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Figure 1: Examples of video motion retargeting, where motion from the driving video (1st column in 2nd&3rd rows) is
transferred to the subject in the subject video (1st row). Videos generated by RegionMM [41] for face video and EDN [4] for
dance video are shown in the 2nd column of each block, 2nd&3rd rows. Videos generated by our proposed TS-Net are in the
3rd column of each block, 2nd&3rd rows (highlighted with blue boxes).

Abstract
In this paper, we propose a novel dual-branch

Transformation-Synthesis network (TS-Net), for video mo-
tion retargeting. Given one subject video and one driving
video, TS-Net can produce a new plausible video with the
subject appearance of the subject video and motion pattern
of the driving video. TS-Net consists of a warp-based trans-
formation branch and a warp-free synthesis branch. The
novel design of dual branches combines the strengths of
deformation-grid-based transformation and warp-free gen-
eration for better identity preservation and robustness to oc-
clusion in the synthesized videos. A mask-aware similarity
module is further introduced to the transformation branch
to reduce computational overhead. Experimental results
on face and dance datasets show that TS-Net achieves bet-
ter performance in video motion retargeting than several
state-of-the-art models as well as its single-branch vari-
ants. Our code is available at https://github.com/
nihaomiao/WACV23_TSNet.

1. Introduction
Motion retargeting aims to transfer motion from a driv-

ing video to a target video while maintaining the subject’s
identity of the target video. It has become an important
topic due to its practical applications in special effects, vir-
tual/augmented reality and video editing, etc. Motion retar-
geting in the image domain has been explored extensively
and compelling results have been shown in many tasks,
such as person image generation [1, 27, 32, 37, 41], and
facial expression generation [5, 21, 34, 55]. Often formu-
lated as a guided video synthesis task, motion retargeting
between videos is known to be more challenging than mo-
tion retargeting between images since the temporal dynam-
ics of the motion to be transferred has to be learned [6].
Moreover, synthesizing realistic videos, especially human
motion videos, is more challenging than the generation of
high-quality images because human perception is sensitive
to unnatural temporal changes, and human motion is often
highly articulated [52, 54]. In this paper, we mainly fo-
cus on video motion retargeting between different human
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subjects (Fig. 1). Given one subject video and one driving
video, we aim to synthesize a new plausible video with the
same identity of the person from the subject video and the
same motion as the person in the driving video.

Recent works in video motion retargeting [2, 4, 6, 9, 14,
18, 46, 47, 49, 50, 52, 54] have shown impressive progress.
To capture the temporal relationship among video frames,
prior works [6, 49, 50] generated frames via warping subject
frames by motion flow, which is usually extracted by specif-
ically designed warping field estimators, such as FlowNet
[8] or first-order approximation [39]. While warp-based
systems can generally preserve subject identity well, tradi-
tional flow-based warping may suffer from occlusion and
large motion due to its requirement of learning a warp
field with point-to-point correspondence between frames
[15]. Other methods [2, 4, 12, 20, 52, 54] utilized warp-
free (direct) synthesis with a conditional GAN-style struc-
ture [16, 30, 48]. To ease the challenging of direct synthe-
sis, they often employed feature disentangle/decomposition
[52] or followed the state-of-the-art generator architectures
[31, 48] to add various connections among inputs, the en-
coder, and the decoder network. Unlike warp-based gen-
eration, direct synthesis is not limited to only using pixels
from reference images, and therefore is easier to synthesize
novel pixels for unseen/occluded objects. However, such
flexibility can also lead to identity leakage [12], i.e., iden-
tity changes in the generated video.

