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Abstract

Finger vein recognition (FVR) systems have been com-
mercially used, especially in ATMs, for customer verifi-
cation. Thus, it is essential to measure their robustness
against various attack methods, especially when a hand-
crafted FVR system is used without any countermeasure
methods. In this paper, we are the first in the literature to in-
troduce master vein attacks in which we craft a vein-looking
image so that it can falsely match with as many identities as
possible by the FVR systems. We present two methods for
generating master veins for use in attacking these systems.
The first uses an adaptation of the latent variable evolution
algorithm with a proposed generative model (a multi-stage
combination of β-VAE and WGAN-GP models). The sec-
ond uses an adversarial machine learning attack method
to attack a strong surrogate CNN-based recognition sys-
tem. The two methods can be easily combined to boost their
attack ability. Experimental results demonstrated that the
proposed methods alone and together achieved false accep-
tance rates up to 73.29% and 88.79%, respectively, against
Miura’s hand-crafted FVR system. We also point out that
Miura’s system is easily compromised by non-vein-looking
samples generated by a WGAN-GP model with false ac-
ceptance rates up to 94.21%. The results raise the alarm
about the robustness of such systems and suggest that mas-
ter vein attacks should be considered an important security
measure.

1. Introduction
Finger vein authentication (using a FVR system [24])

was first commercially implemented in Japan in 1997 and
has become well-recognized because of its application in
ATMs to authenticate users [28]. Its usage frees users from
remembering and regularly changing passwords to maintain
security. Due to their convenience, biometric authentication
methods (including finger vein ones) have become widely
used. Therefore, it is essential to evaluate their robustness
and identify potential harms. A presentation attack is a

common way to attack biometric recognition systems [17].
Besides presenting a captured biometric trait of the victim,
the attacker can use a wolf sample [27], which can match
enrolled models of multiple identities. Master prints [2]
and master faces [21, 25, 20] are examples of wolf samples
generated using generative models. In reality, not all FVR
systems have countermeasure methods deployed properly,
allowing master vein attacks to compromise them.

Besides presentation attacks, there are several other ways
that an attacker can compromise a biometric recognition
system [23], as shown in Fig. 1. Moreover, in theory, it is
possible to craft a physical object (known as a presentation
attack instrument, or PAI) from a synthetic master vein (an
image clearly showing the center lines of the veins) and use
it to perform a presentation attack (attack 1 in Fig. 1) [26].
It is also possible to translate the synthetic master vein into a
captured vein sample using a convolutional neural network
(CNN) [22] and use it to perform a logical attack (attack
2 in Fig. 1). Due to these reasons, we focus on a logi-
cal attack with a clear vein image (attack 4 in Fig. 1) in
this work. We craft a master vein image and then inject
it as a probe to attack FVR systems built based on Miura
et al.’s design [18, 19]. A master vein image is a probe
vein-looking image that can be falsely accepted as a match
with enrolled models of multiple identities by a FVR system.
Although non-vein-looking images may have better attack
ability, it is harder for them to generalize on other systems
and other attack scenarios. There are two possible solutions
to craft such master veins: using the latent variable evolu-
tion (LVE) algorithm [2] and using an adversarial machine
learning (AdvML) attack [11].

The LVE algorithm is a common way to generate master
biometric samples [2, 21, 25, 20]: a pre-trained generative
model is used along with an evolutionary algorithm. The
original work on generating master prints used a traditional
generative adversarial network (GAN) model [5] while the
work on generating master faces [21, 25, 20] used an ad-
vanced GAN model trained on a large facial database [12].
With the original variational autoencoder (VAE) [13] and β-
VAE [8, 3] generative models, there is a trade-off between
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Figure 1. Overview of FVR system and possible attacks on it, inspired by Ratha et al. [23]. This paper focuses on attack 4 by injecting a
master vein probe image.

image quality and the ability to learn disentangled represen-
tations. The traditional VAE and GAN [1, 5] models have
trouble generating large images (320 × 240 pixels in our
case), while advanced models are data-hungry. The ability
of the LVE algorithm to achieve good results depends on the
disentanglement ability of the generative model. Moreover,
compatibility with modern vein capturing devices depends
on the model’s ability to generate high-resolution vein im-
ages.

