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Abstract

Knowledge distillation is a process of distilling informa-
tion from a large model with significant knowledge capac-
ity (teacher) to enhance a smaller model (student). There-
fore, exploring the properties of the teacher is the key to im-
proving student performance (e.g., teacher decision bound-
aries). One decision boundary exploring technique is to
leverage adversarial attack methods, which add crafted per-
turbations within a ball constraint to clean inputs to create
attack examples of the teacher called adversarial examples.
These adversarial examples are informative examples be-
cause they are near decision boundaries. In this paper, we
formulate a teacher adversarial local distribution, a set of
all adversarial examples within the ball constraint given
an input. This distribution is used to sufficiently explore
the decision boundaries of the teacher by covering the full
spectrum of possible teacher model perturbations. The stu-
dent model is then regularized by matching the loss between
teacher and student using these adversarial example inputs.
We conducted a number of experiments on CIFAR-100 and
Imagenet datasets to illustrate this teacher adversarial lo-
cal distribution regularization (TALD) can be applied to im-
prove performance of many existing knowledge distillation
methods (e.g., KD, FitNet, CRD, VID, FT, etc.).

1. Introduction
Transferring knowledge from an excessive deep learn-

ing model (teacher) to a lighter model (student) is known
as knowledge distillation (KD). The light-weight student is
advantageous when deployment costs need to be lowered
due to the devices’ constrained computing and memory ca-
pabilities. Hinton et al. [21] originally introduced the ob-
jective of KD loss, which minimizes the KL divergence be-
tween the teacher and student outputs. This KD loss ex-
tracts knowledge from the teacher’s class probabilities with
the temperature softmax to guide the training of the student.
Therefore, the student network is developed to be a better
classifier than the student developed without KD loss.

Many studies improve the KD loss [21] for matching the
teacher and student outputs such as label smoothing [25],
virtual teacher [48], and decouple KD loss [51]. Moreover,
deep learning models are well-learned multiple levels of
feature representation [3]. Feature-based KD is adopted in
the works [40, 37, 9], in which teacher provides intermedi-
ate representations and hints for training the student. These
previous approaches attempt to manipulate various network
components to enhance the knowledge distillation process.
The work [12] shows that input samples close to the clas-
sifier’s decision boundaries affect performance more than
samples further from it, which can help to regularize the stu-
dent [20]. Therefore, we can effectively transfer the teacher
properties to the student by utilizing informative samples
near the teacher decision boundaries.

One strategy for exploring decision boundaries is uti-
lizing adversarial attack approaches. The adversarial at-
tack [18, 50, 13, 31, 20] transports clean inputs to the
model’s decision boundaries by iteratively adding specially
designed perturbations inside of a ball constraint to produce
adversarial examples. Although finding a decision bound-
ary is not the primary objective of an adversarial attack, they
are closely related to each other [7]. Moreover, the vanilla
adversarial attacks [18, 50, 13, 31, 20, 5, 6] can only cre-
ate one adversarial example, which may not be enough to
examine the full spectrum of possible teacher model pertur-
bations. The works [42, 34] also show how attacks with ran-
dom initialization can lie together and lose diversity, which
reduces the quality of adversarial examples.

In this paper, we introduce a teacher adversarial local
distribution (TALD) regularization for knowledge distilla-
tion, which can be used to improve many existing KD ap-
proaches. Our contributions are summarized as follows:

• We explore the teacher decision boundaries by intro-
ducing the teacher adversarial local distribution, a set
of all adversarial examples within the constraint given
an input that maximize a teacher loss function.

• We find TALD by using a multiple particle-based
search named Stein Variational Gradient Decent
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(SVGD) [29]. The SVGD sufficiently approximates
the TALD without any assumptions and creates more
diverse adversarial examples. The student decision
boundaries are then regularized by matching the loss
between teacher and student using these adversarial
example inputs.

• We show that our method can be adapted well to var-
ious existing methods. We conduct various experi-
ments on CIFAR-100 and ImageNet to demonstrate
our TALD regularization can improve performance of
many existing methods such as KD [21], FitNet [40],
AT [49], SP [44], CC [38], VID [1], RKD [36],
PKT [37], AB [20], FT [24], NST [22], CRD [43],
SSKD [47], and HSAKD[11].