Considering that warp-based synthesis can better pre-
serve identity while warp-free generation helps produce
new pixels, in this paper, we propose a novel video motion
retargeting framework, termed Transformation-Synthesis
Network, or TS-Net for short, to combine their advantages.
TS-Net has a dual branch structure which consists of a
transformation branch and a synthesis branch. The net-
work architectures within the two branches are inherently
different, thus learning via the two branches can be re-
garded as a special multi-view learning case [51]. Unlike
the popular warp-based methods using specially designed
optical flow estimators [38, 39, 41] and inspired by [26],
our proposed transformation branch computes deformation
flow by weighting the regular grid with a spatial similar-
ity matrix between driving mask features and subject im-
age features. The computation of similarity takes multiple
correspondences into consideration; thus it can better alle-
viate occlusion and handle large motion. We also design a
mask-aware similarity to avoid comparing all pairs of points
within the feature maps and thus be more efficient than tra-
ditional similarity computation methods. In our synthesis
branch, we use a fully-convolutional fusion network. Fea-
tures of two branches are concatenated and fed to the de-
coder network to generate realistic video frames. Experi-
ments in Sec. 4 shows the effectiveness of this simple con-
catenation strategy.

Merely based on sparse 2D masks of driving videos, our
proposed TS-Net can consistently achieve state-of-the-art
results for both face and dance videos, successfully model-
ing hair and clothes details and their motion. TS-Net also
handles large motions and preserves identity better when
compared with other state-of-the-art methods, as shown in
Fig. 1. Our contributions are summarized as follows:

1. We propose a novel dual branch video motion retar-
geting network TS-Net to generate identity-preserving
and temporally coherent videos via joint learning of
transformation and synthesis.

2. We utilize a simple yet effective way to estimate defor-
mation grid based on similarity matrix. Mask-aware
similarity is adopted to further reduce computation
overhead.

3. Comprehensive experiments on facial motion and
body motion retargeting tasks show that TS-Net can
achieve state-of-the-art results by only using sparse 2D
masks.

2. Related Work

Guided Image Generation. For conditional image gen-
eration, many works focused on generation tasks guided
by specific conditions such as pose-guided person image
synthesis [1, 27, 32, 36, 40, 43] and conditioned facial ex-
pression generation [5, 12, 34]. Pose-guided person image
generation can produce person images in arbitrary poses,
based on a subject image of that person and a novel pose
from the driving image. Ma et al. [27] proposed a two-
staged coarse-to-fine Pose Guided Person Generation Net-
work (PG2), which utilizes pose integration and image re-
finement to generate high-quality person images. Condi-
tioned facial expression generation aims to generate a reen-
acted face which shows the same expression as the driv-
ing face image while preserving the identity of the sub-
ject image. Chen et al. [5] proposed a two-stage frame-
work called PuppeteerGAN, which first performs expres-
sion retargeting by the sketching network and then exe-
cutes appearance transformation by the coloring network.
Though these works have shown promising results, they are
restricted to a specific object category (face or human body).
Several recent works [37, 38, 41, 55] have proposed general
guided image generation in various domains. Most of works
[38, 39, 41, 44] applies motion flow to image animation be-
cause it can model the physical dynamics. Siarohin et al.
[39] proposed a general self-supervised first-order-motion
model for estimating dense motion flow to animate arbitrary
objects using learned keypoints and local affine transforma-
tions. In [41], the authors further improved their network
by modeling object movement through unsupervised region
detection. Despite of building upon similar motion flow,
instead of adopting complicated modeling in [39, 41], the

413



Mask-aware
Similarity

𝑧

Subject Image 
Encoder ∆!"#

Driving Mask 
Encoder ∆"$%

𝑓

Transformation Branch 𝜞𝐭𝐫𝐚

�̅�&
Decoder Ω)*+

(𝑥

Synthesis Branch 𝜞𝐬𝐲𝐧

𝐾

𝐾

𝑒!
𝑒"

𝑒#

𝑆
𝐾

�̅�.

𝐾
ℰ

𝑣!$
𝑣"$

𝑣#$

𝐾

𝑣!%
𝑣"%

𝑣#%

𝐾

concat

concat

Fusion Net Λ

grid 
sampling

𝐺
𝐾

𝐺′

Figure 2: Illustration of the TS-Net generator to generate one frame x̂ in the target video.

transformation branch in TS-Net generate deformation flow
by weighting regular grid with similarity matrix in feature
space, which shows better simplicity and efficiency.