An AdvML attack using an adversarial example can be
used to change the output of a CNN [11]. It is assumed that
an attacker using a master vein attack does not know the
identities of the enrolled models. The attacker thus attempts
to generate a master vein that can match as many enrolled
models as possible. State-of-the-art CNN-based FVR sys-
tems use different approaches between training and testing.
For example, for a system [14] that uses the additive angular
margin loss [4] in training, the task is to minimize the cross-
entropy loss or focal loss [15] using the provided labels.
In evaluation, cosine similarity is used to calculate the dis-
tance between the two embedded features of the probe and
the model veins. Therefore, traditional adversarial attacks
could not be applied in this case. Moreover, adversarial at-
tacks are exclusive to machine-learning-based recognition
systems. They are unlikely to generalize well to handcrafted
recognition systems.

This work aims to solve to two above problems and then
combine the two newly proposed solutions to generate mas-
ter vein images that can attack both hand-crafted and deep-
learning-based vein recognition systems. For the generative
model used by the LVE algorithm, we proposed a method to
combine the β-VAE model and the Wasserstein GAN with
a gradient penalty (WGAN-GP) [5] model. The combina-
tion model can effectively learn disentanglement latent rep-

resentations essential for the LVE algorithm and is capa-
ble of generating images with higher quality than the sin-
gle models. Using this setting, we can successfully attack
a hand-crafted system with about 70% of false acceptance
rates (FARs). However, this LVE-based method could not
work on the CNN-based FVR systems, leading to the de-
velopment of the adversarial-attack-based one. Unlike tra-
ditional adversarial attack methods, we propose using k la-
bels as targets. Since the target system uses cosine distance
between the two embedded features in inference mode, we
attack its training configuration, which uses an advanced
addictive angular margin loss function. To make the attack
more general, we combine these two proposed methods. By
performing an adversarial attack on the master vein gener-
ated by the LVE-based method, the crafted master vein can
fool both hand-crafted and CNN-based recognition systems
with higher FARs (up to 88.79% for the hand-crafted sys-
tem) than those of master veins created by single methods.

In summary, the contributions of this work are four-fold:

• We point out that a hand-crafted vein recognition sys-
tem without any countermeasure methods can be easily
compromised by non-vein-looking images generated
by a WGAN-GP model. We are also the first in the lit-
erature to investigate synthesized vein-looking images
to perform master vein attacks.

• We introduce a way to combine a β-VAE model and
a WGAN-GP model to generate large, good-quality
vein-looking images with better disentanglement. The
trained β-VAE decoder extracted from this combina-
tion is then used in the LVE algorithm.

• We present a k-label targeted adversarial attack for
use in attacking a CNN-based FVR system. This tar-
get CNN-based system was trained using an advanced
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loss function (additive angular margin), outperforming
a hand-crafted system.

• We describe a highly successful attack that combines a
latent LVE-based attack with an adversarial attack on
a hand-crafted FVR system. We show that robustness
against master vein attacks is an important measure for
FVR systems.

2. Related Work
2.1. Finger Vein Recognition Systems

A typical vein recognition system usually has four mod-
ules (visualized in Fig. 1): a data capturer, a feature extrac-
tor, a matcher, and a decision maker [23]. Pre-processing
operations may be applied before feature extraction. In
the original work of Miura et al. [18, 19], the maximum
curvature method and the repeated line tracking method
were used for the feature extractor module and the cross-
correlation method was used for the matcher module. The
maximum curvature method was designed to be robust
against varying vein widths and non-uniform brightness.
We used it in a baseline handcrafted FVR system, which
we refer to as “Miura’s system.”

