
Splatting-based Synthesis for Video Frame Interpolation

Simon Niklaus
Adobe Research

Ping Hu
Boston University

Jiawen Chen
Adobe Inc

2x 4x 8x 16x

1.0

2.0

3.0

4.0

5.0

interpolation factor

se
co

nd
s

on
a

V
10

0 SepConv++
SoftSplat
Ours

Figure 1. Runtime of two common video frame interpolation ap-
proaches versus ours when interpolating multiple frames between
two inputs from XTEST-2K [56]. Our proposed approach interpo-
lates the first frame in 61 ms and each additional frame only takes
a few milliseconds thanks to our splatting-based synthesis.

0.1 1 10 100

26

28

30

32 Ours

CtxSyn

DAIN

CAIN
EDSC

SoftSplat

BMBC

RIFE

SepConv++
CDFI

XVFI

ABME

runtime in seconds

PS
N

R

Figure 2. Evaluating the 8× interpolation ability of our proposed
approach in comparison to various others on XTEST-2K [56].

Abstract

Frame interpolation is an essential video processing tech-
nique that adjusts the temporal resolution of an image se-
quence. While deep learning has brought great improve-
ments to the area of video frame interpolation, techniques
that make use of neural networks can typically not easily be
deployed in practical applications like a video editor since
they are either computationally too demanding or fail at
high resolutions. In contrast, we propose a deep learning
approach that solely relies on splatting to synthesize inter-
polated frames. This splatting-based synthesis for video
frame interpolation is not only much faster than similar ap-
proaches, especially for multi-frame interpolation, but can
also yield new state-of-the-art results at high resolutions.

1. Introduction

Video frame interpolation is becoming more and more
ubiquitous. While early techniques for frame interpola-
tion were restricted to using block motion estimation and
compensation due to performance constraints [8, 20], mod-
ern graphics accelerators allow for dense motion estima-
tion and compensation while heavily making use of neural
networks [36, 44, 45, 47]. These developments enable in-

teresting new applications of video frame interpolation for
animation inbetweening [31], video compression [62], video
editing [39], motion blur synthesis [3], and many others.

However, current interpolation techniques that make use
of neural networks are inherently difficult to accelerate. For
example, the first interpolation approaches that use deep
learning require fully executing the entire network for each
output [36, 44, 45]. As such, using SepConv++ [46] (Fig-
ure 1, orange) to interpolate a video by a factor of 8× instead
of 2× requires eight times more compute. Newer approaches
are little different though, SoftSplat [43] (Figure 1, blue) for
instance estimates the optical flow between the input frames
and then extracts and warps feature pyramids to the desired
instant before employing a synthesis network to yield the
final result. While the optical flow only needs to be estimated
once in this case, the synthesis network has to be executed
for each new frame which again requires roughly eight times
more compute when interpolating by 8× instead of 2×.

To address such limitations, we propose a splatting-based
synthesis approach. Specifically, we propose to solely rely
on splatting to synthesize the output image without any sub-
sequent refinement. As such, interpolating frames after es-
timating the optical flow requires only a few milliseconds
and interpolating a video by a factor of 8× instead of 2×
requires hardly any more compute thanks to our image forma-

713

(a) overlaid inputs (b) SoftSplat [43] (c) XVFI [56] (d) Ours

Figure 3. Qualitative comparison of our proposed approach with two representative methods on a sample from the XTEST-2K [56] test
dataset. While these sophisticated interpolation methods are unable to handle this challenging scenario with the utility pole subject to large
motion, our comparatively simple approach is able to generate a plausible result. Please consider our supplementary for more results.

tion model (Figure 1, green). Further, our synthesis approach
allows for the motion to be estimated at a lower resolution
and to then upsample the estimated flow before using it to
warp the input frames. This not only improves the computa-
tional efficiency, but can counterintuitively also lead to an
improved interpolation quality (Figure 2 and Figure 3).

The key to making our splatting-based synthesis approach
work well is that it is carefully designed and that it is fully
differentiable. Our careful design greatly improves the inter-
polation quality when compared to a common optical flow
warping baseline (+1.35 dB on Vimeo-90k [65]), and be-
ing fully differentiable enables the underlying optical flow
estimator to be fine-tuned which further improves the interpo-
lation results (+1.43 dB on Vimeo-90k [65]). Summarizing
our claims in short, we (1) introduce an image synthesis
approach purely based on splatting that is especially well-
suited for multi-frame interpolation, (2) show that iterative
optical flow upsampling not only further improves the ef-
ficiency of our approach but can also lead to an improved
quality, and (3) identify a numerical instability in softmax
splatting and propose an effective solution to address it.

2. Related Work

Warping-based frame interpolation has a long history.
Some examples based on block-level motion estimates in-
clude overlapping block motion compensation [8, 20], adap-
tively handling overlapping blocks [7], detecting and han-
dling occlusions [24], considering multiple motion esti-
mates [27], and estimating a dense motion field at the in-
terpolation instant [12]. These are in contrast to motion
compensation based on dense estimates which includes lay-
ered warping [53, 70], occlusion reasoning for temporal
interpolation [22], transition points [38], and using warping
as a metric to evaluate optical flow estimates [1].

Our proposed splatting-based synthesis is closely related
to traditional warping techniques that leverage optical flow

estimates while reasoning about occlusions [1, 22]. How-
ever, for a splatting-based synthesis approach to be used in
a deep learning setting, the involved operations needs to be
differentiable and easy to parallelize. This prohibits com-
mon techniques such as ordering and selecting a candidate
flow in cases where multiple source pixels map to the same
target [22], or iteratively filling holes [1]. In contrast, our
proposed splatting-based synthesis technique only relies on
differentiable operations that are easy to parallelize such as
softmax splatting [43] and backward warping [26].

A common category of frame interpolation approaches
interpolate a frame at an arbitrary time t between two in-
put frames. We have summarized recent techniques from
this category in the supplementary material since these are
most closely related to our proposed approach. All of these
methods have in common that they require running a neural
network to infer the interpolation result at the desired instant.
That is, they either use a neural network to refine warped rep-
resentations of the input images, or use a neural network to
infer the motion from the desired interpolation instant to the
input images before accounting for it. Running such neural
networks is computationally challenging though, especially
at high resolutions. This is in contrast to our splatting-based
synthesis where, given optical flow estimates between the in-
put frames, synthesizing the interpolation result at any time
instant requires only a few primitive operations.