2. Related Works

Knowledge distillation. Hinton et al. [21] origi-
nally introduced knowledge distillation (KD) which extracts
knowledge from class probabilities of a large deep learn-
ing model (teacher) to a lighter model (student). Many
approaches have adopted the class-probability knowledge
transfer perspective of KD [21] to improve model com-
pression such as class-distance loss [25], label smooth-
ing [33], adaptive regularization [15], virtual teacher [48],
and decoupling KD loss [51]. In addition, deep learning
models are well-learned in multiple levels of feature rep-
resentation [3]. Romero et al. exploited the intermediate
teacher representation that the student model is trained by
matching the teacher responses from multiple hidden lay-
ers named FitNets [40]. Various approaches have been pro-
posed inspired by [40] to significantly improve the student
model. The teacher feature maps are selected using at-
tention mechanism to omit redundant knowledge transfer
from the teacher to student [26, 22]. The knowledge from
the teacher can distill to the student and be explained [35].
Zhou et al. [52] explored parameter sharing of intermediate
layers of the teacher model. Cross-layer knowledge distil-
lation [9] adaptively assigns proper teacher layers for each
student layer via attention allocation that matches the se-
mantics between teacher and student. The work [19] pro-
posed an efficient use of the pre-trained teacher’s intermedi-
ate representations. Contrastive learning loss was proposed
by Tian et al. [43] to capture correlations and higher order
output dependencies. Hierarchical self-supervised learning
technique was proposed in the work [11] to improve the stu-
dent. However, these above approaches have not considered
the teacher decision boundary perspective. In this paper,
we introduce the regularization using the teacher decision
boundary information to add an additional help to enhance
the teacher property transfer to improve the student. Our
regularization loss only requires the teacher to be differen-
tiable and has no additional learnable module. Therefore,

we can easily add the regularization loss to many existing
KD methods.

Adversarial attack. State-of-the-art deep neural net-
works are reportedly vulnerable to attacks [18, 41]. Fast
Gradient Sign Method (FGSM) [18], Projected Gradient
Descent (PGD) [30], and Auto-Attack [13] are a few ex-
amples of adversarial attacks that add specially crafted per-
turbations to clean inputs to produce adversarial examples.
The most popular technique for finding perturbations is us-
ing gradients to maximize a model’s loss on given a clean
input while limiting the perturbation size smaller than a
specified amount referred to a radius constraint epsilon. In
other words, the adversarial attacks find a path to trans-
port clean inputs to cross model decision boundaries, which
means to fool the model prediction. Due to the threats,
many methods have been proposed for defense techniques
using adversarial examples such as [31, 39, 46, 50, 28, 4].
Recently, the works [16, 34] proposed adversarial distribu-
tion training to improve the model robustness. In knowl-
edge distillation, exploring the properties of the teacher
(e.g., decision boundaries) is the key to improving student
performance. Therefore, we leverage the attack to explore
the teacher decision boundaries using generated adversar-
ial examples. These adversarial examples are then used to
regularize the student.

Knowledge distillation using adversarial attacks.
Many previous approaches use knowledge distillation for
transferring robustness from a well-defended teacher to a
student. Robustness transfer from a robust teacher to a stu-
dent using KD loss [21] technique was proposed by the
work [17]. Chan et al. [8] trained a student model’s in-
put gradients to match those of the robust teacher to gain
robustness. In addition, the work [10] proposed a noisy
feature distillation, a new transfer learning method that im-
prove robustness. Other works [23, 2] used contrastive
learning loss to transfer robustness. These above distilla-
tion approaches only attempt to distill robustness to defend
from adversarial attacks. Heo et al.’s paper [20] proposed
a BSS attack for exploring the teacher’s properties using
adversarial examples to increase the student’s clean input
accuracy. This BSS can only produce one adversarial ex-
ample, which insufficiently explores the full spectrum of
possible teacher model perturbations [42, 34]. In this pa-
per, our approach sufficiently explores teacher’s properties
(e.g., decision boundaries) using the teacher adversarial lo-
cal distribution (TALD). The student is then regularized by
TALD regularization to improve clean input accuracy.

