioned methods are retrained with our dataset for fair
comparisons. The quantitative analysis can be found in Ta-
ble 2 and the qualitative results on the CelebA dataset [21],
the LRFID dataset [27] and the BRIAR dataset can be found
in Figure 3, 1 and 4, respectively.

4.5. Qualitative Analysis

Synthetic dataset evaluation: The quantitative results for
celebA dataset [21] are presented in Table 2. The values
marked in dark green colour for each metric denotes the best
value among all comparison methods and the ones in light
green colour denote the second best value. As can be seen
from Table 2, the highest PSNR and SSIM are achieved by
[44]. This is due to the fact that CNNs are generally trained
to optimize the Mean square error(MSE) loss between the
network prediction and the clean target. Reducing the MSE
loss is proportional to increasing the PSNR. Hence an image
with a higher PSNR compared to the clean target could be
in fact more distorted than an image with lower PSNR. This
could be clearly seen from Figure 3. Hence we make use
of the no reference metric NIQE that estimates the natural-
ness of the predicted output. Lower the NIQE score, more
natural is the image. We can see that GFPGAN [40] gener-
ates the outputs with the lowest NIQE score. Our method
generates outputs with the next lowest NIQE score values.
The next metric we utilize is the LPIPS [46] score which
compares the perceptual similarity of the predictions from
the networks and the set of clean images is the LPIPS score.
As we can see, the GAN-inversion based method LTTGAN
[24] has the best LPIPS distance and our method produces
outputs with the next best LPIPS distance.

To estimate how the predicted distribution of the net-
works vary from the actual distribution of clean facial im-
ages, we compare the predictions from the networks in

Dataset CelebA dataset[21]
Metric PSNR(↑) SSIM(↑) NIQE(↓) LPIPS(↓) FID(↓)

GT inf 1.000 5.750 0 0
degraded 22.76 0.6517 21.35 0.4642 146.72

CNN based models
MPRNET[43] 24.28 0.6951 10.29 0.3885 121.37

ATNet[43] 21.88 0.6271 13.20 0.5065 169.52
GAN based models

ATFaceGAN[20] 22.11 0.5821 11.49 0.4887 182.18
GFPGAN[40] 21.74 0.5925 6.083 0.3341 75.338
LTTGAN[24] 22.77 0.6458 7.884 0.3192 82.182

Diffusion models
ILVR[6] 21.40 0.5916 7.762 0.3689 76.702
OURS 22.41 0.6262 7.186 0.3223 73.127

Table 1: Quantitative results on synthetic turbulence de-
graded images prepared using CelebA dataset[21]

terms of the FID score. The generative models create out-
puts with much better FID score when compared to non-
generative models as can be seen from Table 2. Our method
generates outputs with the best FID score and GFPGAN
generates outputs with the second best FID score. The qual-
itative results on the CelebA dataset can be seen in Figure
3. As we can see the CNN-based methods ATNet [43] and
MPRNet [44] and GAN restoration method ATFaceGAN
[20] remove the turbulence distortion to some extent but
fail to reconstruct relevant facial features like eyes, nose
and hair and overly smoothen the facial features. Compared
to these techniques, the generative modelling based facial
restoration techniques LTTGAN [24] and ILVR [6] recon-
struct images with much better facial features. ILVR [6] re-
constructs faces with good features but creates faces that are
much different from the original faces. In case of LTTGAN
[24], although much better faces are reconstructed, the re-
constructed image differs in multiple factors like eye color,
shape of face which can be clearly seen from the degraded
images. In contrast our method is able to reconstruct more
accurate faces.

Results on the LRFID dataset [27]: Since the ground truth
targets for the LRFID dataset [27] are not available, we
compare the performance of the networks qualitatively us-
ing no reference metrics, perceptual quality metrics as well
as facial recognition accuracy. By comparing the natural-
ness of the generated outputs using the NIQE score, we can
see that the generative methods work much better than the
CNN-based models. Our method creates the most natural
images and we are able to obtain a NIQE score of 1.094
above the previous best method. Based on the LPIPS met-
ric, the GAN inversion method LTTGAN [24] works the
best and our model performs the second best. To evaluate
how the generated images are close to real-world facial im-
ages, we use the FID score. Regarding the FID score, it can
be seen from Table 2 that our model works much better than
the other models with an FID score 13 below the next best
method. Also we can see that the generative models gen-
erate images with much better facial features. To further
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Dataset BRIAR dataset LRFID dataset[27]
Metric NIQE(↓) LPIPS(↓) FID(↓) Top-1(↑) Top-3(↑) Top-5(↑) NIQE(↓) LPIPS(↓) FID(↓) Top-1(↑) Top-3(↑) Top-5(↑)

GT 5.867 0 0 100.0 100.00 100.0 5.729 0 0 100.0 100.0 100.0
degraded 16.68 0.7754 317.82 26.0 38.0 46.0 12.90 0.6293 195.71 35.3 62.2 71.2

CNN based models
MPRNET[43] 11.76 0.7051 220.73 24.0 46.0 64.0 11.13 0.5755 176.41 34.1 64.6 74.4

ATNet[43] 8.506 0.7265 314.82 14.0 28.0 38.0 12.24 0.6128 202.45 36.5 64.6 74.4
GAN based models

