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Abstract

Multi-object tracking (MOT) is a vital component of in-
telligent video analytics applications such as surveillance
and autonomous driving. The time and storage complexity
required to execute deep learning models for visual object
tracking hinder their adoption on embedded devices with
limited computing power. In this paper, we aim to acceler-
ate MOT by transferring the knowledge from high-level fea-
tures of a complex network (teacher) to a lightweight net-
work (student) at both training and inference times. The
proposed AttTrack framework has three key components:
1) cross-model feature learning to align intermediate rep-
resentations from the teacher and student models, 2) in-
terleaving the execution of the two models at inference
time, and 3) incorporating the updated predictions from
the teacher model as prior knowledge to assist the student
model. Experiments on pedestrian tracking tasks are con-
ducted on the MOT17 and MOT15 datasets using two differ-
ent object detection backbones YOLOvS and DLA34 show
that AttTrack can significantly improve student model track-
ing performance while sacrificing only minor degradation
of tracking speed.

1. Introduction

Multi-object tracking (MOT) is a fundamental problem
in computer vision that aims to identify trajectories in video
frames. MOT is a key building block of many applications
such as human-computer interaction, surveillance, and au-
tonomous driving tasks. Existing methods handle a MOT
task by treating it as two sub-problems: object detection
and object association. Object detection identifies bound-
ing boxes of objects of interest in each frame whereas object
association links detected objects to form trajectories over
time.

As neural network models for MOT become more com-
plex, improved accuracy usually comes at the cost of longer
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inference time. To accelerate the execution of deep mod-
els, techniques such as model quantization [27, 17, 2] and
pruning [20, 25, 41] have been widely utilized to reduce
computations and redundant connections. Computation ac-
celeration from model quantization is generally hardware
dependent [12]. Extensive parameter tuning is required for
network pruning to work without significant loss of accu-
racy [5]. Recently, a few works utilized temporal[6, 24, 22]
and spatial [35] correlations by finding configurations (e.g.,
frame rate, frame resolution) that achieve a good trade-off
between computation complexity and model performance.
Unfortunately, the optimal configuration is not only input
sensitive but also dependent on run time environments such
as the available CPU or memory resources.

Another line of work to reduce model complexity is
through knowledge distillation (KD) [38]. KD uses soft la-
bels generated by a large model (teacher) to train a small
neural network with fewer parameters (student). The soft
labels provide useful information that allows the student
model to learn the behavior of the teacher to improve gen-
eralization. However, the lack of distilled knowledge for
the student model during inference may hinder it from cor-
rectly detecting harder instances (e.g., crowded scenes with
smaller objects).

In this work, we propose an attention transfer approach
for object tracking aiming to exploit the knowledge of a
teacher model at both training and inference stages. The
proposed online deep attention transfer network (AttTrack),
is inspired by the idea of attention transfer first proposed
in [38]. Unlike existing tracking methods, our detection
model receives additional information in the form of pre-
viously detected objects from the teacher model. We only
run the teacher model every few frames (called key frame)
during inference to improve the representation capability
of the student model and help it to discover likely object
positions in the remaining frames. The student model can
gain information about obstructed or barely visible objects
by leveraging extracted information from outputs of the
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teacher model on prior frames at no extra cost. The student
model is trained to fuse extracted features of input frames
and the detection estimation from the teacher model.

Extensive experiments show that AttTrack improves the
tracking performance of small models with marginal in-
creases at interference time. Choosing the intervals to run
the teaching model, results in different trade-offs between
performance and efficiency. In summary, the main contri-
butions of this paper are as follows:

* We conduct an empirical study to investigate the im-
pacts of model size on tracking performance and
speed.

* We propose an end-to-end trainable AttTrack frame-
work to transfer the knowledge of a complex teacher
model to a lightweight student model at both training
and inference time.

» Extensive testing on the MOT17 and MOT15 datasets
demonstrates the effectiveness of AttTrack. For ex-
ample, our approach can improve the MOTA score on
YOLOVS and DLA34 architectures by up to 12% with
comparable computation time when compared to ex-
isting attention-based methods.

The remainder of the paper is structured as follows. We first
describe related work in Section 2 and study the impact of
model size in tracking performance and speed in Section 3.
In Section 4 details of AttTrack is presented. We present
experimental results in Section 5, followed by a conclusion
in Section 6.