Another category of video frame interpolation approaches
take two images as input and interpolate a frame at a fixed
time, typically t = 0.5, between the two inputs. This in-
cludes kernel-based synthesis techniques [44, 45, 46], ap-
proaches that estimate the motion from the frame that is
ought to be interpolated either implicitly [5, 30, 55] or ex-
plicitly [19, 35, 36, 50, 51, 67, 68], methods that directly
synthesize the result [10, 28], and techniques that estimate
the phase decomposition of the intermediate frame [40]. We
focus on arbitrary-time video frame interpolation.

The area of frame interpolation is much more diverse than

714

I0

I1

ϕflow
(PWC-Net)

ϕflow
(PWC-Net)

F0�t

F1�t

Fig. 5
(Section 3.1)

Fig. 5
(Section 3.1)

I0�t

I1�t

Mmerge
0�t

Mmerge
1�t

Eq. 5

It

fine-tuned

7 trained params

Figure 4. Overview of our proposed splatting-based synthesis for video frame interpolation. Given two frames I0 and I1, we estimate the
inter-frame motion F0�1 and F1�0 through an off-the-shelf optical flow network. Using the flow scaled by the desired instant t, we then
splat the input frames to time t as I0�t and I1�t as outlined in Figure 5 before merging them according to Equation 1 to obtain It.

I0

F0�t

ϕmetrics
(Section 3.2)

M splat
0

Mmerge
0 −→σ

(〈
Mmerge

0

−F0�t

〉
, F0�t,M

splat
0

) Ft�0

←−ω (I0, Ft�0)

I0�t

Mmerge
0�t

7 trained params fixed

Figure 5. Given an image I0 as well as an optical flow F0�t, we not only splat the image to time t as I0�t but also a generate a corresponding
weight map Mmerge

0�t that can be used to merge multiple synthesis results. Specifically, we use softmax splatting −→σ [43] to splat inverse flows
before employing backward warping←−ω [26] to reconstruct I0�t from I0 and we directly splat a base metric Mmerge

0 to obtain Mmerge
0�t .

these categories though. There is research on using multiple
input frames [6, 34, 54, 64], interpolating footage from event
cameras [33, 59, 61, 66], efficient model design [10, 11, 13],
test-time adaptation [9, 52], hybrid imaging systems [48],
handling quantization artifacts [60], as well as joint deblur-
ring [54] and super-resolution [29, 63]. Our splatting-based
synthesis is orthogonal to such research directions.

3. Splatting-based Synthesis
Our proposed splatting-based synthesis approach for

video frame interpolation is summarized in Figure 4 and
we will subsequently discuss its individual aspects. In doing
so, we consider (1) how to resolve ambiguities where mul-
tiple pixels from the input image map to the same location
in the target, (2) how to do the warping without introducing
any unnecessary artifacts, and for video frame interpolation
in particular (3) how to merge I0 and I1 after warping them
to synthesize the desired interpolation result It at time t.

3.1. Splatting and Merging

The core of our splatting-based synthesis is to warp I0
and I1 to the desired interpolation instant t using F0�t and
F1�t respectively. However, one cannot simply splat an input
image as is since multiple pixels in the source image may
map to the same target location as shown in Figure 6. To
address this ambiguity, we follow [43] and use an auxiliary
weight M splat that serves as a soft inverse z-buffer (called Z
in [43]). We discuss how to obtain M splat in Section 3.2.

One may be tempted to directly splat I0 using the optical
flow F0�t subject to the splatting metric M splat

0 in order to
obtain I0�t (I0 warped to time t). However and as shown
in Figure 7, this naive application of softmax splatting will
lead to subtle artifacts and introduce unnecessary blurriness.
Instead, we follow existing warping-based interpolation ap-
proaches and splat F0�t to t to obtain the inverse flow Ft�0

which is then used to backward warp I0 to t [1, 22].
Splatting naturally leads to holes in the warped result due

to not only occlusions but also divergent flow fields. As
shown in Figure 8, splatting with a divergent flow results in
small holes even in contiguous areas. To fill these holes, we
replace the default bilinear splatting kernel, which only has a
footprint of 2×2, with a 4×4 Gaussian kernel. Note that such
a wider kernel would lead to blurrier results when splatting
colors, but it does not affect the clarity in our approach where
we splat inverse flows and then backward warp the image.

After these careful considerations we are able to faithfully
warp I0 to I0�t and I1 to I1�t, but we cannot simply average
these individual results to obtain the desired It since some
pixels are more reliable than others as shown in Figure 9. As
such, we introduce an auxiliary map Mmerge that weights the
individual results before merging them to obtain It as:

It =
(1− t) ·Mmerge

0�t · I0�t + t ·Mmerge
1�t · I1�t

(1− t) ·Mmerge
0�t + t ·Mmerge

1�t

(1)

where I0�t is I0 warped to time t, M splat
0�t is M splat

0 warped
to time t, and analogous for I1�t and M splat

1�t in the opposite

715

(a) naively splat I0 to get I0�t (b) splatting weighted by M splat
0

Figure 6. We use a splatting metric M splat that weights the individ-
ual pixels to resolve ambiguities where multiple pixels map to the
same destination, thus properly handling occlusions.

(a) splat colors directly (b) splat flows then backwarp colors

Figure 7. Directly splatting the colors of an image can lead to subtle
artifacts, which is why we splat flows instead and then synthesize
the output using backwards warping of the splatted flows.

direction. We will subsequently describe how to obtain the
involved splatting M splat and merging Mmerge metrics.