Video Motion Retargeting. Different from image-based
generation, video motion retargeting is more challenging
due to the additional coherence requirements in the tempo-
ral dimension. Most existing literature focused on specific
domains such as human pose motion retargeting [4, 52],
or facial expression retargeting [9, 12, 20, 49, 50, 54], yet
they may lack generality when applied to multiple domains.
In contrast, our proposed TS-Net can work well on both
face and human body videos. Using off-the-shelf detec-
tors to extract driving motion masks, such as 3D masks
[9, 12, 20], 2D dense mask [46, 47], or 2D sparse mask
[4, 54], is also popular in current video motion retarget-
ing methods. Due to the simplicity of 2D sparse masks,
our proposed TS-Net also utilizes keypoints extracted by
Dlib [22] and OpenPose [3] to synthesize videos of 3D hu-
man face/body. To learn representation and preserve input
information effectively, most recent methods are based on
state-of-the-art generators with U-Net structure and AdaIN
module [12, 20, 46, 54], feature disentangle/decomposition
[49, 52], or specifically designed motion flow estimators
[6, 46, 50]. On the contrary, our proposed TS-Net uses a
more robust and general GAN generator [19] as backbone to
jointly learn transformation and synthesis. Some previous
works [46, 47] also performed video motion retargeting by
combining warp-based and warp-free generation. However,
their warping flows are always applied to previous gener-
ated frames, which may lead to the accumulation of syn-
thesis artifacts. Our proposed TS-Net instead computes the
warping flow between driving mask and real subject images
in feature space to avoid this issue.

3. Methodology
3.1. Model Architecture

Given a sequence X = {x1, x2, . . . , xK} with K
subject frames, their corresponding mask sequence Y =
{y1, y2, . . . , yK}, and a mask frame z from driving video,
the TS-Net generator can produce a new video frame x̂
with the subject from X and mask from z. Masks are gen-
erated by applying off-the-shelf pretrained 2D sparse key-
point detectors, i.e., Dlib [22] for face landmark detection
and OpenPose [3] for pose keypoint estimation. As illus-
trated in Fig. 2, TS-Net generator consists of two branches:
a transformation branch Γtra and a synthesis branch Γsyn for
generating the new video frame using warp-based transfor-
mation and direct synthesis, respectively.

During training, we concatenate K subject frames X and
their masks Y and feed them to an image encoder ∆img to
extract subject embedding features E = {e1, e2, . . . , eK}.
A mask encoder ∆msk encodes the input driving mask z
into driving embedding feature f . To reduce computational
costs of matrix multiplication, TS-Net operates in a low-
resolution feature space, where the spatial size of E and f
are only 1/82 of the input frames. We then input E and f
to the transformation branch Γtra and the synthesis branch
Γsyn, as illustrated as follows.
Transformation Branch. Inside Γtra, we implement warp-
based transformation using spatial sampling grids [17]. We
first compute the cosine similarity matrix Sk between the
driving embedding feature f and the k-th subject feature ek
as

Skpq =
ekp · fq∥∥ekp

∥∥
2
∥fq∥2

, (1)

where Skpq is the affinity value between fq at position q in
map f , and, ekp at position p in map ek, and ∥·∥2 indicates
the L2 norm. Suppose that the size of feature f and ek are
m × m, the size of matrix Sk will be m2 × m2, which is
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quartic to m. Thus adopting low-resolution feature maps is
important to alleviate computational overhead.

We further reduce computational costs by designing a
novel mask-aware similarity computation method, as shown
in Fig. 3. Given one driving mask z and one subject mask
y, we first generate their corresponding bounding box bz
and by according to the maximum and minimum keypoint
coordinates in masks. Intuitively, most of pixels inside the
bounding box bz will not be warped to the regions outside
by thus we can skip similarity computation between pixels
of these two regions. Based on this observation, we down-
sample bz and by to be the same spatial size as feature map
f and e and then only compute the affinity values between
points of their inside/outside-bounding-box regions.