3. Method
In this section, we introduce our teacher adversarial local

distribution (TALD) regularization that can be used to im-
prove performance of many previous knowledge distilaltion
methods (e.g., KD, FitNet, CRD, SSKD, etc.). We denote

98774682



the large classifier teacher model by T with parameters θT .
The teacher is pre-trained and fixed. The student is a smaller
model which needs to be trained with help from the teacher.
The smaller student model is S parameterized by θS . Let
input x ∈ Rd be our d-dimensional clean input data in a
space X , and (x, y) ∼ PD is our data-label distribution.

3.1. Teacher adversarial local distribution

We use adversarial examples, which are near decision
boundaries, to explore teacher decision boundary properties
called teacher adversarial examples. The student decision
boundaries are then regularized by matching the teacher
loss and student loss given these input examples. These
adversarial inputs can be found by attacking the teacher
model. The attack adds crafted perturbations within a ball
constraint to clean input x, which maximizes the teacher
loss function ℓ to generate adversarial examples xadv . We
denote the ball constraint of xadv by Cϵ(x) = {xadv ∈ X :
||xadv −x||p ≤ ϵ}, where xadv is adversarial example, and
ϵ is a ball constraint radius with respect to a norm || · ||p.
The teacher attack can be defined by the maximization op-
timization in Eq. 1.

xadv = argmax
xadv∈Cϵ(x)

ℓ(xadv,x; θT ), (1)

where ℓ is the Kullback-Leibler divergence loss (DKL)
DKL(T (xadv), T (x)) [50]. However, vanilla attack meth-
ods [50, 13, 31, 20] can only create one adversarial ex-
ample, which could be insufficient to explore entire space
of possible teacher model perturbations. In addition, the
works [42, 34] illustrate even attacks with random initial-
ization can also lie together and lose diversity that reduces
the quality of adversarial examples.

We propose to improve the vanilla adversarial attack op-
timization (Eq. 1) with a teacher adversarial local distribu-
tion (TALD), which captures the distribution of all teacher
adversarial examples around clean input x within the con-
straint Cϵ(x), as shown in Eq. 2.

PθT (xadv|x) : =
eℓ(xadv,x;θT )∫

Cϵ(x)
eℓ(x

′
adv,x;θT )dx′

adv

=
eℓ(xadv,x;θT )

M(x; θT )
,

(2)

where PθT (·|x) is the teacher conditional adversarial lo-
cal distribution over Cϵ(x), and a normalization function
is M(x; θT ). Here we show that the TALD can sufficiently
represent the entire space of possible teacher perturbations.

3.2. TALD approximation using multiple particle-
based search

In this paper, we leverage a multiple particle-based
search method named Stein Variational Gradient Descent

(SVGD) [29] to find the TALD PθT (·|x) because finding
the denominator M(x; θT ) term in the Eq. 2 is intractable.
SVGD is a Bayesian inference algorithm that seeks a set
of points (or particles) to approximate the target distribu-
tion using iterative gradient-based updates. It has a simple
form that closely mimics the typical gradient descent for
optimization. This makes SVGD highly flexible and scal-
able, and can be easily combined with various state-of-the-
art techniques responsible for the success of gradient opti-
mization. While Markov chain Monte Carlo (MCMC) is
often slow and has difficulty reaching convergence, SVGD
efficiently approximates the target distribution by using an
off-the-shelf optimization solver and is easily applicable to
large datasets. It also enforces diversity of particles and
works without explicit parametric assumptions in its solu-
tion, demonstrating better than other particle-based SGLD
[45] and parametric-based method (with strong assumptions
such as the target distribution follows Gaussian distribu-
tions) [16].