3.2. Metrics for Splatting and Merging

Previous frame interpolation work used photometric con-
sistency to resolve the splatting ambiguity where multiple
source pixels map to the same target location [1]. This mea-
sure can be defined using backward warping←−ω (·) as:

ψphoto = ∥I0 −←−ω (I1, F0�1) ∥ (2)

However, photometric consistency is easily affected by
brightness changes, as is frequently the case with moving
shadows. As such, we not only consider photometric consis-
tency but also optical flow consistency defined as:

ψflow = ∥F0�1 +
←−ω (F1�0, F0�1) ∥ (3)

Flow consistency is given if the flow of a pixel mapped to the
target maps back to the pixel in the source, which is invariant
to brightness changes. Another measure we consider is flow
variance, which indicates local changes in flow as:

ψvaria = ∥
√
G(F0�1

2)−G(F0�1)2∥ (4)

where G(·) denotes a 3 × 3 Gaussian filter. Flow variance
is high in areas with discontinuous flow, as is the case at
motion boundaries. As shown in Figure 9, optical flow
estimates tend to be inaccurate at boundaries which makes
this measure particularly useful for the Mmerge metric.

(a) splat flows with bilinear kernel (b) splat flows with Gaussian kernel

Figure 8. Splatting is subject to holes not only due to occlusions
but also due to divergent flow fields, which we address by replacing
the bilinear splatting kernel with a wider Gaussian kernel.

(a) warped image I1�t (b) corresponding Mmerge
1�t

Figure 9. We use a merging metric Mmerge that weights the individ-
ual pixels in the warped images I0�t and I1�t, which suppresses
the influence of unreliable pixels when generating It.

Middlebury Vimeo-90k
Baker et al. [1] Xue et al. [65]

PSNR
↑

absolute
change

PSNR
↑

absolute
change

Ours 36.63 − 35.00 −
w/o flow splatting 36.27 - 0.36 dB 34.86 - 0.14 dB
w/o gaussian splatting 36.39 - 0.24 dB 34.89 - 0.11 dB
w/o stable splatting 36.48 - 0.15 dB 34.97 - 0.03 dB
w/o using ψphoto 36.22 - 0.41 dB 34.99 - 0.01 dB
w/o using ψflow 36.44 - 0.19 dB 34.99 - 0.01 dB
w/o using ψvaria 36.40 - 0.23 dB 34.89 - 0.11 dB

Table 1. Ablative experiments to analyze the design choices of our
proposed splatting-based synthesis for video frame interpolation.

We conclude by combining these measures and define the
splatting M splat metric as (and analogous for Mmerge):

M splat =
1

1+αs
p ·ψphoto

+
1

1+αs
f ·ψflow

+
1

1+αs
v ·ψvaria

(5)

where
〈
αs

p, α
s
f , α

s
v

〉
are tuneable parameters. The merge met-

ric Mmerge is defined analogous with
〈
αm

p , α
m
f , α

m
v

〉
. We also

scale M splat by an α as in [43], and initially set these seven
parameters to 1 while learning their values through end-to-
end training. We also tried using a neural network to merge
the individual measures, but have found Equation 5 to be
faster and work better. Lastly, we also considered more com-

716

Middlebury Vimeo-90k Xiph-1K Xiph-2K Xiph-4K
Baker et al. [1] Xue et al. [65] (4K scaled to 1K) (4K scaled to 2K) (from xiph.org)

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

fixed PWC-Net w/ [1] warping 33.80 − 32.22 − 33.61 − 33.59 − 32.61 −
fixed PWC-Net w/ our warping 34.73 + 0.93 dB 33.57 + 1.35 dB 35.03 + 1.42 dB 34.90 + 1.31 dB 33.66 + 1.05 dB
tuned PWC-Net w/ our warping 36.63 + 1.90 dB 35.00 + 1.43 dB 36.75 + 1.72 dB 35.95 + 1.05 dB 33.93 + 0.27 dB

Table 2. Comparing our splatting-based synthesis to a common warping-based interpolation technique [1]. Not only does our approach
greatly outperform this baseline, it also allows us to fine-tune the utilized PWC-Net [57] which further improves the interpolation results.

plex measures such as depth [2] but have found these not to
be beneficial due to their computational complexity.

3.3. Ablative Experiments

We analyze the choices we made when designing our
splatting-based synthesis for frame interpolation through
ablative experiments. As shown in Table 1, each individual
component contributes to the interpolation quality.

3.4. Baseline Comparison

We compare our proposed splatting-based synthesis for
frame interpolation to a common warping-based interpola-
tion technique [1] in Table 2, which shows that our approach
greatly outperforms this common baseline. However, since
our image formation model is end-to-end differentiable, we
can further improve the quality of our interpolated results by
fine tuning the underlying optical flow estimator. Essentially,
we show how to perform the technique of [1] better and in a
differentiable manner to enable end-to-end supervision.

3.5. Real-time Interpolation

Our splatting-based synthesis allows synthesizing a frame
within a few milliseconds once the inter-frame motion has
been estimated. We demonstrate this ability through an inter-
active visualization tool that is provided in the supplementary
material (see Figure 10). This demo takes two images as
well as pre-computed optical flow estimates as input and
essentially implements Figure 5 as well as Equation 1 to syn-
thesize the interpolated frame at the requested instant. This
visualization is implemented in Javascript and it neither uses
multi-threading nor any graphics acceleration. Despite this
naive implementation, the demo is still able to interpolate
frames in real time thanks to our image formation model.

4. Iterative Flow Upsampling
It is impractical to compute optical flow on a 4K video.

For high-resolution inputs, we thus propose to estimate the
motion at a lower resolution and then use a neural network to
iteratively upsample the optical flow to the full resolution of
the input (see Figure 11). In practice, one may want to esti-
mate the optical flow on either a 2K or a 1K resolution when
given a 4K video depending on the desired performance

Figure 10. An interactive demo which performs our splatting-
based synthesis on the fly, please see the supplementary “visualiza-
tion.html”. This is a video that is best viewed in Adobe Reader.

characteristics. To support this use case, we subsequently
propose an iterative optical flow upsampling approach.

4.1. Iterative Upsampling

We utilize a small neural network to perform iterative
flow upsampling in an coarse-to-fine manner while using
the high-resolution input frames as a guide. Specifically,
given a flow estimate at a resolution of x as well as the
two input images at a resolution of 2 · x, the upsampling
network estimates the flow at a resolution of 2 · x through a
sequence of four convolutions with PReLU [21] activations
in between. To upsample a given optical flow estimate by a
factor of 4×, we execute the upsampling network twice.