For the input subject features E , we now have K similar-
ity matrices S = {S1, S2, . . . , SK}. We then use similarity
matrix Sk to weight the regular grid G and obtain the k-th
sampling grid G′

k as

G′
kp

=

∑
q

(
exp (τSkpq ) ·Gq

)∑
q exp (τSkpq )

, (2)

where G′
kp

is the coordinate p of sampling grid G′
k, Gq is

the coordinate q of regular grid G, and τ is the coefficient to
control the relative difference between affinity values. This
results in K sampling grids G′ = {G′

1, G
′
2, . . . , G

′
K}. By

applying sampling grids G′ to subject features E , we ac-
quire K warped features Vt = {vt1, vt2, . . . , vtK}. The final
warped feature v̄t is then generated by averaging the K fea-
tures in Vt.
Synthesis Branch. Inside Γsyn, we concatenate the k-th
subject embedding feature ek with driving mask feature f
and feed them to a fusion network Λ, which consists of a
series of fully-convolutional layers, for creating the k-th
synthesized warp-free feature map vsk. Processing K fea-
ture maps in E will generate K synthesized feature maps
Vs = {vs1, vs2, . . . , vsK}. We then take average of the K
features in Vs to produce the final synthesized feature v̄s.
Combination of Branches. We concatenate the feature v̄t

and v̄s of two branches and adopt a decoder network Ωdec
to synthesize the final output x̂. We also tried to combine v̄t

and v̄s with an attention-based matting function as in [46,
47], yet we found that this strategy fails to generate better
results, as later illustrated in Sec. 4.3. More architecture
details are in Sec. 4.2.

3.2. Training and Inference
We train our proposed TS-Net generator using a self-

supervised way of training. Specifically, input driving mask
sequence Z and subject image sequence X are from dif-
ferent segments of the same subject video. Thus we have
frames in the subject video as ground truth. The overall
loss for generating one frame is calculated as

l = LGAN(x̂, x) + αLVGG(x̂, x) + βLFM(x̂, x) + λLTRA(x̂
t, x) ,

(3)

Subject Image 𝑥 Subject Mask 𝑦 Subject Bbox 𝑏!

Driving Mask 𝑧 Driving Bbox 𝑏"
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Reshape

Figure 3: Illustration of our proposed mask-aware similarity
computation.

where LGAN is an adversarial loss [10], LVGG represents a
perceptual loss [19] based on VGG network [42], LFM is a
feature matching loss [48], and LTRA is extra regularization
loss for transformation branch. Here α, β, and λ are balanc-
ing factors, x̂ is the generated frame, x̂t is warped subject
frame, and x is ground truth real frame.

We now introduce detailed loss terms. The adversarial
loss LGAN is defined by the minimax optimization [10]:

min
G

max
D

Ex[logD(x)] + Ex̂[log(1−D(x̂))] . (4)

Discriminator D is designed to distinguish the real video
frame x from the synthesized video frame x̂ given driving
mask frame z. The perceptual loss LVGG is defined as

N∑
i=1

1

Wi

[
||F (i)(x̂)− F (i)(x)||1

]
, (5)

where N is the number of layers in VGG feature extrac-
tion network and F (i) denotes the output of i-th layer with
Wi elements of the VGG network [42] pretrained on Ima-
geNet [7]. The feature matching loss LFM is defined as

M∑
i=1

1

Ui

[
||D(i)(x̂)−D(i)(x)||1

]
, (6)

where D(i) denotes the i-th layer with Ui elements of our
proposed discriminator D. The transformation branch loss
LTRA is calculated as

LTRA = ||x̂t − x||1 , (7)

where x̂t is computed by patch-wise warping subject frame
using deformation grid G′. For K input subject frames, we
compute LTRA for each frame and then sum them up. In (3),
the first three loss terms (LGAN, LVGG, and LFM) are com-
monly used in current video generation models [48, 47]. We
show the importance of introducing LTRA to the training of
our model in Sec. 4.3.
Inference. Given the subject video X and the mask se-
quence of driving video Z , we randomly select K frames
from the subject video to synthesize a new frame x̂.
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Subject Driving V2V FS-V2V / EDN FOMM TS-Net (Ours)RegionMM

Figure 4: Qualitative comparison with state-of-the-art methods (V2V [47], FS-V2V [46], EDN [4], FOMM [39], and Re-
gionMM [41]) on face and dance video datasets. The top two rows are results for self-reconstruction and the bottom two
rows are for cross-identity transfer. Note that FS-V2V is used for face videos and EDN is used for dance videos.