Besides fully handcrafted systems as introduced above,
machine learning methods have been used to build the fea-
ture extractor and/or the matcher [24]. For instance, Kuzu
et al. [14] used a modified version of the DenseNet-161
model [10] to build a feature extractor and used cosine dis-
tance as the metric for matching. The modified DenseNet-
161 model was trained using the additive angular margin
loss [4] on the provided ground-truth labels. When test-
ing, it was used to calculate the embedded features of the
probe and the model finger vein. An overview of this kind
of system is shown in Fig. 2. To build a conceptual attack-
able CNN-based model for evaluation, we used this kind of
CNN as an additional feature extractor to take the output of

0
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Figure 2. Illustration of training and testing phases of CNN-based
FVR system. The training phase uses the additive angular margin
loss with ground-truth labels while the testing phase uses cosine
distance between the two embedded features.

the maximum curvature-based feature extractor. We com-
bined the additional CNN-based feature extractor with the
cosine similarity-based matcher to form a new matcher. In
our experiments, we use two modified versions of ResNet-
18 [7] and a modified version of MobileNetV3-Large [9]
(representing small networks) and ResNeXt-50 [29] (rep-
resenting a large network) as the additional CNN feature
extractors.

2.2. Attacks on Biometric Recognition Systems

A sample is considered a “wolf” if it can be falsely ac-
cepted as a match with models from multiple identities in
a biometric recognition system [27]. A wolf sample can be
either biometric or non-biometric. Wolf attacks using wolf
samples were initially used to target fingerprint recognition
systems [23]. A master biometric attack is a particular case
of a “wolf attack” in which the wolf sample looks similar
to a biometric trait. A non-biometric wolf sample does not
have any constraint on it, hence can be in any appearance.
Therefore, non-biometric wolf samples are easier to craft
and may have better attack ability than master biometric
samples. However, a spoofing detector or a quality assessor
integrated into a biometric recognition system can quickly
reject them before being recognized. Moreover, since most
non-biometric wolf samples mainly focus on a specific flaw
in a particular system, they may not generalize well. There-
fore, in this paper, we choose to investigate a master finger
vein attack.

Master biometric attacks using master biometric samples
have been recently used to attack partial fingerprint recogni-
tion systems [2] and face recognition systems [21, 25, 20].
A latent variable evolution algorithm [2] is used to generate
such master biometric traits by combining an evolutionary
algorithm with a pre-trained generative model. The covari-
ance matrix adaptation evolution strategy (CMA-ES) [6] is
a popular choice for the evolution algorithm due to its novel
design for non-linear and non-convex functions. It is suf-
ficient for a low-resolution biometric trait (like partial fin-
gerprints) generator to use a traditional generative model
like WGAN-GP [5]. For high-resolution biometric traits
like faces, it requires a more complex generative model like
StyleGAN [12]. In this work, vein images do not need very
high-resolution like facial ones, but low-resolution images
like partial fingerprints are not sufficient. Thus, we could
not simply use WGAN-GP as the generative model.

3. Proposed Methods
We first discuss the attack strategy used in this paper.

We then introduce two methods for generating master veins,
one using the LVE algorithm and one using an adversarial
attack, and describe a way to combine them. We assume
that the target FVR systems do not use any spoofing de-
tector or quality assessor.
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3.1. Attack Strategy Analysis

There are several positions where an attack can be car-
ried out on a FVR system, as shown in Fig. 1. We aim
to maximize the scope and effectiveness of master vein at-
tacks given limited resources. It is crucial to ensure that the
crafted master veins can be used to attack various systems
under various conditions. The captured finger vein images
are sensor-dependent, and the structure of the veins is un-
clear because of noise and lack of pre-processing. If we
generate coarse master veins to carry out attack 2, the gen-
erative model cannot effectively learn the vein representa-
tions. The generated master veins also do not work well
with other data capture devices. The vein images used to
perform attack 4 are more precise, which is more suitable
for training the generative model, performing attacks, and
analysis. It is possible to translate a master vein into a cor-
responding captured image using a CNN [22] to perform
attack 2. Moreover, an attacker can craft a corresponding
PAI given an image of finger veins [26] that can be used to
carry out a presentation attack (attack 1). In summary, in
theory, it is possible to carry out attacks 1 and 2 if we can
carry out attack 4.

Miura’s system can perform both symmetric matching
(or full matching) and asymmetric matching (or partial
matching). For partial matching, the probe is a randomly
cropped image of the complete one. This is similar to the
scenario in the work of Bontrager et al. [2]. Before perform-
ing random cropping on an input vein image, the system
uses an algorithm to calculate a mask to extract the vein-
only region first. For simplicity, we assume that this region
is provided. In reality, because of this algorithm, non-vein-
looking master vein images may not be cropped appropri-
ately, reducing their attack ability. For CNN-based systems,
the networks can only perform full matching. Therefore, to
ensure generalizability, we focus on generating full master
vein images. Furthermore, the full master vein images can
be cropped for partial matching in Miura’s system.