We have found it beneficial to not only guide the up-
sampling by providing the input images, but also the three
measures from Section 3.2 as they encode useful properties
of the optical flow. We have otherwise kept our upsampling
network deliberately simple without using spatially-varying
upsampling kernels [58], normalized convolution upsam-
pling [15], or self-guided upsampling [37]. After all, one of
the reasons for estimating the optical flow at a lower resolu-
tion is improved efficiency and employing a more complex
upsampling network would counteract this objective.

Another reason for estimating the optical flow a lower
resolution is to mimic the inter-frame motion that the opti-
cal flow estimator was trained on during inference. In our
implementation, we use PWC-Net [57] to estimate the opti-
cal flow and fine-tune it on input patches of size 256× 256
with a relatively small inter-frame motion magnitude. This
optical flow estimator is expected to perform poorly on out-

717

I1

I0

downsample
ϕflow

(PWC-Net)

ϕupsample
(Section 4.1)

F0�1

tuned trained

Figure 11. Overview of our iterative flow upsampling. Given two input images at a high resolution, we downsample them and then estimate
the optical flow at a lower resolution. Our splatting-based synthesis requires full-resolution flow though, which is why we iteratively
upsample the estimated flow guided by the input images. That is, the more we downsampled the more upsampling iterations we do.

Middlebury Vimeo-90k Xiph-1K Xiph-2K Xiph-4K runtime
Baker et al. [1] Xue et al. [65] (4K scaled to 1K) (4K scaled to 2K) (from xiph.org) (seconds on a V100)

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

at 1K
↓

at 2K
↓

at 4K
↓

Ours w/o upsampling 36.63 1st of 3 35.00 1st of 3 36.75 1st of 3 35.95 1st of 3 33.93 3rd of 3 0.043 0.148 0.589

Ours at 1/2 res. w/ 2× upsampling 34.79 2nd of 3 33.89 2nd of 3 35.37 2nd of 3 35.52 2nd of 3 34.68 1st of 3 0.024 0.061 0.226

Ours at 1/4 res. w/ 4× upsampling 33.68 3rd of 3 32.82 3rd of 3 34.04 3rd of 3 34.81 3rd of 3 34.51 2nd of 3 0.023 0.041 0.137

Table 3. Evaluating the effect of flow upsampling on the interpolation quality and the runtime. Counterintuitively, estimating the motion on a
lower resolution is not only beneficial in terms of runtime, but sometimes also quality (see 1/2 res. w/ 2× upsampling on Xiph-4K).

Xiph-2K Xiph-4K
(4K scaled to 2K) (from xiph.org)

PSNR
↑

relative
change

PSNR
↑

relative
change

at 1/2 res. w/ bilinear up. 34.91 − 34.51 −
at 1/2 res. w/ our up. 35.52 + 0.61 dB 34.68 + 0.17 dB
at 1/4 res. w/ bilinear up. 32.10 − 33.10 −
at 1/4 res. w/ our up. 34.81 + 2.71 dB 34.51 + 1.41 dB

Table 4. Comparison of our iterative flow upsampling with a base-
line that only uses bilinear interpolation to upsample the flow.

of-domain high-resolution footage such as 4K inputs. But
by downsampling our inputs to resemble the data on which
the flow estimation network was trained, we achiever better
interpolation result at high resolutions (see Table 3).

4.2. Baseline Comparison

We compare our proposed iterative flow upsampling to
a baseline that only uses bilinear interpolation to upsample
the flow in Figure 4, which shows that it is key to upsample
the flow in a guided manner. Without a ϕupsample trained
specifically for this task, the drop in interpolation quality,
especially when estimating the motion at 1/4 resolution and
then upsampling it by a 4×, would be too severe to usefully
benefit from the improved computational efficiency.

5. Stable Softmax Splatting
The challenge with splatting is that multiple pixels from

the source image can map to the same location in the target,
which creates an ambiguity that in the context of deep learn-
ing needs to be resolved differentiably. Softmax splatting
is a recent solution to this problem [43], which has already

found many applications [16, 17, 23, 32, 69]. However, the
way softmax splatting is implemented is not numerically
stable, which we subsequently outline and address.

Given an image I0, an optical flow F0�t that maps pixels
in I0 to the target time t and a weight map Z0 to resolve
ambiguities where multiple pixels from I0 map to the same
target location, softmax splatting −→σ is defined as:

−→σ (I0, F0�t, Z0) =

−→
Σ (exp(Z0) · I0, F0�t)
−→
Σ (exp(Z0), F0�t)

(6)

where
−→
Σ(·) is summation splatting [43] and Z0 can be

thought of as an importance metric that acts like a soft in-
verse z-buffer (a hard z-buffer is not differentiable [41]).

The softmax operator is usually not implemented as de-
fined since it is numerically unstable, exp(X) quickly ex-
ceeds 32-bit floating point when X > 50. Fortunately, since
softmax(X + c) = softmax(X) for any c, we can instead
use softmax(X ′) where X ′ = X −max(X) [18]. However,
one cannot directly use this trick to numerically stabilize
softmax splatting. Consider a weight map Z0 with one ele-
ment set to 1000 and all others ∈ [0, 1]. Shifting the weights
by −1000 effectively sets all but one weight to 0 which then
reduces the operation to average splatting, ignoring Z0.

The weights must be shifted adaptively at the destination
where multiple source pixels overlap. As such, we first warp
Z0 to time t as Zmax

0�t which denotes the maximum weight
for each pixel in the destination. This can be efficiently
computed in parallel using an atomic max. Note that this
step is and need not be differentiable as it is only used to
make softmax splatting numerically stable. We can then
subtract Zmax

0�t [p] from Z0[q] before applying the exponential
function when warping from a point q to p, analogous to

718

Middlebury Vimeo-90k Xiph-1K Xiph-2K Xiph-4K
Baker et al. [1] Xue et al. [65] (4K scaled to 1K) (4K scaled to 2K) (from xiph.org)

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

PSNR
↑

relative
change

original SoftSplat [43] 38.42 − 36.10 − 37.96 − 36.62 − 34.20 −
with our stable softmax splatting 38.59 + 0.17 dB 36.18 + 0.08 dB 37.99 + 0.03 dB 36.74 + 0.12 dB 34.62 + 0.42 dB

Table 5. Our stable softmax splatting formulation leads to subtle but consistent improvements when applied to the original SoftSplat [43].