We denote x1
adv,x

2
adv,x

3
adv, . . . ,x

k
adv ∼ PθT (·|x),

where xi
adv is a ith teacher adversarial example (named

teacher adversarial particle), and K = |{1, 2, . . . , k}| is
the number of adversarial examples. Here we show that our
method can sufficiently explore the teacher decision bound-
aries by using multiple adversarial particles compared to
vanilla attacking methods [50, 13, 31, 20]. SVGD is used
to find a set of teacher adversarial particles to approxi-
mate the teacher adversarial local distribution PθT (·|x).
First, the particles {x1

adv,x
2
adv,x

3
adv, . . . ,x

k
adv} are initial-

ized by adding uniform noises to x constrained within the
Cϵ(x). They are then iteratively updated as well as pro-
jected to Cϵ(x) until reaching the termination conditions
(line 4 in Alg. 1). The normalization function M(x; θT )
is estimated based on the number of particles (K), which
is implicitly demonstrated in the mean operator of line 5 -
Alg. 1. Moreover, the two terms of line 5 in Alg. 1 have dif-
ferent major roles: (i) the first one transports the adversarial
particles more toward to the high density areas of PθT (·|x)
and (ii) the second term prevents all particles from collaps-
ing into local modes of PθT (·|x) (e.g., pushing the particles
away for enhancing the particle diversity). We empirically
use l2 normalization (norm2), and radial basis function ker-
nel F (x′,x) = exp

{
−||x′−x||2

2σ2

}
with σ=1e-3 in this pa-

per. We show that our method in a generalization of pre-
vious attacks when K = 1 from an asymptotic analysis of
adversarial local distribution approximation section in the
supplementary material.

3.3. Teacher adversarial local distribution (TALD)
regularization

In this section, we propose our Teacher Adversarial Lo-
cal Distribution (TALD) regularization. Recall that we form
the TALD which is approximated using the adversarial par-
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Input: clean example x ∼ PD. Number of
adversarial particles K. Radius ϵ of the
constraint Cϵ. Normalization function
normp. Initial noise factor τ . Uniform noise
U(−ϵ, ϵ). Step size updating particles η.
Number of iterations L. Kernel function F .

1 Initialise a set of K particles and project to the
Cϵ(x) constraint {xi

adv ∈ Rd, i ∈
{1, 2, . . . , k}|xi

adv =
∏

Cϵ
(x+ τ ∗ U(−ϵ, ϵ))};

2 for l = 1 to L do
3 for i = 1 to K do
4 x

i,(l+1)
adv =∏

Cϵ

(
x
i,(l)
adv + η ∗ normp

(
ϕ(x

i,(l)
adv )

))
;

5 where ϕ(xadv) =
1
K

∑K
j=1

[
F (x

j,(l)
adv ,xadv)∇x

j,(l)
adv

logP (x
j,(l)
adv |x) +

∇
x

j,(l)
adv

F (x
j,(l)
adv ,xadv)

]
;

6 end
7 end
8 return {x1,(L)

adv ,x
2,(L)
adv , . . . ,x

k,(L)
adv } ;

Output: Set of adversarial particles
{x1

adv,x
2
adv, . . . ,x

k
adv} ∼ PθT (·|x)

Algorithm 1: Stein Variational Gradient Descent solver
to approximate the teacher adversarial local distribution
PθT (·|x).

ticles generated by SVGD. We now illustrate how to use
the teacher adversarial particles for knowledge distillation.
We propose the TALD regularization term (ℓTALD) with re-
spect to the student parameters θS at a position x with label
y:

ℓTALD :=min
θS

Exadv∼Pθ(·|x)[
∥ℓCE(T (xadv), y)− ℓCE(S(xadv), y)∥22

]
,

(3)

where ℓCE is the cross-entropy loss function.
For each x, SVGD samples K adversarial particles from

the high density areas of PθT (·|x) to sufficiently explore
the teacher decision boundaries, while the vanilla attack-
ing methods [50, 13, 31, 20] only generate one adversar-
ial example. We use these adversarial particles to regu-
larize decision boundaries of the student by matching the
cross-entropy loss between the teacher and student model,
as shown in Eq. 3.