3.2. Attack Using LVE-Based Method

3.2.1 Method’s Description

The work of Bontrager et al. [2] used a WGAN-GP [5] to
generate partial fingerprints (hereafter LVE1). However, a
WGAN-GP is hard to train, especially with limited training
data. A β-VAE is easier to train and could learn better dis-
entangled representations (hereafter LVE2). However, its
generated images have low quality. Therefore, we fuse their
strengths in our proposed generator and use the LVE algo-
rithm [2, 21] to generate master veins (hereafter LVE3).

An overview of our proposed LVE3 method is shown
in Fig. 3. To achieve a better generative model with
better learned disentanglement representations and high-
resolution output, we first train a β-VAE model [8, 3] by
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Figure 3. Proposed LVE-based method. Only modules in the
dashed polygon are used when running the LVE algorithm.

a. Original
image

c. β-VAE
(LVE2)

b. WGAN-GP
(LVE1)

d. Our method
(LVE3)

Figure 4. Original image and images generated using WGAN-GP
method, β-VAE method, and our proposed method (best viewed
in the digital version with zoom-in). More samples are shown in
the Supplementary Material. The WGAN-GP method failed to
generate a vein-looking image while the β-VAE method generated
a blurry image. Our proposed method generated a clearer image
than the other two methods.

minimizing Eq. 1.

Lβ-VAE(θ, ϕ;x, z, C) = Eqϕ(z|x)[log pθ(x|z)]
−γ|DKL(qϕ(z|x) ∥ pθ(z))− C|,

(1)

where ϕ and θ parameterize the distributions of the encoder
qϕ and decoder pθ, respectively, and DKL( ∥ ) represents
Kullback-Leibler divergence.

Then we fine-tune the decoder by using the WGAN-GP
discriminator (minimizing Eq. 2). Using this discrimina-
tor improves the quality of the generated images. To en-
sure stability, we freeze the parameters of qϕ and most of
pθ except for the last three convolutional layers of pθ when
minimizing LGAN. Finger vein images generated using the
WGAN-GP method, the β-VAE method, and our proposed
method are shown in Fig. 4 in this paper and in Fig. 1 in the
Supplementary Material. The WGAN-GP method failed to
generate a realistic vein image while our method generated
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a clearer image than β-VAE.

LGAN = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]

+λEx̂∼Px̂
[(∥ ∇x̂D(x̂) ∥2 −1)2],

(2)

where

• x̃ = pθ(x|z) = pθ(x|qϕ(z|x)).

• Pr and Pg are the real and generated data distributions,
respectively.

• Px̂ is sampled uniformly along straight lines between
pairs of points sampled from Pr and Pg .

The LVE algorithm is described in Alg. 1 in the Supple-
mentary Material. For simplicity, we use the CMA-ES [6]
for the evolutionary algorithm. Only the decoder pθ of the
β-VAE is used when running the LVE algorithm. It plays
the role of the generator to generate vein images.

3.2.2 Preliminary Analysis

The false acceptance rate (FAR - the rate at which unau-
thorized or illegitimate users are verified) calculated when
running the LVE algorithm are plotted in Fig. 5. The mas-
ter vein generated using the LVE3 method on Miura’s sys-
tem is shown in Fig. 6.b. Surprisingly, random non-vein-
looking finger veins generated by the LVE1 method (using
WGAN-GP) easily fooled Miura’s system with the FARs
higher than 90%, even without the help of the LVE algo-
rithm. Its cross-correlation-based matcher module failed to
work correctly with these wolf samples. This finding raises
an urgent alarm on the reliability of the Miura’s system
without a spoofing detector or a quality assessor inte-
grated.