XTEST-1K XTEST-2K XTEST-4K
(4K scaled to 1K) (4K scaled to 2K) Sim et al. [56]

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

SepConv [45] 30.35 9th of 16 26.60 11th of 16 24.32 9th of 16
CtxSyn [42] 31.92 6th of 16 29.12 6th of 16 25.46 4th of 16
DAIN [2] 32.51 3rd of 16 31.49 2nd of 16 − −
CAIN [10] 30.23 11th of 16 26.72 10th of 16 24.50 6th of 16
EDSCs [4] 30.54 8th of 16 26.37 12th of 16 − −
EDSCm [4] 29.62 14th of 16 27.45 8th of 16 − −
AdaCoF [30] 28.69 15th of 16 26.20 13th of 16 24.36 7th of 16
SoftSplat [43] 33.42 1st of 16 29.73 5th of 16 25.48 3rd of 16
BMBC [49] 30.04 12th of 16 25.46 15th of 16 − −
RIFE [25] 32.32 4th of 16 27.49 7th of 16 24.67 5th of 16
SepConv++ [46] 29.78 13th of 16 26.12 14th of 16 24.36 7th of 16
CDFI [13] 30.30 10th of 16 26.89 9th of 16 − −
XVFI [56] 31.54 7th of 16 31.12 3rd of 16 30.12 2nd of 16
XVFIv [56] 26.91 16th of 16 24.49 16th of 16 22.83 10th of 16
ABME [50] 32.08 5th of 16 30.15 4th of 16 − −
Ours 33.31 2nd of 16 32.27 1st of 16 31.34 1st of 16

Table 6. Evaluating the 8× interpolation capability of our approach
in comparison to various other frame interpolation techniques on
the XTEST [56] benchmark. Our approach generates better results
and is an order of magnitude faster at doing so (see Figure 2).

what is typically done when implementing softmax. We thus
define our numerically stable softmax splatting as:

let u = p−
(
q + F0�t[q]

)
(7)

It[p] =

∑
∀q∈I0

b(u) · exp
(
Z0[q]− Zmax

0�t [p]
)
· I0[q]∑

∀q∈I0
b(u) · exp

(
Z0[q]− Zmax

0�t [p]
) (8)

b(u) = max(0, 1− |ux|) ·max(0, 1− |uy|). (9)

where b(·) is a bilinear kernel. Next, we demonstrate the ben-
efits of this numerically stable softmax splatting operator on
the task of frame interpolation. To do so, we reimplemented
SoftSplat [43] but used our numerically stable softmax splat-
ting instead of the official implementation. As shown in
Table 5, the enhanced numerical stability of our implementa-
tion translates to subtle but consistent improvements in the
interpolation quality. We expect similar improvements in
other application domains such as in rolling shutter correc-
tion, video compression, video prediction, image animation,
and various other synthesis tasks [16, 17, 23, 32, 69].

1 2 3 4 5 6 7

29
30
31
32
33
34
35

frame index

PS
N

R

Ours took 0.1 sec. per sequence
XVFI took 2.1 sec. per sequence
SoftSplat took 2.3 sec. per sequence

Figure 12. Evaluating the per-frame synthesis quality when per-
forming 8× interpolation on the XTEST-2K [56] benchmark.

6. Experiments
We subsequently provide additional implementation de-

tails, compare our splatting-based synthesis for frame inter-
polation to other approaches, and discuss its limitations.

6.1. Implementation

We use PWC-Net [57] trained on FlyingChairs [14] as the
basis for the underlying optical flow estimator ϕflow. We fine-
tune this flow estimator together with the seven parameters
of the metrics extractor ϕmetrics on the task of frame interpo-
lation (Equation 1) with a Laplacian loss [42] using crops
of size 256× 256 from Vimeo-90k [65]. After convergence,
we keep ϕflow and ϕmetrics fixed while instead only training
the iterative flow upsampling network ϕupsample, again using
crops from the Vimeo-90k dataset. However, this time we
uniformly sample the crop width from U(192, 448) and the
crop height from U(192, 256) such that the upsampling net-
work is supervised on various aspect ratios. During training,
we run ϕupsample randomly for either one or two iterations.

6.2. Quantitative Evaluation

One of the benefits of our splatting-based synthesis is that
once the motion has been estimated, interpolating frames
only takes a few milliseconds. This makes our technique
particularly useful for multi-frame interpolation, which we
evaluate using the XTEST [56] benchmark. Since we have
found the inter-frame motion in this benchmark to be rather
extreme as its name suggests, we use our proposed approach
with iterative 2× down/upsampling on 2K inputs while using
iterative 4× down/upsampling on 4K inputs. The results of
this experiment are shown in Table 6 and Figure 12. Aside

719

Middlebury Vimeo-90k Xiph-1K Xiph-2K Xiph-4K runtime
Baker et al. [1] Xue et al. [65] (4K scaled to 1K) (4K scaled to 2K) (from xiph.org) (seconds on a V100)

venue
PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

PSNR
↑

absolute
rank

at 1K
↓

at 2K
↓

at 4K
↓

SepConv [45] ICCV 2017 35.73 12th of 16 33.80 14th of 16 36.22 13th of 16 34.77 13th of 16 32.42 7th of 16 0.096 0.321 1.245

CtxSyn [42] CVPR 2018 36.93 7th of 16 34.39 12th of 16 36.87 5th of 16 35.71 6th of 16 33.85 4th of 16 0.111 0.438 1.805

DAIN [2] CVPR 2019 36.69 10th of 16 34.70 10th of 16 36.78 7th of 16 35.93 5th of 16 − − 1.273 5.679 −
CAIN [10] AAAI 2020 35.11 14th of 16 34.65 11th of 16 36.21 14th of 16 35.18 9th of 16 32.68 6th of 16 0.047 0.158 0.597