2. Related Work
2.1. Knowledge distillation

Knowledge Distillation (KD) was first proposed by Hin-
ton et al. [14], which aims to train a student (a smaller
and faster) model by transferring knowledge from a teacher
(a bigger and slower) model. This knowledge in the form
of softened outputs of the teacher model is more informa-
tive than one-hot vectors in training data. Subsequent stud-
ies improved upon [14] and devised various ways to ease
the training of small models with few trainable parame-
ters. Romero et al. [31] proposed FitNet, which uses the
intermediate representation learned by a teacher model to
change the structure of a small model from being wide and
shallow to narrow and deep. Knowledge transmission was
considered as a distribution matching problem in [16]. De-
spite success of KD in classification problems, the needs for
bounding box regression and heatmap estimation in object
detection introduce additional obstacles. To extend KD to
object detection Chen et al. [3] included a feature imitation
loss into the detection loss to use the intermediate features

of the teacher as hints for the student model. In [21], the au-
thors devised MIMIC, an extended KD for detector models
by employing a fully convolutional feature mimic architec-
ture to transfer knowledge for each pixel individually. In
order to avoid teacher supervision for background regions,
Mehta et al. [23] introduced objectness scaled distillation
for one-shot object detectors. Similarly, our method uses
the attention mechanism of the teacher to train the student
model on softer labels. However, the key distinction be-
tween our AttTrack and the aforementioned approaches is
that during the inference time, the student model uses real
teacher outputs, to calibrate tracking outputs and achieve
better accuracy.

2.2. Attention mechanisms in object tracking

There is a long line of studies that combine the con-
cept of attention with machine learning. Human attention
mechanism theories [30] inspired early efforts on attention-
based learning such as [19, 8]. Attention has been used
in a wide range of machine learning tasks including deep
learning-based video object tracking. Fiaz et al. [10] pro-
posed a channel attention method that gives higher weights
to channels that help with target classification and localiza-
tion. Huang et al. [15] proposed an attentional online update
paradigm for siamese visual tracking to improve the perfor-
mance of a tracker by utilizing knowledge extracted from
prior tracking tasks. In [32] residual attention modules are
introduced in similarity tracking at multiple levels of feature
representation, resulting in improved discrimination quality
for similarity searching. Zhang et al. [40] created an atten-
tion retrieval network that uses learning masks to conduct
soft spatial constraints on features from a tracking backbone
network, mitigating the impact of background clutter.

2.3. Trainable attention mechanism for object de-
tection

Researchers have explored attention mechanisms in ob-
ject detection to enhance feature representation. The en-
coder and decoder stages of the object detecting system pre-
sented in [7] use a dynamic attention approach. The atten-
tions are determined by size, feature dimension, and spatial
features using a convolution-based encoder. In [36] the
authors proposed a feature pyramid network to object de-
tection in remote sensing images, adapting two types of at-
tention mechanisms: a) global spatial attention that extracts
spatial location-related features to improve the positioning
ability of the object detector, and b) pixel feature atten-
tion that expands the size of receptive fields that makes the
model learn more image details. Reverse attention was ex-
plored in [4] to assist top-down side-output residual learn-
ing in order to acquire more accurate residual features and
handle missing object areas and details. In [33], Wang et al.
applied a pyramid attention module in their deep saliency
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model to give more weight to salient regions while extract-
ing multi-scale characteristics from input images. In con-
trast to the previous researches, to achieve domain sensitiv-
ity in object detection, Wang et al. [34] utilized a domain
attention module for universal object detection.

AttTrack is orthogonal to the previous attempts and can
be used in conjunction with other attention-based meth-
ods. It takes advantage of the knowledge of more complex
teacher models at both training and inference times.

3. Preliminary Study of Model Sizes on Track-
ing Performance

To motivate our approach we first conduct empirical
evaluations on the MOT17 dataset to assess the performance
of tracking models with different model sizes.

3.1. Computation time break-down

Object detection, feature extraction, and object associa-
tion are the three components of a conventional deep neu-
ral network (DNN)-based trackers. In [26], it has been
reported that object detection is the most time-consuming
part of the tracking process. Therefore, this study focuses
on reducing the computing cost of object detection while
maintaining the overall tracking performance.