Besides the above irregular case, the proposed LVE3

method worked better than the LVE2 method (using β-VAE)
on Miura’s system (with the FARs about 70% and 50%, re-
spectively). This result confirms the effectiveness of our
multi-stage combination of β-VAE and WGAN-GP for the
generator. Although they are not perfect-looking, finger
veins generated by the LVE3 method are more natural than
those generated by the LVE1 and the LVE2 methods, re-
ducing the possibility of being detected by the spoofing
detectors or being rejected by the quality assessors. For a
CNN-based recognition system, the LVE1 and LVE3 meth-
ods failed to work on the ResNeXt-50-based system with
near-zero FARs. This failure may be due to the ResNeXt-
50-based system being a large network trained on a well-
designed loss function [4], preventing the formation of
dense clusters in its embedding space (discussed in Nguyen
et al.’s work [20]). We thus investigated another method
to attack the CNN-based system, as described in the next
section.
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Figure 5. FARs when running the LVE algorithm on Miura’s and
ResNeXt-50-based systems. When the number of iterations in-
creases, only the FARs of Miura’s system increase, implying that
the LVE-based method only works on this system.

3.3. Attack Using Adversarial Machine Learning
Method

We propose using a modified version of the l∞ projected
gradient descent attack [16] described by Eq. 3. We use a
filter K to control the shape of the perturbations, a mask
M to limit the area of the perturbations to the area contain-
ing the veins, and a soft-label vector y to control the target
identities of the attack. Since the synthesized veins lay on
fingers with similar shapes and locations, the mask M can
be easily approximated and crafted beforehand by hand or
using a gap-filling algorithm.

xt+1 = Clipx,ϵ(x
t + α(ζ ∗K)⊙M)

with ζ = ∇xL(θ,xt,y),
(3)

where x is the input image, y is a target soft-label vector, θ
is the set of target model parameters, K is the filter kernel,
M is the finger vein mask, ∗ is the convolutional operator,
and ⊙ is the element-wise multiplication operator.

Unlike traditional adversarial targeted attacks, we target
multiple labels instead of a single label. We call this k-label
targeted attack. In more detail, we choose 1 < k < N
of the total N labels as target labels and set their proba-
bilities to 1/k, with k as a hyper-parameter. For example,
if we choose 3/5 of all labels, the target vector y is set to
[0.33, 0, 0.33, 0.33, 0]. Since the FVR system does not cal-
culate class probabilities during its testing phase but em-
beddings (see Fig. 2), we need to attack the configuration of
the training phase. In addition to randomly selecting k tar-
get labels, we can choose the top-k labels with the highest
predicted probabilities. Doing so can make the optimizer
process converge faster with fewer perturbations. Examples
of randomly selected k labels and top-k labels are shown
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Figure 6. Master veins generated using LVE method, adversarial
machine learning method, their combination, and the correspond-
ing mask used for adversarial attacks (best viewed in the digital
version with zoom-in).

in Fig. 6.d and Fig. 6.e, respectively. If k is close to 1, the
attack is meaningless. Otherwise, it is hard to optimize the
perturbations. In our experiments, the target CNN-based
FVR system was powerful, with 0% in both false accep-
tance rate and false rejection rate on the training set. There-
fore, we used a small top-k = 5% in our experiments so
that the optimization could successfully converge.

Besides the well-known hyper-parameter ϵ, the number
of iterations and the kind of filter K are also important
hyper-parameters. If the number of iterations is too small,
the optimization will not converge. If it is too large, the per-
turbations will be too strong, damaging the original image.
A damaged master vein image may be rejected by the qual-
ity assessor if implemented. Furthermore, it could not be
generalized to other systems. Fig. 2 in the Supplementary
Material shows such an effect. When the number of itera-
tions is around 200, the image is noisy, and when it is 500
or 1000, it is almost impossible to perceive the veins. We
used 100 iterations in our experiments.

Regarding filter K, it is used to control the shape of the
perturbations. Ideally, the perturbations should look like
veins rather than random patterns or noise. In reality, it
is very challenging to achieve this goal. We initially used
a (differentiable) CNN-based vein/non-vein classifier as a
loss function in optimizing the AdvML attack. However, it
was easily fooled. On the other hand, a non-differentiable
hand-crafted one was not useful for optimization with back-
propagation. Therefore, we simply use a filter kernel for K
to regularize the perturbations. The goal is to avoid tiny-dot
noise, which can be easily destroyed and is harder to adapt
to other attack scenarios. We evaluated Gaussian blur, low-
pass, high-pass, and Laplacian kernel. They have different
effects on the rate of convergence of the optimization pro-
cess and the quality of the master vein images. Examples
are shown in Fig. 3 in the Supplementary Material. The
Gaussian blur kernel helped the optimization process con-
verge the fastest and produced large-size perturbations with
the least amount of tiny-dot noise (except the low-pass ker-
nel), so it is the most suitable candidate kernel. The low-