EDSCs [4] arXiv 2020 36.82 8th of 16 34.83 8th of 16 36.73 9th of 16 34.81 12th of 16 − − 0.961 1.334 −
EDSCm [4] arXiv 2020 34.37 15th of 16 33.34 15th of 16 35.29 15th of 16 34.62 16th of 16 − − 0.961 1.334 −
AdaCoF [30] CVPR 2020 35.72 13th of 16 34.35 13th of 16 36.26 12th of 16 34.82 11th of 16 32.12 9th of 16 0.033 0.125 0.499

SoftSplat [43] CVPR 2020 38.42 1st of 16 36.10 2nd of 16 37.96 1st of 16 36.62 1st of 16 34.20 2nd of 16 0.117 0.444 1.768

BMBC [49] ECCV 2020 36.79 9th of 16 35.06 6th of 16 36.59 10th of 16 34.67 15th of 16 − − 1.139 4.398 −
RIFE [25] arXiv 2020 37.30 3rd of 16 35.61 3rd of 16 37.38 2nd of 16 36.16 3rd of 16 33.47 5th of 16 0.017 0.058 0.317

SepConv++ [46] WACV 2021 37.28 4th of 16 34.83 8th of 16 36.83 6th of 16 34.84 10th of 16 32.23 8th of 16 0.092 0.364 1.455

CDFI [13] CVPR 2021 37.14 5th of 16 35.17 4th of 16 37.05 3rd of 16 35.46 7th of 16 − − 0.230 0.916 −
XVFI [56] ICCV 2021 33.27 16th of 16 32.49 16th of 16 34.54 16th of 16 34.76 14th of 16 33.99 3rd of 16 0.114 0.297 0.964

XVFIv [56] ICCV 2021 37.09 6th of 16 35.07 5th of 16 36.98 4th of 16 35.19 8th of 16 32.12 9th of 16 0.114 0.297 0.964

ABME [50] ICCV 2021 37.64 2nd of 16 36.18 1st of 16 36.53 11th of 16 36.50 2nd of 16 − − 0.336 1.057 −
Ours N/A 36.63 11th of 16 35.00 7th of 16 36.75 8th of 16 35.95 4th of 16 34.68 1st of 16 0.044 0.149 0.226

Table 7. Quantitative comparison of our proposed approach with various recent frame interpolation techniques that operate on two input
images. The higher the resolution the better our approach ranks, and it performs best on the Xiph-4K test where it is also the fastest.

from being highly efficient when generating multiple frames
between two given ones, our approach performs particularly
well on XTEST which we attribute to its favorable ability to
handle large motion. Further, the per-frame analysis shows
that our splatting-based synthesis is temporally consistent.

We further evaluate our approach on common benchmark
datasets as done in [46]. For this experiment, we use our
interpolation pipeline without iterative flow upsampling on
inputs of up to 2K and with 2× down/upsampling for 4K
inputs. As shown in Table 7, the higher the resolution the
better our approach ranks and it performs best on Xiph-4K
where it is also the fastest. While our approach does not yield
state-of-the-art performance on low resolutions like with
the Vimeo-90k test split, it is nevertheless surprising that it
still outperforms both CtxSyn [42] and DAIN [2] on such
small resolutions. After all, these methods not only splat the
input images but also various feature representations before
employing a synthesis network to generate the result which
makes them much slower. In contrast, our synthesis is purely
based on splatting without any subsequent refinement.

6.3. Qualitative Evaluation

Video frame interpolation results are best viewed as a mo-
tion picture, which is why we limit the qualitative evaluation
in our main paper to only a single example in Figure 3 and
kindly refer to our supplementary for more results.

6.4. Limitations

While generating results with our splatting-based synthe-
sis is fast, it is wholly relying on the quality of the underlying

optical flow estimate. In contrast, the refinement network
that is used in related approaches that splat features before
synthesizing the output using the warped features is able
to account for minor inaccuracies in the estimated motion.
Similarly, our splatting-based synthesis requires all the infor-
mation that is necessary to interpolate the intermediate frame
to be present in the input. However, this may not always be
the case due to occlusions. In contrast, approaches with a
refinement network can hallucinate missing content.

Furthermore, a synthesis approach like ours that solely
relies on splatting will never be able to surpass an equivalent
version that also utilizes a subsequent refinement network.
As such, while our computational efficiency is unmatched,
we consider the quantitative performance of our proposed
interpolation pipeline as “good” but not “state-of-the-art” at
low resolutions. The only reason we are able to claim state-
of-the-art results at high resolutions is due to our iterative
upsampling, but other methods could equally make use of
this technique to improve their results at high resolutions.

7. Conclusion
In this paper, we show how to perform video frame inter-

polation while synthesizing the output solely through splat-
ting. As such, synthesizing a frame only takes a few millisec-
onds once the inter-frame motion has been estimated, which
makes our approach particularly useful for multi-frame in-
terpolation. Furthermore, we combine this splatting-based
synthesis approach with an iterative flow upsampling scheme
which not only benefits the computational efficiency but also
improves the interpolation quality at high resolutions.

720

References
[1] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth,

Michael J. Black, and Richard Szeliski. A Database and
Evaluation Methodology for Optical Flow. International
Journal of Computer Vision, 92(1):1–31, 2011.

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiy-
ong Gao, and Ming-Hsuan Yang. Depth-Aware Video Frame
Interpolation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[3] Tim Brooks and Jonathan T. Barron. Learning to Synthesize
Motion Blur. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[4] Xianhang Cheng and Zhenzhong Chen. Multiple Video
Frame Interpolation via Enhanced Deformable Separable Con-
volution. arXiv/2006.08070, 2020.

[5] Xianhang Cheng and Zhenzhong Chen. Video Frame Inter-
polation via Deformable Separable Convolution. In AAAI
Conference on Artificial Intelligence, 2020.

[6] Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei
Lu, Jin Tang, and Konstantinos N. Plataniotis. All at Once:
Temporally Adaptive Multi-Frame Interpolation With Ad-
vanced Motion Modeling. In European Conference on Com-
puter Vision, 2020.