Here we show how to apply TALD regularization to ex-
isting knowledge distillation methods. The adversarial par-
ticles are generated with the differentiable teacher model
and do not need additional learnable modules, as shown in
Alg. 1. Therefore, we can easily combine to existing knowl-
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Figure 1: Diversity comparison of our method and BSS with
random initialization using sum of square error (SSE) using
the pre-trained (a) resnet32x4 and (b) wrn-40-2 architec-
tures. The figure illustrates the average of mean (point) and
standard deviation (bar) of the three different inputs from
CIFAR-100.

edge distillation losses, as shown in Eq. 4.

min
θS

E(x,y)∼PD

[
ℓS + ℓKD + ℓAM + λℓTALD

]
, (4)

where ℓS is the student cross-entropy loss ℓCE(S(x), y).
ℓKD is the original knowledge distillation loss proposed by
Hinton et al. [21]. ℓAM can be an additional loss from other
existing methods such as FitNet [40], CRD [43], etc.. λ is
the weighted loss hyper-parameter1.

4. Experiments
In this section, we conduct various experiments on

CIFAR-100 [27] and ImageNet [14]. In Section 4.1, we
compare the diversity between the adversarial particles gen-
erated by our method and adversarial examples from BSS
with random initialization. We then show that TALD reg-
ularization can improve the performance of many exist-
ing methods in Section 4.2 and 4.3. We evaluate decision
boundary similarity between the teacher and student in Sec-
tion 4.4. The effect of the number particles to the student
is studied in Section 4.5. Please refer to the supplementary
material for all experimental settings.

4.1. Diversity of teacher adversarial particles vs.
random initialization

Setting. We use pre-trained classifiers (e.g., resnet32x4
and wrn-40-1 architecture) on CIFAR-100 in this experi-
ment. All pre-trained models are fixed. BSS [20] is an at-
tack method that can generate one adversarial example at
one run. We run BSS multiple times with random initial-
ization to generate adversarial examples compared to the
adversarial particles using our method. We set the same ra-
dius ball constraint ϵ, updating step η, and uniform noise

1Note that we ignore other weighted loss hyper-parameters.
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factor τ initialization. Note that all adversarial examples
and particles fool the classifiers.

Experimental setup. We randomly select three images
from CIFAR-100 dataset. Given these inputs, we gener-
ate adversarial examples using BSS with random initializa-
tions. The adversarial particles are generated by our method
with different numbers of particles, as shown in Fig. 1. We
then calculate sum squared error (SSE) between these par-
ticles to evaluate their diversity. At each setting of the num-
ber of particles, we calculate the average of the means and
standard deviations of SSE.

Result. Note that the advantages are illustrated in the
Alg. 1 where the first and the second term of SVGD can
sample in the high density areas and enforce diverse ad-
versarial particles from the local distribution, respectively.
Previous attack methods [50, 13, 31, 20] can generate mul-
tiple adversarial examples using random initialization but it
can lie together and lose diversity [42]. Therefore, the ad-
versarial particles from our method are diverse. In Fig. 1,
our method has bigger SSE compared to BSS with random
initialization because generated samples are more diverse.

4.2. TALD regularization with existing methods on
CIFAR-100

Setting. In this experiment, we evaluate TALD regular-
ization on model compression of a large network (teacher
T) to a smaller one (student S). We use CIFAR-100 [27],
which contains 50K training images with 500 images per
class and 10K test images. We apply our TALD regular-
ization to improve performance of existing methods using
CIFAR-100. The existing methods is implemented from
RepDistiller2 and HSAKD3 repositories. Our regularization
is combined with these existing methods without changing
parameter settings on CIFAR-100. We set the radius con-
straint ϵ = 0.3, number of particles K = 4, and λ = 0.01.

Experimental setup. The goal of knowledge distilla-
tion is to improve performance of the student S by using the
teacher knowledge. In this experiment, all teacher T models
are pre-trained on CIFAR-100 and fixed. The accuracy of
all models trained on CIFAR-100 with only ℓS is shown in
Table 1. The TALD regularization is intensively evaluated
on many existing methods such as KD [21], FitNet [40],
AT [49], SP [44], CC [38], VID [1], RKD [36], PKT [37],
AB [20], FT [24], NST [22], CRD [43], BSS [20], and
HSAKD[11]. We setup various teacher-student neural net-
work architectures for the same architecture style (Fig. 2)
and across-architecture style (Fig. 3) knowledge distillation
settings. BSS[20] is an attack proposed for the knowledge
distillation task. Therefore, we compare BSS with KD to
our TALD with KD[21], as shown in Fig. 4.