pass kernel destroyed almost all adversarial perturbations,
preventing the adversarial attack. The high-pass and Lapla-
cian kernels allowed too much tiny-dot noise. When a fil-
ter was not used, the optimizer process took a long time to
converge, and the crafted perturbations were also tiny-dot
noise.

Instead of using a bona fide image, we can use a master
vein image as the input image x. If we use a master vein im-
age crafted using the LVE-based method, the corresponding
adversarial image can work on both handcrafted recognition
systems like Miura’s one and CNN-based recognition sys-
tems, resulting in better generalizability. An example result
of this combination attack is shown in Fig. 6.

4. Experiments

We investigated the attack abilities of master veins
crafted using the LVE-based method, the adversarial ma-
chine learning method, and their combination in white-box,
gray-box, and black-box scenarios.

4.1. Settings

4.1.1 Databases

We used two finger vein databases:

• The SDUMLA-HMT Database [30] contains images
of six fingers per subject (six images per finger). We
divided it into a training set containing the images
for 80 subjects and a test set containing the images
for 26 subjects. The training set was used to train
the CNN-based recognition systems, set the recogni-
tion systems’ matching thresholds, train the generative
models, and generate master veins. We used both the
training and test sets for evaluation.

• The VERA FingerVein Database [26] contains bona
fide images of two fingers of 110 subjects (two im-
ages per finger). We used the entire database to
evaluate black-box attacks (in terms of database).
Since its distribution is different from that of the
SDUMLA-HMT Database, the recognition systems’
matching thresholds calculated on the SDUMLA-
HMT Database could not be used and needed to be
re-set for this database.

4.1.2 Finger Vein Recognition Systems

We used three FVR systems: one hand-crafted system
(Miura’s system) and three CNN-based systems (one based
on ResNet-18, one based on ResNeXt-50, and one based
on MobileNetV3-Large). We chose MobileNetV3-Large
(MobileNetV3-L) from the MobileNet family since it per-
formed the best on FVR. For Miura’s system (customized
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from Idiap bob’s implementation), we evaluated both par-
tial matching and full matching. We are aware of other
hand-crafted recognition systems [24] using other features
extracted from the local binary patterns, principal compo-
nent analysis, or Gabor filters. This paper focuses on at-
tack 4 in Fig. 1, however, these systems have different fea-
ture extractors. Attacking them requires building a mapping
network to convert the master veins to their raw forms and
perform attack number 2. We treated it as future work.

To generate master veins, we used Miura’s system and
the ResNeXt-50-based system as surrogate FVR systems.
Since the LVE-based method failed to generate master veins
on the ResNeXt-50-based recognition system, we ignored
this case in all of our experiments. Hereafter, the LVE-
based method is assumed to be the one running on Miura’s
system.

To evaluate performance, we used Miura’s system and
the ResNeXt-50-based system for evaluating white-box at-
tacks and the ResNet-18- and MobileNetV3-L-based ones
for evaluating black-box attacks in terms of FVR systems.

4.2. Evaluation Methodology

We use FAR as the primary metric to define the effective-
ness of master vein attacks. We compare the FARs of a FVR
system on a normal dataset (without master veins) and a
master vein dataset where the zero-effort imposter’s probes
were replaced by the master vein probes. If the FAR on
the master vein dataset is moderately higher than the FAR
on the normal dataset, the master vein attack is considered
successful.

For the partial matching mode of Miura’s system, we first
randomly cropped the full vein images to the size of 128×
128 pixels and then used them as the probes. Modal images
are always full-size ones (320× 240 pixels).