3.2. Experimental Setting

Object detection. There are two main categories of ap-
proaches in DNN-based object detection. Two-stage ap-
proaches first extract regions of interest (Rols) and then
classify and regress the Rols. R-CNN [13] and Faster-
RCNN [29] are two widely used object detection models in
this category. In the second category, one-stage approaches,
directly identify and regress objects of interest. For exam-
ple, YOLO [28] divides an input image into S x .S grids and
performs region classification and regression.

In this work, we choose FairMOT [39], a state-of-art
(SOTA) one-stage object detection model for three reasons.
First, one-stage object detectors tend to be faster than two-
stage object detectors. Second, with the YOLOVS [18]
backbone, FairMOT results in a good trade-off between
speed and computation complexity. Third, for each iden-
tified object, FairMOT computes re-ID features, which can
be utilized in object association and tracking.

Model size. We evaluate three models following the
YOLOVS5 architecture but with different sizes: YOLOVS,
YOLOv5-mid (a model with half of the channels in each
layer of the base model), and YOLOvS5-small (a model with
a quarter of the number of channels in each layer of the
base model). All three models are pre-trained on the COCO
dataset (for object detection task) and then trained on the
MOT-17 dataset (for multi-object tracking task).

Performance metric. MOTA and IDF1(F1) are com-
monly used in MOT to assess tracking performance. An

MOTA score is calculated as follows:

2, FP, + FN, + IDSW,
> GTy ’

where t denotes the frame index, F'P;, F'IN;, and IDSW;
denote the number of false positive, false negative, and ID
switched objects, respectively, and G1" denotes the number
of ground truth bounding boxes.

Experiments are conducted on an NVIDIA GTX 3080
graphical card with 8 GB GDDR®6, running a docker on
Ubuntu 20.04. The system is built using Pytorch v1.8 and
CUDA v11.3.

MOTA=1-

6]

3.3. Results and Observations

The tracking performance of the three models on the val-
idation dataset is shown in Table 1. It is clear that lowering
model size leads to a decrease in tracking accuracy but ac-
celerated inference (measured in frame per second (FPS)).
YOLOv5-mid, for example, is faster than the base model
at the cost of a 5.5% drop in the MOTA score. Similarly,
YOLOvVS5-small suffers around a 23.5% drop in MOTA but
is 1.35 times faster than the base model.

Figure 1 illustrates the tracking performance for the full
model and the small model. Compared to the full model, the
small model fails to detect some objects, especially those
that are far away, partially occluded, or small sizes. There-
fore, our main goal is to train an efficient small neural net-
work using knowledge from a big model to attain compara-
ble performance. Unlike existing works on attention-based
approaches, knowledge transfer is performed both during
the training and inference stages.

Table 1: Impact of model size on tracking performance

Model IDF1(%)T | MOTA(%)T | FPST | Parameter size
YOLOVS 65.90 62.40 43.93 5.01M
YOLOVS5-mid 63.20 56.90 46.16 1.38 M
YOLOVS-small 44.70 38.90 59.32 031 M

4. The AttTrack Framework

Figure 2 shows the schematics of the proposed online
attention transfer approach. AttTrack employs a teacher
model to accurately detect objects from every K frames
at the inference time, and a student model combines this
knowledge in its tracking model in the interim K — 1 frames
as depicted in Figure 2.

We formulate the video based object detection and track-
ing problem as follows: given a set of N input frames
X = {z1,29,...,2x5} where z,, € R3>*H*W  the ob-
jective is to first obtain set of M, bounding boxes B; =
{bi,1,bi2,...,bi ar, }, where b; ; = {rect; j, ¢: ;}, rect; ;
denotes the 4-dim vector (center coordinates, height and
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Figure 1: Demonstration of tracking results from a small and a large model. The YOLOvS5-small model performs less
accurately than the YOLOV5 model due to partially occluded or small-size objects.
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(b) Inference stage: attention transfer for two cycles

Figure 2: Schematic illustration of attention transfer. The
teacher model is used for every K = 4 frames.

width) associated with the jth bounding box and ¢; ; rep-
resents the extracted visual features of the bounding box in
frame ¢. Consequently, object tracking aims to construct
the set of trajectories T3 = {B;,id;}, where B; is the set
of detected bounding boxes in trajectory ¢, ¢d; denotes the
trajectory ID.