[7] Byeong-Doo Choi, Jong-Woo Han, Chang-Su Kim, and Sung-
Jea Ko. Motion-Compensated Frame Interpolation Using
Bilateral Motion Estimation and Adaptive Overlapped Block
Motion Compensation. IEEE Transactions on Circuits and
Systems for Video Technology, 17(4):407–416, 2007.

[8] Byung-Tae Choi, Sung-Hee Lee, and Sung-Jea Ko. New
Frame Rate Up-Conversion Using Bi-Directional Motion
Estimation. IEEE Transactions on Consumer Electronics,
46(3):603–609, 2000.

[9] Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun
Kim, and Kyoung Mu Lee. Scene-Adaptive Video Frame
Interpolation via Meta-Learning. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[10] Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and
Kyoung Mu Lee. Channel Attention Is All You Need for
Video Frame Interpolation. In AAAI Conference on Artificial
Intelligence, 2020.

[11] Myungsub Choi, Suyoung Lee, Heewon Kim, and Ky-
oung Mu Lee. Motion-Aware Dynamic Architecture for
Efficient Frame Interpolation. In IEEE International Confer-
ence on Computer Vision, 2021.

[12] Salih Dikbas and Yucel Altunbasak. Novel True-Motion
Estimation Algorithm and Its Application to Motion-
Compensated Temporal Frame Interpolation. IEEE Transac-
tions on Image Processing, 22(8):2931–2945, 2013.

[13] Tianyu Ding, Luming Liang, Zhihui Zhu, and Ilya Zharkov.
CDFI: Compression-Driven Network Design for Frame In-
terpolation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2021.

[14] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser,
Caner Hazirbas, Vladimir Golkov, Patrick van der Smagt,
Daniel Cremers, and Thomas Brox. FlowNet: Learning Op-
tical Flow With Convolutional Networks. In IEEE Interna-
tional Conference on Computer Vision, 2015.

[15] Abdelrahman Eldesokey and Michael Felsberg. Normalized
Convolution Upsampling for Refined Optical Flow Estima-
tion. arXiv/2102.06979, 2021.

[16] Bin Fan and Yuchao Dai. Inverting a Rolling Shutter Camera:
Bring Rolling Shutter Images to High Framerate Global Shut-
ter Video. In IEEE International Conference on Computer
Vision, 2021.

[17] Runsen Feng, Zongyu Guo, Zhizheng Zhang, and Zhibo Chen.
Versatile Learned Video Compression. arXiv/2111.03386,
2021.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

[19] Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao.
FeatureFlow: Robust Video Interpolation via Structure-to-
Texture Generation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[20] Taehyeun Ha, Seongjoo Lee, and Jaeseok Kim. Motion Com-
pensated Frame Interpolation by New Block-Based Motion
Estimation Algorithm. IEEE Transactions on Consumer Elec-
tronics, 50(2):752–759, 2004.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving Deep Into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification. In IEEE International
Conference on Computer Vision, 2015.

[22] Evan Herbst, Steve Seitz, and Simon Baker. Occlusion Rea-
soning for Temporal Interpolation Using Optical Flow. Tech-
nical report, 2009.

[23] Aleksander Holynski, Brian L. Curless, Steven M. Seitz, and
Richard Szeliski. Animating Pictures With Eulerian Motion
Fields. In IEEE Conference on Computer Vision and Pattern
Recognition, 2021.

[24] Ai-Mei Huang and Truong Q. Nguyen. Correlation-Based
Motion Vector Processing With Adaptive Interpolation
Scheme for Motion-Compensated Frame Interpolation. IEEE
Transactions on Image Processing, 18(4):740–752, 2009.

[25] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and
Shuchang Zhou. RIFE: Real-Time Intermediate Flow Esti-
mation for Video Frame Interpolation. arXiv/2011.06294,
2020.

[26] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial Transformer Networks. In Ad-
vances in Neural Information Processing Systems, 2015.

[27] Seong-Gyun Jeong, Chul Lee, and Chang-Su Kim. Motion-
Compensated Frame Interpolation Based on Multihypothesis
Motion Estimation and Texture Optimization. IEEE Transac-
tions on Image Processing, 22(11):4497–4509, 2013.

[28] Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and
Du Tran. FLAVR: Flow-Agnostic Video Representations for
Fast Frame Interpolation. arXiv/2012.08512, 2020.

[29] Soo Ye Kim, Jihyong Oh, and Munchurl Kim. FISR: Deep
Joint Frame Interpolation and Super-Resolution With a Multi-
Scale Temporal Loss. In AAAI Conference on Artificial Intel-
ligence, 2020.

[30] Hyeongmin Lee, Taeoh Kim, Tae-Young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. AdaCoF: Adaptive
Collaboration of Flows for Video Frame Interpolation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020.

721

[31] Siyao Li, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris N.
Metaxas, Chen Change Loy, and Ziwei Liu. Deep Animation
Video Interpolation in the Wild. In IEEE Conference on
Computer Vision and Pattern Recognition, 2021.

[32] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural Scene Flow Fields for Space-Time View Synthesis of
Dynamic Scenes. In IEEE Conference on Computer Vision
and Pattern Recognition, 2021.

[33] Songnan Lin, Jiawei Zhang, Jinshan Pan, Zhe Jiang,
Dongqing Zou, Yongtian Wang, Jing Chen, and Jimmy S. J.
Ren. Learning Event-Driven Video Deblurring and Interpola-
tion. In European Conference on Computer Vision, 2020.

[34] Yihao Liu, Liangbin Xie, Siyao Li, Wenxiu Sun, Yu Qiao,
and Chao Dong. Enhanced Quadratic Video Interpolation.
arXiv/2009.04642, 2020.

[35] Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, and Yung-Yu Chuang.
Deep Video Frame Interpolation Using Cyclic Frame Genera-
tion. In AAAI Conference on Artificial Intelligence, 2019.

[36] Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, and
Aseem Agarwala. Video Frame Synthesis Using Deep Voxel
Flow. In IEEE International Conference on Computer Vision,
2017.

[37] Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan,
Jue Wang, and Jian Sun. UPFlow: Upsampling Pyramid for
Unsupervised Optical Flow Learning. In IEEE Conference
on Computer Vision and Pattern Recognition, 2021.