4.3. Results and Discussion

4.3.1 Attacks on Known Databases and Systems

We first evaluated master vein attacks on the same and simi-
lar configurations we used to craft the master vein. In terms
of databases, we attacked the SDUMLA-HMT one, result-
ing in a white-box attack. In terms of FVR systems, we
attacked two types of systems, resulting in both white-box
and black-box attacks. In more detail, attacks using master
veins generated using Miura’s system on CNN-based sys-
tems are black-box ones and vice versa, while attacking the
same system are white-box ones. Merging both terms, we
have white-box and gray-box attacks.

The FARs on bona fide veins and master veins are shown
in Table 1. Miura’s system is extremely vulnerable to non-
vein-looking wolf attack generated by the LVE1 method,
with about 69% for partial matching and 93.5% for full
matching, as mentioned earlier in section 3.2.2. The pos-

sible reason is that when developing this system, wolf at-
tacks had not been introduced. Therefore, the designation
of its matching algorithm (based on cross-correlation) only
considered vein-looking probes.

Miura’s system is also vulnerable to vein-looking mas-
ter vein attacks using the LVE2,3 methods, AdvML method,
and their combination. The LVE3 method outperformed the
LVE2 one and achieved the FARs of about 70% on both
train and test sets. It means that nearly two-thirds of the
identities were falsely matched with the master veins. It
happened because these generators can generate non-exist
random finger vein images, and Miura’s matcher algorithm
has flaws. The LVE algorithm then guided them to gener-
ate finger vein images with wolf characteristics with large-
enough iterations.

Although it is a black-box attack in terms of FVR sys-
tems, the AdvML method achieved the FARs of about 12%
for partial matching and about 40% for full matching by
Miura’s system. The plausible explanation is that the Ad-
vML master veins were optimized with full matching mode
(CNN-based systems’ only mode), their performance on
partial matching mode is suboptimal.

A combination of the AdvML method and the LVE3

method sustainably raised the FARs of Miura’s system in
the full matching mode, which is about 85%. However,
it was not effective for the partial matching mode. Using
the top probabilities label (denoted as (Top) in the table)
helped increase the FARs on Miura’s system in this partial
matching mode and on the CNN-based systems. Its com-
bination with the LVE1 method has the reverse tendency
(possibly because LVE1 and LVE3 have different charac-
teristics). Regarding robustness, CNN-based systems resist
master vein attacks better than Miura’s system. Their FARs
only slightly increased (about 1 to 3%) when attacks oc-
curred. Regarding generalization, master vein attacks could
not work well on unseen CNN-based systems (ResNet-18
and MobileNetV3-L).

4.3.2 Cross-Database and Cross-System Attacks

Next, we evaluated master vein attacks on more challeng-
ing scenarios. In terms of database, we attack a different
database - the VERA FingerVein Database. In terms of
FVR systems, attacks on Miura’s system and the ResNeXt-
50 system are white-box while attacks on ResNet-18 and
MobileNetV3-L are black-box. Table 2 shows the FARs on
bona fide and master veins.

Miura’s system continued to be vulnerable to wolf at-
tacks and master veins attacks. For master vein attacks,
the FARs were around 20% and could reach 47.73% when
we used the combination method to attack the full match-
ing mode. Using top labels helped increase the FAR of
the attack on partial matching mode to 22.25%. On the
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Table 1. FARs (in %) of three FVR systems on SDUMLA-HMT Database with bona fide and master veins. Gray cells indicate gray-box
attacks; white cells indicate white-box attacks. Bold numbers indicate that the master vein attacks have FARs higher than those of the
corresponding bona fide cases by at least 1%.

Matcher Miura’s system
(Partial matching)

Miura’s system
(Full matching) ResNeXt-50 ResNet-18 MobileNetV3-L

Attack \ Dataset Train set Test set Train set Test set Train set Test set Train set Test set Train set Test set
Bona fide 07.57 08.02 08.46 08.98 0.00 2.25 0.00 3.37 0.00 1.31
LVE1 (WGAN-GP) 68.24 70.41 92.46 94.21 1.85 1.92 1.51 2.25 0.67 1.50
LVE2 (β-VAE) 59.63 59.27 54.75 43.89 0.10 1.44 0.90 2.42 0.33 0.33
LVE3 (Combination) 70.47 69.85 73.29 71.84 1.46 6.07 0.96 5.86 0.53 2.03
AdvML 11.34 13.11 32.02 49.52 1.88 3.69 1.44 2.24 0.61 1.46
LVE3 + AdvML 48.20 50.00 82.36 88.79 1.82 3.35 1.15 1.93 0.48 0.64
LVE3 + AdvML (Top) 62.73 62.52 77.82 80.41 2.37 5.32 1.60 4.00 1.03 3.47
LVE1 + AdvML (Top) 76.60 76.95 91.86 93.81 1.68 1.85 1.52 2.09 0.55 0.40