4.1. Online Attention Transfer

Modern object detectors such as FairMOT output
heatmaps in addition to bounding boxes, where the value of
each pixel in the heatmap is its likelihood of being an object
center. Let the heatmap output by the teacher for keyframe
k be ht:

hy, = Hi(zy) )

where H represents the function associated with the
heatmap head of the teacher model. Then, we denote the
student model output y;;_ ; at frame k + i as below:

Yii = 9(f (@r4i), ®(hy,, 1)) 3)

where ¢ stands for the number of frames after the keyframe
k and ®(h}, i) extrapolates the heatmap of teacher in frame
k to get its heatmap in frame k + 4, f is the generated fea-
tures by backbone of the student model and g is the fusion
function to be explained in Section 4.3.

Figure 3 depicts system architecture of AttTrack. A
non-key frame is processed by the student model, to gen-
erate intermediate features. The student model then incor-
porates updated attention features based on the heatmap of
teacher on the most recent keyframe. With the fused fea-
tures, bounding box regression and re-Id networks are ap-
plied to generate the bounding box and re-ID features of
each object. During tracking, a trajectory is constructed
from detected objects that are similar in appearance-based
re-ID features and have a large intersection of union (IoU).
Specifically, object association is done in two steps: first,
visual features are used to match a trajectory and a detected
object. Second, if a match is found, the IoU measure is ap-
plied to determine whether a true match is obtained. If the
object is matched to a trajectory, the trajectory is extended;
otherwise, a new trajectory is initiated. Cosine similarity is
used in computing the similarity of visual-based features.
A Kalman filter [39] is then applied to update the position
state of each trajectory in the current frame.

Since the teacher model is applied for frames between
two keyframes, the heatmaps (attention) of teacher are out-
dated for any frame in-between. To extrapolate the heatmap
of teacher for these frames, we devise an attention update
approach next.
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Figure 3: System architecture: AttTrack applies a teacher model every K frames, and computes updated states ®(h, %)
(attention) for intermediate frames based on the teacher’s predicted heatmap hl, for frame k. The updated state is then fused
with the prediction on frame k + ¢ by a student model using a fusion network, resulting in object bounding boxes and re-

identification features for frame £ + 1.

4.2. Attention Update

The knowledge computed in earlier frames by the
teacher is beneficial to the student model. However, due to
the presence of moving objects, such information becomes
more outdated as the time elapses between the current frame
and the most recent key frame. Therefore, updates need to
be made from the teacher heatmap (Figure 4). Consider B},
the set of objects detected by the teacher model in frame k.
We first estimate the velocity of each identified object based
on bounding box locations from previous frames. The ve-
locity is then used to predict the subsequent locations of the
corresponding object in frame k +¢,i = 1,2, ..., K — 1 us-
ing a simple linear kinematic equation. The heatmaps are
updated accordingly.

The updated heatmaps are most beneficial when the stu-
dent model fails to detect an object due to poor visibility.
However, when object movements are irregular, a new ob-
ject enters the scene or an object exits the scene, the infor-
mation of teacher can still be stale. Therefore, the updated
heatmaps should be combined with the prediction from the
student model for the current frame.

4.3. Network Design

For the teacher model, we can utilize any existing ob-
ject detection backbone such as DLA34 [37]. The student
model, like the teacher model, creates bounding boxes and
re-ID features for observed objects. For faster computa-
tions, the student model employs fewer parameters than the
teacher model in its network backbone. The student model
receives attention features and input image as inputs and
fuses the attention features and its own calculated features
as:

g(f(xkvLi)a(I)(h;wi)) (f(kari)a(I)(hl;c’i))

where fusion function g appends the extrapolated features
from teacher with new features calculated by the student
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(a) States of outputs of teacher are updated using linear kinematic equation
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(b) Inference stage: attention transfer

Figure 4: Attention state update. We choose K = 4 as num-
ber of frames between every keyframes. At frame Fj, and
Fy 4 teacher model is performed whereas between these
two keyframes the student model is applied.

backbone. The fused features are fed into heatmap and re-
ID branches as defined in [39].

The student model is trained using the following loss
function:

‘Cstudent =
1,1

7(£’heatmap + »Cboac) +

5 ( w1 ['identity + w1 + w2)7

)
which consists of learnable task based parameters w; and

wo, heatmap loss, box-size loss, and re-identification loss
defined in [39].

ew?