ATFaceGAN[20] 10.66 0.7459 260.25 22.0 38.0 50.0 9.434 0.6300 169.60 47.5 65.8 82.3
GFPGAN[40] 6.854 0.6414 204.76 26.0 58.0 60.0 7.918 0.5587 124.55 57.3 79.2 85.3
LTTGAN[24] 5.500 0.5969 150.24 20.0 54.0 62.0 7.970 0.4803 119.23 58.5 81.7 85.3

Diffusion models
ILVR[6] 8.145 0.6523 167.78 22.0 44.0 56.0 12.068 0.5661 161.38 31.7 59.7 67.0
OURS 6.283 0.6368 152.57 32.0 56.0 66.0 7.576 0.5234 112.64 62.2 81.7 87.8

Table 2: Quantitative results on on real world turbulence degraded datasets: BRIAR dataset and LRFID dataset [27]

Distorted ATFaceGAN[20] ATNet[43] ILVR[6] GFPGAN[40] LTTGAN[24] OURS Gallery

Figure 4: Qualitative comparisons with single image atmospheric turbulence mitigation methods on the BRIAR dataset.

analyze the quality of the restored images, we compare the
facial recognition accuracy of the restored images using Ar-
cface facial recognition framework [7] with resnet34 back-
bone. Based on the facial recognition scores, we can see
that the Top-1 facial recognition accuracy is obtained from
the images restored by LTTGAN[24]. We obtain the sec-
ond best facial recognition accuracy, which is just 1.2 below
LTTGAN. Our method is able to obtain much better facial
recognition accuracies compared to the other methods. The
results on the real world LRFID dataset [27] can be seen
in Figure 1. As we can see from this figure, ATNet [43] is
able to remove small amount of distortions, but is not able
to reconstruct facial features well. Compared to this ATNet
works a bit better and is able to reconstruct faces with much
better features. The diffusion-based model [6] is primarily
defined for super-resolution and fails on real-world turbu-
lence distorted images. As we can see from Figure 1, GF-
PGAN [40] and LTTGAN [24] slightly change the color of
the reconstructed images. LTTGAN [24] also creates verti-
cal line artifacts on top of the image. In contrast, our model
doesn’t cause a colour shift on the reconstructed image and
is able to remove turbulence degradation.

5. Results on the BRIAR dataset

Figure 4 shows the qualitative results on the BRIAR
dataset. As we can see the images in the BRIAR dataset
are very much distorted hence making it very difficult to
restore these images. Because of the high level of distor-
tion, most methods fail on the BRIAR dataset. The existing
generative modelling-based methods fail to reconstruct the
relevant facial features in the image. Our method although
cannot reconstruct the exact identity properly, is able to re-
construct a structured face that could be retrieved from the
given input image.

6. Ablation Studies

6.1. Effect of Progressive Training:-

To compare the performance improvements obtained by
the newly proposed way of training, we retrain the network
in a simple manner by directly conditioning the diffusion
model with the turbulence distorted image. We train the
model for twice the number of iterations required for train-
ing our base network. We then test on the real-world LR-
FID dataset[27] since it contains images much different than
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(a) (b) (c) (d) (e) (f)

Figure 5: (a) Input turbulence-degraded image. (b) Generated image corresponding to T = 20 starting from Gaussian noise.
(c) Generated image corresponding to T = 0 starting from Gaussian noise. (d) Turbulence image added with Gaussian noise
corresponding to T = 20. (e) Final reconstructed Image starting from turbulence degraded image. (f) Clean Image.

Metric Top-1(↑) Top-3(↑) Top-5(↑) NIQE(↓) LPIPS(↓)
Without PT 48.7 74.2 79.3 6.985 0.5358

OURS 54.8 84.1 86.5 6.824 0.5255

Table 3: An ablation study with and without the proposed
progressive training on the LRFID dataset [27].

Figure 6: Error bar plot illustrating the effect of efficient
sampling.

those used for training. A visualization of improvement
brought by the progressive training procedure is shown in
Fig. 7. The qualitative comparisons for both the models can
be seen from Table 3. We can see that there is a significant
boost in performance with our method of training.

6.2. Effect of efficient sampling

Figure 5 shows an illustration of our efficient sampling
method. As can be seen from Fig 5, at T = 20 the gen-
erated image looks like a course face with noise added to
it. As we can see from Fig 5 (d) the noised turbulence de-
graded image looks very similar to this. Figures 5 (c) and
5 (e) show a visualization of the final reconstructed outputs
using these starting initializations. As we can see, quali-
tatively our method is able to preserve the identity pretty
well. Moreover, we create 10 samples per inference image
and plot the error bar for Top-1 facial verification accuracies
in Fig.6. The facial verification accuracies are lower when
the efficient sampling technique is used. Hence validating
our claims.

Distorted Without PT OURS GT

Figure 7: Illustration of improvement obtained by the pro-
posed progressive training method.

7. Conclusion

In this paper, we proposed an effective generative mod-
elling based solution for reconstructing facial images de-
graded by atmospheric turbulence. A new strategy is pro-
posed for training diffusion models for inverse problems.
We make use of a model trained for super resolution on
a large facial dataset and adapt it to learn the conditional
distribution of clean images given turbulence degraded im-
ages. We also introduce a new efficient sampling strategy to
reduce the inference time and stabilize the DDPM outputs
during inference. We achieve the state-of-the-art results on
one synthetic and two real-world datasets. Furthermore, we
perform extensive ablation analysis to show the improve-
ment obtained by different parts of our approach.
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