4. Experiments

4.1. Datasets and Metrics

Datasets. We conduct experiments on face videos and
dance videos. For face videos, We use the real videos in
FaceForensics [35] dataset, which contains 1,004 videos of
news briefing from different reporters. We randomly choose
150 videos for training and 150 videos for testing. Since the
original videos are long, we randomly selected a short seg-
ment of 30 continuous frames from each video, and the se-
lected short videos are used in our experiments. To extract
mask sequences from videos, we first apply a face align-
ment algorithm [22] to localize 68 facial landmarks in each
frame. The sparse facial landmarks are then connected to
create the face mask. For dance videos, following [46, 47],
we downloaded dancing videos from Youtube1. We ran-
domly chose 100 videos for training and 85 videos for test-
ing and randomly sampled 30 continuous frames contain-
ing only one person from each video. We extracted human
poses as masks via OpenPose [3]. Face and hand keypoints
are kept for better motion retargeting.
Metrics. Following [38, 39], we compute metrics based on
two testing settings, self-reconstruction and cross-identity

1The video links are available on the project website of [46]. We ob-
tained permission to use the videos from the video owners.

transfer. For each setting, we synthesize 100 videos where
the size of each frame is 256×256 . For self-reconstruction,
we segment a video of the same subject to two non-
overlapping clips and use one clip as subject video and an-
other one as driving video. In this setting, driving video
also serves as ground truth. Similar to [9], we compute
the normalized mean L2 distance and Learned Perceptual
Image Patch Similarity (LPIPS) [56] metrics between self-
reconstructed results and driving videos. For cross-identity
transfer, which is more practical in real world applications,
subject video and driving video are from different subjects
in this setting. Due to the lack of ground truth, we con-
duct user study to compare our models with state-of-the-
art methods. Human evaluators are shown sets of n videos
generated by n different models and then are asked to rank
videos in each set from 1 (best) to n (worst) based on per-
ceptual similarity and realism. Tied rank scores will be
given for videos that are perceived to have comparable qual-
ity.

4.2. Implementation

Model Implementation. Our proposed encoder ∆ and de-
coder Θ in TS-Net are general and can have various back-
bone networks, such as pix2pix [16] and SPADE [31]. We
adopt the architecture in [19] due to its simplicity. For
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Dataset Method L2 ↓ LPIPS ↓

Face

V2V [47] 0.0356 0.1123
FS-V2V [46] 0.0422 0.1064
FOMM [39] 0.0443 0.1184
RegionMM [41] 0.0148 0.0532
TS-Net (K = 1) 0.0275 0.0731
TS-Net (K = 3) 0.0271 0.0683
TS-Net (K = 5) 0.0270 0.0673

Dance

V2V [47] 0.0895 0.2622
EDN [4] 0.0471 0.1718
FOMM [39] 0.1517 0.3081
RegionMM [41] 0.1945 0.4081
TS-Net (K = 1) 0.0433 0.1586
TS-Net (K = 3) 0.0421 0.1543
TS-Net (K = 5) 0.0423 0.1541

Table 1: Comparison with state-of-the-art methods under
the self-reconstruction setting on face and dance datasets.
K is the number of subject frames used in generation.

the encoder ∆img, we use the network with three stride-
2 convolutions and 9 residual blocks [13]. For ∆msk, we
use three stride-2 convolutions without additional residual
blocks since masks contain less information. Thus the spa-
tial size of embedding feature map is only 1/82 size of input
image. To encode position-related information for better
synthesis, we apply coordinate convolution [25] to inputs.
For decoder Θdec, we employ 4 residual blocks, followed
by three up-sampling and convolution layers. For fusion
network Λ, we use one residual block and one 1× 1 convo-
lution [24] to generate warp-free feature maps Vs. Instance
normalization [45] is adopted in TS-Net. For the discrim-
inator D, we use 70 × 70 PatchGAN [16, 48, 57], which
aims to classify whether the 70 × 70 overlapping patches
are real or fake. To stabilize the training, we use LSGAN
[28] for the adversarial loss.