4.4. Cross-model Feature Learning

Switching from one model (for example, teacher) to an-
other (for example, student) can result in re-ID features that

1658



Heat Box Center
map  size offset

EENEN
£t 4 8

*
|

re-ID

Fused features

Shared
features @ —> @ 4—]
Deep model |:|

Extrapolated teacher
T heat map at time t

Received frame
attime t .
Figure 5: Student network architecture. The student model

has fewer parameters and takes two inputs: the input-frame
at time ¢ and estimated heatmaps of teacher up to time ¢.

Pivot features

ODOD0o000000 OOoDOoooooog

, N
N

D Emm -/,\\-- () i e g
Figure 6: Cross model feature learning. In the object asso-
ciation step, pivot features for EFM and re-ID features for

IFM are used. The re-ID features of the student model in
IFM are aligned with the teacher model.

follow different distributions. Running AttTrack on a video
clip necessitates multiple transitions between the teacher
and student models. When re-ID features mismatch be-
tween teacher and predictions of student, identity fragmen-
tation occurs, leading to reduced tracking accuracy. To miti-
gate the domain gap between the re-ID features produced by
the student and the teacher models, we propose two cross-
model feature learning approaches.

Explicit Feature Mapping (EFM): We use pivot features
to induce correlation between the computed re-ID features
by the teacher and the student models. This is done by
applying a single linear layer to map the re-ID features to
the number of identities (encoded as a one-hot vector) in
the training set. Both student and teacher models are sub-
jected to the linear layer. By mapping each identity to those
learned pivots in the training time, this approach lowers the
distance across two model domains in the inference time.

Implicit Feature Mapping(IFM): the former method re-
quires an additional compute unit in both the student and
teacher models, resulting in increased total computation
costs. In the second approach, we perform feature map-

ping implicitly for the student model by mincing the re-ID
feature layer in the teacher model. During training, the ex-
tracted features from the teacher model are used as an ad-
ditional supervision signal and the loss function is updated
as:

EW = £student(W) + ﬁid_att(W). (6)

where Lgiydent 18 the loss function in Eq.5 and L;q_ 44 1S
L2 loss of re-ID features.

5. Performance Evaluation

To qualify the performance of AttTrack, we conduct ex-
periments on a pedestrian tracking task. The MOTA score
is used to evaluate tracking accuracy, while FPS is used to
quantify tracking speed.

5.1. Datasets

We evaluate AttTrack on pedestrian tracking tasks on
two MOT datasets. We use 11 training video clips in the
publicly accessible dataset MOT17. We also provide the
results of AttTrack on MOT15 [1], which in addition to
low-resolution street view videos it includes videos from
PETS [9] and KITTI [11] datasets. Since the ground truth
of test sequences is not made public, each video is split into
two halves with the first half in the training set and the sec-
ond half in the test set. We also use the COCO dataset to
pre-train the models. To evaluate the tracking performance
of our models, we utilize the official evaluation method
from MOT Challenge [1].

5.2. Implementation Details

Experiments are conducted using the same hardware and
software setup as in Section 3.2. We use the Adam opti-
mizer to train our model across 35 epochs, with a starting
learning rate of le-5 that lowers every 25 epochs. A batch
size of 12 is used. Rotation and scaling are applied to aug-
ment the training set. The input frame size is 1088 x 608
pixels.

To evaluate the performance of AttTrack, we consider
two backbone models for the student model. The first is
DLA34-small, which offers a good trade-off in tracking per-
formance and speed, and is based on DLA34 used in [39]. It
has in total 16.55M parameters. The second one, YOLOVS5-
small, has the same architecture as YOLOvS5 [18] but with
only one-fourth of the parameters, allowing for fast compu-
tations and acceptable performance.

5.3. Baseline Methods

To evaluate AttTrack, we consider the following base-
lines: Teacher-only and Student-only: object detection in
the tracking pipeline only uses teacher and student mod-
els, respectively. Naive-Mix: which alternates between a
teacher and a student model every K frames and merges
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the tracking outputs of the two with no further informa-
tion sharing in training or inference; AttTrack w/o atten-
tion update (AttTrack-no-update), which transfers attention
from Teacher to Student at inference but does not update
the attention (i.e., ®(hl, i) = h}); and Layerwise, which is
similar to Naive-Mix but allows layerwise attention transfer
from the teacher to the student model in training[38].