Result. Recall that the proposed method is an additional

2https://github.com/HobbitLong/RepDistiller
3https://github.com/winycg/HSAKD

Architecture Accuracy (%)
wrn-40-2 75.61
wrn-40-1 71.98
wrn-16-2 73.26
resnet56 72.34
resnet20 69.06

resnet32x4 79.42
resnet8x4 72.5

ShuffleNetV1 70.5
MobileNetV2 64.6

ResNet50 79.34

Table 1: Test accuracy (%) of different pre-trained model
architectures on CIFAR-100. Note that all test accuracies
are used from [43, 11].

regularization loss, which can combine with many existing
methods. Our regularization explores the teacher decision
boundaries using the teacher adversarial particles, then en-
forces decision boundary matching between the teacher and
student loss. In Fig. 2, the teacher and student are from
the same architectural style. When adding our TALD loss,
we consistently improve test accuracy. In the context of
transfer across very different teacher and student, we also
increase the performance of existing methods in Fig. 3. Ad-
ditionally, our method (KD+TALD) outperforms the adver-
sarial approach BSS [20] for distillation (KD+BSS) shown
in Fig. 4.

4.3. TALD regularization with existing methods on
ImageNet

Setting. In this experiment, TALD regularization is eval-
uated on a large-scale ImageNet [14] dataset (1.2 million for
training and 50K for validation images with 1K classes).
We adopt the implementation of existing methods from
Torchdistill4[32], ResNet-34 as the teacher and ResNet-18
as the student. The ResNet-34 and ResNet-18 architectures
are released by the PyTorch team. We keep all original set-
tings of [32] and set our TALD following λ = 0.001, num-
ber of particles K = 4, and the radius constraint ϵ = 0.3.

Experiment setup. We illustrate the performance of
TALD regularization by compressing the teacher ResNet-
34 to the student ResNet-18. The teacher is fixed and pre-
trained with 73.31% accuracy. The base student trained
on ImageNet without distillation methods achieves 69.75%
accuracy. We combine our method to improve the imple-
mented existing methods such as KD [21], AT [49], FT [24],
CRD [43], and SSKD [47].

Result. We calculate the accuracy of students on 50K
validation images. In Fig. 5, the all student accuracies are
used from the implementation of the Torchdistill reposi-

4https://github.com/yoshitomo-matsubara/torchdistill
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72

74

76

78

KD
FitN

et AT SP CC VID
RKD

PKT AB FT
NST

CRD

HSAKD

existing method existing method + TALD

(d) wrn-40-2 → wrn-40-1

Figure 2: Test accuracy (%) of student networks on CIFAR-100 of a number of distillation methods from teacher to student
(teacher → student). Existing method denotes a previous distillation method, while existing method + TALD is a combination
of the respective existing method and our regularization. All student accuracies of existing methods are used from [43, 11].

tory [32]. As can be seen, our TALD regularization can
consistently improve the accuracy of the ResNet-18 stu-
dent on top of respecting existing methods such as KD [21],
AT [49], FT [24], CRD [43], and SSKD [47].

4.4. Decision boundary similarity evaluation

Metrics for similarity of decision boundaries. To ver-
ify our TALD regularization, we use metrics proposed by
Heo et al. [20] to measure the similarity between the deci-
sion boundaries of two classifiers (e.g., teacher and student
in the knowledge distillation task). The metrics are calcu-
lated using BSS attack. For each data point x, BSS attacks
the teacher and student to generate teacher xT

adv and student
xS
adv adversarial example, respectively. We then obtain the

perturbation vector of teacher (vT = xT
adv − x) and stu-

dent (vS = xS
adv − x). Since the perturbation vector is ob-

tained by the attacking path from clean sample x to model

decision boundaries, we compare the Magnitude Similarity
(MagSim) and Angle similarity (AngSim) of the two vec-
tors. MagSim represents the similarity with respect to the
distance from the clean sample x to the decision boundary,
while AngSim reflects it with respect to the path direction
from the clean sample x to the decision boundary. These
two metrics have values in the range of [0,1] and higher
values represent more similar decision boundaries. Please
refer to the work [20] for more information.