When training TS-Net, we set batch size as 20 videos
and train the model for 600 epochs using the Adam opti-
mizer [23] with (β1, β2) = (0.5, 0.999). The learning rate
is fixed to 2 × 10−4 in the first 275 epochs and then lin-
early decayed to zero. The balancing parameters α, β, and
λ are all set to be 10 in (3). The coefficient τ in (2) is set to
be 100. Data augmentation such as color jitter and flipping
are also applied. Hyper-parameters are selected via multiple
runs of experiments. When training our models on the face
video dataset, we adopt an image gradient difference loss
[29] as an extra smoothness constraint to eliminate minor
artifacts in the generated videos. When training our models
on the dance video dataset, similar to [4, 46, 47], we in-
troduce an extra face discriminator to synthesize better face
details. To normalize masks across different subjects, the
masks of driving videos are aligned to the masks of subject
videos with the similar methods used in [4, 46].
Baselines. For face video dataset, we choose four state-of-
the-art video synthesis or image animation models, vid2vid
(V2V) [47], few-shot vid2vid (FS-V2V) [46], FOMM [39],

Figure 5: User study of ranking different methods under the
cross-identity setting. Ties are allowed. The top chart is for
face videos and the bottom one is for dance videos.

Subject Driving TS-Net

T-Net

S-Net

Figure 6: Ablation study under the cross-identity transfer
setting on the face dataset.

and RegionMM [41] as baselines. For dance video dataset,
we compare TS-Net with V2V, FOMM, RegionMM, and
Everybody Dance Now (EDN) [4]. FS-V2V is not included
for dance videos since it requires DensePose [11] as ex-
tra inputs. We follow the default settings in the methods’
original implementations wherever possible . The original
V2V and EDN train with a single video and test on the same
video. For fair comparison, we train V2V and EDN using
all available training videos.

4.3. Result Analysis

Comparison with state-of-the-art methods. Table 1
shows a quantitative comparison of our models with state-
of-the-art methods under the self-reconstruction setting.
TS-Net achieves comparable or better performance when
compared with state-of-the-art methods even when using
only one subject frame (K = 1). Though RegionMM [41]
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Figure 7: Ablation study for LTRA. The top row is from T-
Net without using LTRA and the bottom one is with LTRA.
LTRA clearly learns more reasonable deformation grid and
improves warped result.

achieves the best performance in the metrics for face videos
under the self-reconstruction setting, it performs worse than
TS-Net on all the other tasks (i.e., dance videos and cross-
identity transfer settings). The reason may be that Re-
gionMM relies on an unsupervised trained region detection
network, which may not be robust enough to handle large
motions or fine-grained details in various tasks. In Fig. 4,
one can observe that V2V [47] suffers from color/shape dis-
tortion, FS-V2V [46] misses some details (e.g. opened eyes
in first row), EDN fails to preserve some details such as in
the face or clothing, FOMM [39] struggles to capture the
head/body pose correctly, and RegionMM [41] generates
images with some blurry regions and unrealistic appearance
details. (Similar results can also be observed in Fig. 1). In
contrast, TS-Net can better handle large motion and pre-
serve identity. Table 1 also confirms the effectiveness of
using multiple subject frames in TS-Net to collect various
appearance information, where most metrics get improved
as the number of subject frames increases. For the cross-
identity transfer setting, we conduct a user study to compare
models with human perception. As shown in Fig. 5, TS-Net
gets the most user preference, especially on dance videos.
Ablation study. To analyze the effectiveness of each mod-
ule in TS-Net, we conduct an ablation study on the face
video dataset. The number of input subject frames is fixed
to be 3 (K = 3) to ease model training and testing. Ta-
ble 2 shows the quantitative comparison results of the ab-
lation study under the self-reconstruction setting. We first
train and test two single branch models, T-Net (Γtra) and
S-Net (Γsyn), which only employ the transformation branch
or synthesis branch, respectively. From the results shown
in Table 1 and Table 2, one can observe that even a sin-
gle branch can achieve promising performance when com-
pared to other state-of-the-art methods. However, as shown
in Fig. 6, warp-based T-Net fails to generate unseen con-