5.4. Online-based Attention Transfer

Table 2 summarizes the performance of teacher models
with full-fledged DLA34 and YOLOVS backbones. The re-
sults for the student models with and without AttTrack, Att-
Track w/o attention update are given in Table 3. In Table
3, with or without AttTrack, the teacher model is executed
every 6 frames. The difference between the two lies in
whether attention transfer is performed or not. Similar to
the results in Section 3, smaller models have fast inference
time but suffer from lower accuracy. DLA34-small without
AttTrack, for example, is 1.52x faster at the price of 6.9
percent MOTA degradation. AttTrack improves the track-
ing performance of the student model by 1.6% and 5% for
DLA and YOLOVS, respectively. This shows the effective-
ness of attention transfer from the teacher model. Because
AttTrack invokes the teacher model every 6 frames, the run-
ning time of AttTrack is longer than those without. In Table
3, we further compare AttTrack and AttTrack-no-update.
As expected, AttTrack-no-update is faster due to less com-
putation but has slightly degraded performance. The rela-
tive small gap between the two can be attributed to small
changes in the scenes when K = 6.

To better understand the impact of K on AttTrack, Table
4 lists the results of different student models under various
K. As expected a smaller X' means more frequent exe-
cution of the teacher model, resulting in slower processing
time and more accurate tracking outputs, and vice versa.
YOLOv5-small runs faster than its DLA34 counterpart but
with lower accuracy.

Table 2: Performance of Teacher-only and Student-only
baselines on the MOT'17 dataset

Baseline Model MOTA (%) FPS
Teacher-only DLA34 68.30 20.78
YOLOVS 62.40 40.46

Student-only DLA34 61.40 37.69
YOLOVS 38.90 59.32

Table 3: AttTrack model experiments with K = 6 on the
MOT17 dataset

Model AttTrack AttTrack-no-update Naive-mix

MOTA FPS MOTA FPS MOTA FPS

DLA34 63.00 30.80 62.90 31.30 61.40 31.65
YOLOVS 43.60 5090 | 43.40 52.24 38.60 53.13

Table 4: YOLOvS5 and DLA34 models with IFM on the
MOT17 dataset

K YOLOVS-small DLA34-small
MOTA FPS MOTA FPS
2 48.50 45.09 64.50 26.24
4 43.90 49.96 63.20 29.28
6 43.60 50.91 63.00 30.80

5.5. Alternative teacher

We conduct further investigations to see whether the rep-
resentational power of teachers can affect the performance
of the student model. Specifically, we compare the use of
DLA34 in the teacher model and transfer the knowledge to
YOLOvVS-small student model. The heatmap computed by
a DLA34 teacher can still be useful to the YOLOv5-small
student model, and the re-Id features can be aligned using
the mechanism in Section 4.4.

The DLA34 teacher provides better tracking perfor-
mance than the YOLOvS5-based equivalent, as shown in Ta-
ble 5, although it runs slower than the YOLOVS teacher.
The gap in tracking performance between YOLOVS and
DLA teacher-based models reduces as K increases as the
impact of YOLOv5-small becomes more dominant. Over-
all, the results in Table 5 show that tracking performance
and processing time can be considerably impacted by the
choice of the teacher architecture.

Table 5: Compression of Different Teacher Models using
EFM on the MOT17 dataset.

K | YOLOvS —YOLOvS5-small DLA34 —YOLOv5-small
MOTA FPS MOTA FPS

2 50.40 44.69 52.00 28.72

4 46.90 47.60 47.70 36.41

6 45.90 48.83 46.20 40.32

Table 6: Importance of cross-model feature learning on the
MOT17 dataset. EFM: employing an additional convolu-
tion layer to translate features from the teacher and student
models to the common features space. IFM: student model
mimics re-ID feature generated by the student model.