Table 2. FARs (in %) of three FVR systems on VERA FingerVein
Database with bona fide and master veins. Bold numbers indicate
that the master vein attacks have FARs higher than those of the
corresponding bona fide cases by at least 1%.

Attack

Matcher Miura’s
system
(Partial

matching)

Miura’s
system
(Full

matching)

ResNeXt
50

ResNet
18

Mobile
NetV3-L

Bona fide 04.07 03.13 8.22 7.28 8.10
LVE1 (WGAN) 38.84 43.86 0.18 0.10 0.18
LVE2 (β-VAE) 15.08 02.92 0.00 0.00 0.00
LVE3 (Comb.) 20.84 19.54 0.54 0.00 0.01
AdvML (A) 03.12 03.57 0.20 0.04 0.18
LVE3+A 16.37 47.73 0.42 0.01 0.18
LVE3+A (Top) 22.25 26.34 0.82 0.52 0.21
LVE1+A (Top) 39.28 44.49 0.18 0.01 0.17

other hand, the CNN-based recognition systems were ro-
bust against master vein attacks. However, it is important
to note that the CNN-based recognition systems could not
generalize well on the VERA FingerVein Database, result-
ing in higher FARs for bona fide vein attacks. It implies that
if we want to use the CNN-based recognition systems effec-
tively (so that bona fide users are not falsely rejected), we
need to train them on the current dataset. However, doing
so also opens a chance for master vein attacks.

4.4. Summary

Miura’s system in partial matching and full-matching
modes was vulnerable to non-vein-looking wolf attacks and
vein-looking master vein attacks in white-box and gray-box
scenarios. Both attacks substantially increased the FARs for
Miura’s system while barely increasing them for the CNN-
based systems. A combination of the LVE3 method and the
AdvML method can reach 88.79% FAR on the full match-
ing mode of Miura’s system. Small increments of FARs on
CNN-based systems indicate that they are more robust on
master vein attacks.

It was challenging to perform master vein black-box
attacks when both the target recognition system and the
database were unknown. However, in reality, handcrafted
FVR systems have already been deployed in ATMs, and the

replacement cost is high. Since their variety is limited, at-
tackers can narrow the scope of their attacks to gray-box
or even white-box. Attackers can also prepare a set of po-
tentially effective master veins in advance. Due to these
reasons, master vein attacks still be a viable threat.

4.5. Social Impacts

To avoid possible harm, we use academic freely-
accessed finger vein databases and open-source FVR sys-
tems. We believe our findings are necessary to raise aware-
ness and promote improving the robustness of such systems.
Besides robustness, we suggest using a fake finger vein de-
tector to detect master veins.

5. Conclusion and Future Work
We have demonstrated that non-vein-looking wolf sam-

ples (generated by WGAN-GP) and vein-looking master
veins generated using our proposed methods (LVE-based
method, adversarial machine learning attack, and their com-
bination) can successfully perform while-box and gray-box
attacks on FVR systems. Miura’s handcrafted system is
fragile against such attacks, while CNN-based methods are
more robust. Since not all commercial FVR systems are
deep learning-based, their variety is limited, and the coun-
termeasure methods are not always available, the threat of
master vein attacks should not be underestimated.

Future work will focus on performing adversarial attacks
to minimize cosine distance instead of maximizing label
probabilities, improving the shape of adversarial perturba-
tions to make them more vein-like, and evaluating more
FVR systems and databases.
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[20] Huy H. Nguyen, Sébastien Marcel, Junichi Yamagishi, and
Isao Echizen. Master face attacks on face recognition sys-
tems. IEEE Transactions on Biometrics, Behavior, and Iden-
tity Science, 2022.

[21] Huy H Nguyen, Junichi Yamagishi, Isao Echizen, and
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