[38] Dhruv Mahajan, Fu-Chung Huang, Wojciech Matusik, Ravi
Ramamoorthi, and Peter N. Belhumeur. Moving Gradients: A
Path-Based Method for Plausible Image Interpolation. ACM
Transactions on Graphics, 28(3):42:1–42:11, 2009.

[39] Simone Meyer, Victor Cornillère, Abdelaziz Djelouah,
Christopher Schroers, and Markus H. Gross. Deep Video
Color Propagation. In British Machine Vision Conference,
2018.

[40] Simone Meyer, Abdelaziz Djelouah, Brian McWilliams,
Alexander Sorkine-Hornung, Markus H. Gross, and Christo-
pher Schroers. PhaseNet for Video Frame Interpolation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018.

[41] Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-
Liang Yang. RenderNet: A Deep Convolutional Network for
Differentiable Rendering From 3D Shapes. In Advances in
Neural Information Processing Systems, 2018.

[42] Simon Niklaus and Feng Liu. Context-Aware Synthesis for
Video Frame Interpolation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[43] Simon Niklaus and Feng Liu. Softmax Splatting for Video
Frame Interpolation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[44] Simon Niklaus, Long Mai, and Feng Liu. Video Frame
Interpolation via Adaptive Convolution. In IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[45] Simon Niklaus, Long Mai, and Feng Liu. Video Frame
Interpolation via Adaptive Separable Convolution. In IEEE
International Conference on Computer Vision, 2017.

[46] Simon Niklaus, Long Mai, and Oliver Wang. Revisiting
Adaptive Convolutions for Video Frame Interpolation. In

IEEE Winter Conference on Applications of Computer Vision,
2021.

[47] Simon Niklaus, Xuaner Cecilia Zhang, Jonathan T. Barron,
Neal Wadhwa, Rahul Garg, Feng Liu, and Tianfan Xue.
Learned Dual-View Reflection Removal. In IEEE Winter
Conference on Applications of Computer Vision, 2021.

[48] Avinash Paliwal and Nima Khademi Kalantari. Deep Slow
Motion Video Reconstruction With Hybrid Imaging System.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 42(7):1557–1569, 2020.

[49] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
BMBC: Bilateral Motion Estimation With Bilateral Cost Vol-
ume for Video Interpolation. In European Conference on
Computer Vision, 2020.

[50] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric
Bilateral Motion Estimation for Video Frame Interpolation.
In IEEE International Conference on Computer Vision, 2021.

[51] Tomer Peleg, Pablo Szekely, Doron Sabo, and Omry Sendik.
IM-Net for High Resolution Video Frame Interpolation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019.

[52] Fitsum A. Reda, Deqing Sun, Aysegul Dundar, Mohammad
Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. Unsupervised Video Interpolation
Using Cycle Consistency. In IEEE International Conference
on Computer Vision, 2019.

[53] Jonathan Shade, Steven J. Gortler, Li wei He, and Richard
Szeliski. Layered Depth Images. In Conference on Computer
Graphics and Interactive Techniques, 1998.

[54] Wang Shen, Wenbo Bao, Guangtao Zhai, Li Chen, Xiongkuo
Min, and Zhiyong Gao. Blurry Video Frame Interpolation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2020.

[55] Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun
Chen. Video Interpolation via Generalized Deformable Con-
volution. arXiv/2008.10680, 2020.

[56] Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. XVFI: eX-
treme Video Frame Interpolation. In IEEE International
Conference on Computer Vision, 2021.

[57] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping,
and Cost Volume. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[58] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs Field
Transforms for Optical Flow. In European Conference on
Computer Vision, 2020.

[59] Stepan Tulyakov, Daniel Gehrig, Stamatios Georgoulis, Julius
Erbach, Mathias Gehrig, Yuanyou Li, and Davide Scaramuzza.
Time Lens: Event-Based Video Frame Interpolation. In IEEE
Conference on Computer Vision and Pattern Recognition,
2021.

[60] Yang Wang, Haibin Huang, Chuan Wang, Tong He, Jue Wang,
and Minh Hoai. GIF2Video: Color Dequantization and Tem-
poral Interpolation of GIF Images. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[61] Zihao W. Wang, Weixin Jiang, Kuan He, Boxin Shi, Agge-
los K. Katsaggelos, and Oliver Cossairt. Event-Driven Video
Frame Synthesis. In ICCV Workshops, 2019.

722

[62] Chao-Yuan Wu, Nayan Singhal, and Philipp Krähenbühl.
Video Compression Through Image Interpolation. In Eu-
ropean Conference on Computer Vision, 2018.

[63] Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P.
Allebach, and Chenliang Xu. Zooming Slow-Mo: Fast and
Accurate One-Stage Space-Time Video Super-Resolution. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020.

[64] Xiangyu Xu, Li Si-Yao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic Video Interpolation. In Advances in
Neural Information Processing Systems, 2019.

[65] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T. Freeman. Video Enhancement With Task-Oriented
Flow. International Journal of Computer Vision, 127(8):1106–
1125, 2019.

[66] Zhiyang Yu, Yu Zhang, Deyuan Liu, Dongqing Zou, Xijun
Chen, Yebin Liu, and Jimmy S. Ren. Training Weakly Su-
pervised Video Frame Interpolation With Events. In IEEE
International Conference on Computer Vision, 2021.

[67] Liangzhe Yuan, Yibo Chen, Hantian Liu, Tao Kong, and
Jianbo Shi. Zoom-in-to-Check: Boosting Video Interpolation
via Instance-Level Discrimination. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[68] Haoxian Zhang, Yang Zhao, and Ronggang Wang. A Flex-
ible Recurrent Residual Pyramid Network for Video Frame
Interpolation. In European Conference on Computer Vision,
2020.

[69] Lili Zhao, Zezhi Zhu, Xuhu Lin, Xuezhou Guo, Qian
Yin, Wenyi Wang, and Jianwen Chen. RAI-Net: Range-
Adaptive LiDAR Point Cloud Frame Interpolation Network.
arXiv/2106.00496, 2021.

[70] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon A. J. Winder, and Richard Szeliski. High-Quality
Video View Interpolation Using a Layered Representation.
ACM Transactions on Graphics, 23(3):600–608, 2004.

723