Method L2 ↓ LPIPS ↓
T-Net 0.0276 0.0698
T-Net w/o LTRA 0.0287 0.0725
S-Net 0.0285 0.0726
TS-Net w/ cross 0.0276 0.0696
TS-Net w/ matting 0.0281 0.0696
TS-Net 0.0271 0.0683

Table 2: Ablation Study under the self-reconstruction set-
ting on face dataset. The number of input subject frames is
fixed to be 3 (K = 3).

tent (e.g., regions marked by red box) while warp-free S-
Net is incompetent to preserve identity. Results demon-
strate that a single T-Net or S-Net enables efficient repre-
sentation learning, and the combination of two branches
can complement each other to achieve more satisfactory re-
sults. We also compare the transformation branch trained
with and without LTRA, T-Net and [T-Net w/o LTRA] in Ta-
ble 2, from which one can observe that removing LTRA di-
minishes performance. As Fig. 7 shows, the lack of LTRA
led to a less meaningful deformation grid G′ and resulted in
a poor warped image x̂t.

We also evaluate the effectiveness of some common
techniques adopted by previous video motion retargeting
methods [18, 46, 47], such as adding cross-identity trans-
fer to the training processing [TS-Net w/ cross] or using
the matting function to combine different types of features
[TS-Net w/ matting]. To enable cross-identity training, we
choose input mask sequence Z and input image sequence
X from different videos. Thus ground truth frames are not
available for training. In this case, we only use adversarial
loss LGAN for training, where discriminator D is designed
to distinguish the synthesized frame x̂ from arbitrary real
video frame x. For the matting function, we design an ex-
tra attention network with similar architecture as fusion net-
work Λ to generate a matting mask for combining v̄t and v̄s.
However, both these modules fail to be more effective as Ta-
ble 2 shows, which demonstrates that the simple design of
TS-Net has already achieved sufficient representation learn-
ing and synthesis power.

5. Limitations
For most cases, our proposed TS-Net can generate re-

alistic videos by only taking 2D sparse masks (see Fig. 8
and Supp. videos). However, it still suffers from several
limitations. First, the input masks of TS-Net are generated
from off-the-shelf detectors. Misdetections by the detectors
could result in inconsistent motion or incorrect appearances.
As shown in Fig. 9, the synthesized face in the top row has
an opened mouth, and the generated man in the middle row
shows missing hands. Second, TS-Net sometimes struggles
to synthesize high-frequency details. One can observe a few
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Figure 8: Examples of generated face videos (top block) and dance videos (bottom block) using our proposed TS-Net. For
each block, TS-Net synthesizes the new video (3rd row) with the appearance from subject video (1st row) and the motion
from driving video (2nd row).

Subject Image Subject Mask Driving Image Driving Mask Output

Figure 9: Some failure cases of TS-Net. Driving masks
are aligned to match subject masks using the normalization
methods in [4, 46].

texture artifacts in the kilt of the last row in Fig. 9. Future
work could focus on improving the keypoint detection sys-
tem and generating more realistic high-frequency textures.
Potential Negative Societal Impact. Video motion retar-
geting could be used for unethical purposes [53], e.g., cre-
ating videos of celebrities for fake news. We will restrict the
usage of our method and model to research purposes only.
We also plan to investigate fake video detection techniques
[33] that will be effective in detecting fake videos like the
ones generated by our proposed method.

6. Conclusion
In this paper, we propose TS-Net to jointly learn trans-

formation and synthesis for video motion transfer. Compre-
hensive experiments show that TS-Net can achieve state-of-
the-art performance on both face and dance videos using
only 2D sparse masks. In the future, we plan to investigate
TS-Net using different kinds of masks and multi-modal in-
formation (e.g. audio or text) in motion retargeting.
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