Setup. We use pre-trained teachers and distilled students
using CIFAR-100 from Section 4.2. Our baseline is KD
without regularization. Our method is compared to KD +
BSS, which uses adversarial examples to support student
decision boundaries. We calculate MagSim and AngSim, as
shown in Fig. 6.

Result. Recall that KD method does not have decision
boundary regularization, while KD + BSS insufficiently ex-
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(b) ResNet50 → MobileNetV2
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(c) vgg13 → MobileNetV2
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(d) wrn-40-2 → ShuffleNetV1

Figure 3: Test accuracy (%) of student networks on CIFAR-100 of a number of distillation methods for transfer across
very different teacher to student architectures (teacher → student). Existing method denotes a previous distillation method
without TALD regularization term, while existing method + TALD is a combination of the respective existing method and
our regularization. All student accuracies of existing methods are used from [43, 11].

plores the teacher perturbations [42]. In Fig. 6, our KD +
TALD method can consistently improve decision boundary
matching based on MagSim and AngSim metrics with var-
ious architectures such as wrn-40-2 → wrn-16-2, resnet56
→ resnet20, and resnet32x4 → resnet8x4.

4.5. Teacher adversarial particle analysis

Setting. We study the number of teacher adversarial par-
ticles that affect the performance of the student on CIFAR-
100. We perform the model compression task (teacher →
student) on the same architecture style (teacher: resnet56
→ student: resnet20) and very different architecture style
(teacher: wrn-40-2 → student: ShuffleNetV1) with differ-
ent knowledge distillation methods. The implementation
adopts the RepDistill, and all parameters are kept similar

to Section 4.2 settings except the number of particles K.

Experiment setup. We change the number of teacher
adversarial particles K in {0, 1, 2, 4, 8}. When K = 0 im-
plies that we do not use the TALD regularization. We study
our method using different knowledge distillation methods
with different K such as KD [21], AT [49] and SP [44] for
resnet56 → resnet20, and KD [21], VID [1] and FT [24] for
wrn-40-2 → ShuffleNetV1.

Result. Note that we approximate the teacher adversarial
local distribution PθT (·|x) using the particles. Thus, by in-
creasing the number of particles, we accordingly increase
the regularization strength of the student model. Fig. 7
shows that the test accuracy can be improved by increasing
K from 0 to 4. It is as expected that over regularization may
hurt the performance when K = 8 on Fig. 7(a). However,
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Figure 4: Test accuracy (%) of student networks on CIFAR-
100 of KD, KD +BSS, and KD + TALD for transfer various
teacher and student architectures (teacher → student).
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Figure 5: Accuracy (%) of ResNet-18 student on validation
ImageNet dataset (ResNet-34 → ResNet-18). All student
accuracies of existing methods are used from [32].

our method can still outperform existing methods without
TALD regularization (K = 0) in these cases.

5. Conclusion and future work

In this paper, we have introduced a novel teacher ad-
versarial local distribution (TALD) regularization that can
adapt well to improve on many existing methods such
as KD [21], FitNet [40], AT [49], SP [44], CC [38],
VID [1], RKD [36], PKT [37], AB [20], FT [24], NST [22],
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Figure 6: Evaluation on decision boundary similarity be-
tween teacher and student (teacher → student) using Mag-
nitude Similarity (MagSim) and Angle similarity (AngSim).
These two metrics have values in the range of [0,1] and
higher values represent more similar decision boundaries.
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Figure 7: Test accuracy (%) of the students when distill-
ing from teacher to student (teacher → student) at different
number of teacher adversarial particles K ∈ {0, 1, 2, 4, 8}.
When K = 0 implies that we do not use TALD regulariza-
tion.

CRD [43],and HSAKD[11]. In the proposed method, we
form the teacher adversarial local distribution for explor-
ing the teacher’s properties (e.g., decision boundaries). Our
strategy uses SVGD to estimate the adversarial local distri-
bution using more diverse adversarial particles. We inten-
sively conduct experiments on CIFAR-100 and ImageNet
where the TALD consistently improves the performance of
many existing knowledge distillation methods. By using
a few adversarial particles, we improve the student perfor-
mance at the cost of increasing the training time. In the
future, we would like to reduce the TALD running time and
use targeted attack perspective using TALD.
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