Model K EFM IFM No Fea. Learning
MOTA | FPS | MOTA | FPS | MOTA FPS

2 6530 | 2540 | 6450 | 2624 | 64.30 26.30

DLA34 4 64.10 | 2836 | 63.20 | 29.28 | 63.20 29.59
6 63.80 | 29.99 | 63.10 | 30.80 | 63.20 31.01

2 5040 | 44.69 | 4850 | 45.09 | 47.50 45.57

YOLOv5 | 4 4690 | 47.60 | 4390 | 49.96 | 43.20 50.22
6 4590 | 48.83 | 43.60 | 5091 42.90 51.03

5.6. Cross-model feature learning

The usefulness of the learned features for transferring
knowledge between teacher and student models is evaluated
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in Table 6. In the experiments, EFM is done by applying a
single linear layer on the generated re-ID features. As can
be observed, the inclusion of this extra layer reduces the
visual feature distance between the teacher and the student,
and produces more precise tracking output. The use of EFM
for K = 4 has the greatest influence on the YOLOVS stu-
dent model, accounting for 3.7% of more accurate tracking
performance. As we can see, cross-model feature learning
is beneficial and has more impact on YOLOVS than it does
on DLA34-small. Furthermore, EFM yields better track-
ing performance than IFM but incurs higher computation
costs. On DLA34-small, for instance, utilizing EFM with
K = 2 achieves a 65.30% MOTA score and 25.40 frame
rate, whereas the use of IFM results in a 0.9% lower MOTA
score and a 0.84 faster FPS.

5.7. Comparison with layer-wise attention transfer

In this set of experiments, we compare AttTrack with
the layer-wise attention transfer proposed in [38] (baseline
Layerwise). The main difference between our approach
and [38] is that the layer-wise solution transfers attention
knowledge to the student model during the training time
only, and the student model performs tracking entirely on
its own, while our AttTrack leverages teacher knowledge in
both training and inference phases. We implement a layer-
wise attention approach for the MOT task since [38] is orig-
inally built for object classification tasks. The results are
shown in Figure 7 for 11 different K's between two and
twelve. For fair comparison, in the baseline layer-wise at-
tention transfer, we also invoke the teacher model every K
frames though there is no knowledge transfer between the
teacher and the student models at inference time. 2nd order
polynomial fitting functions for the AttTrack and baseline
results are also displayed in the figures. When comparing
AttTrack to layer-wise attention, we find that AttTrack ex-
ceeds the baseline significantly with comparable processing
time on tracking accuracy. The difference with YOLOVS is
more pronounced. For example, AttTrack is 4 percent better
with only 2 percent lower FPS when K is between two and
four. The gap in computation time between AttTrack and
baseline drops for the DLLA34-based tracker. This is be-
cause the overhead of attention transfer in AttTrack is shad-
owed by the high compute cost of the DLA34 backbone.

5.8. Experiments on MOT15

To verify the generalizability of AttTrack to other
datasets, we further conduct experiments on MOT15. The
performance of Teacher-only and Student-only is given in
Table 7, and the comparison between AttTrack and Layer-
wise for different K’s is given in Table 8. Similar to the
trends with MOT17, we observe that AttTrack outperforms
Layerwise and Student-only in MOTA, and is considerably
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Figure 7: Results of attention transfer for AttTrack and
Layerwise under 11 different K's € [2,12] on the MOT17
dataset

faster than Teacher-only.

Table 7: Performance of Teacher-only and Student-only
baselines on the MOT15 dataset

Baseline Model MOTA (%) FPS
Teacher-only DLA34 68.80 21.70
YOLOVS5 61.00 54.41
Student-only DLA34 66.90 41.47
YOLOV5 52.70 58.80

Table 8: AttTrack and Layerwise on the MOT15 dataset

Model K AttTrack-EFM Layerwise
MOTA | FPS MOTA | FPS

2 67.60 | 27.99 | 6590 | 28.64
DLA34 4 67.40 | 3232 | 6570 | 32.55
6 67.30 | 35.19 | 65.60 | 35.90
2 56.50 | 55.17 55.00 | 56.63
YOLOvS | 4 54.10 | 56.13 52.60 | 57.93
6 5290 | 56.46 | 5230 | 58.39

6. Conclusion

AttTrack is a teacher-student attention transfer approach
for accelerating multi-object tracking tasks. It transfers
knowledge from a complex teacher to a lightweight student
model in both the training and inference stages. AttTrack is
model agnostic and can be used in conjunction with other
techniques to accelerate neural network inference. Because
AttTrack adopts cross-model feature learning, it is capable
to transfer knowledge from any teacher to any student net-
work with different network architectures (e.g. YOLOvV5
or DLA34). When compared with traditional attention-
based methods, our work improves tracking accuracy with
marginal degradation in inference time. As part of future
work, we are interested in investigating attention mecha-
nisms with adaptive window sizes.
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