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Abstract

Conventional forgery localizing methods usually rely on
different forgery footprints such as JPEG artifacts, edge in-
consistency, camera noise, etc., with cross-entropy loss to
locate manipulated regions. However, these methods have
the disadvantage of over-fitting and focusing on only a few
specific forgery footprints. On the other hand, real-life ma-
nipulated images are generated via a wide variety of forgery
operations and thus, leave behind a wide variety of forgery
footprints. Therefore, we need a more general approach
for image forgery localization that can work well on a va-
riety of forgery conditions. A key assumption in underly-
ing forged region localization is that there remains a differ-
ence of feature distribution between untampered and ma-
nipulated regions in each forged image sample, irrespective
of the forgery type. In this paper, we aim to leverage this dif-
ference of feature distribution to aid in image forgery local-
ization. Specifically, we use contrastive loss to learn map-
ping into a feature space where the features between un-
tampered and manipulated regions are well-separated for
each image. Also, our method has the advantage of localiz-
ing manipulated region without requiring any prior knowl-
edge or assumption about the forgery type. We demonstrate
that our work outperforms several existing methods on three
benchmark image manipulation datasets. Code is available
at https://github.com/niloy193/CFLNet

1. Introduction

Image forgery has been a serious emerging socio-
technical issue, as more advanced AI techniques have been
leveraged to create fake images. Image is a significant
medium for information transfer. In order to produce fake
stories, academic trickery, and illegal conduct, manipulated
photographs created utilizing image editing technology are
constantly being mistaken for real ones. When a digital im-
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Figure 1: Examples of image manipulation. First two rows
show examples of image splicing and the next two rows
show examples of copy-move forgery and removal respec-
tively.

age is manipulated, we frequently assume that image foren-
sic investigations will be able to spot the tampered areas.
However, collecting differentiating features of tampered ar-
eas with various forging types (including splicing, copy-
move, removal, etc.) is still challenging and typically calls
for utilizing the special qualities of numerous tampering ar-
tifacts.

Generally, image forgery can be broadly categorized
into: splicing [12, 25], copy-move [11, 36, 35], removal
[42], enhancement [4, 9], etc. First, in image splicing,
content is copied and pasted from other source images, as
opposed to copy-move forgery, where the content is ob-
tained from the same image. On the other hand, removal
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or inpainting techniques remove a selected region from
the image and fills the space with new pixel values esti-
mated from background [37]. Image enhancement exploits
a wide collection of local manipulations, such as sharpen-
ing, brightness adjustment, etc. Each of the broader cate-
gories can be further divided into more fine-grained forgery
types. For example, Gaussian blurring or JPEG compres-
sion may be applied to the tampered region before commit-
ting splicing or copy-move forgery. Recently, more general-
purpose image forgery localization methods have been pro-
posed, which can detect or localize more than one forgery
type, such as RGB-N Net [41], Manipulation Tracing Net-
work (ManTraNet) [37], Spatial Pyramid Attention Net-
work (SPAN) [22], etc.

These general image forgery detection or localization
methods usually rely on different forgery clues or footprints
left by the forgery operation, such as JPEG artifacts [27, 1],
edge inconsistency [32, 39], noise pattern [13, 38], cam-
era model [31], EXIF inconsistency [23], etc., to detect or
localize forgery. Table 1 of [37] summarizes existing ma-
jor forgery localization methods and the forgery clues the
methods focus on. For example, [2] employs LSTM based
patch comparison to focus on edge inconsistency between
the tampered patches and authentic patches. CAT-Net [26]
leverages DCT coefficients to focus on resampling clues.

However, training models to focus on specific forgery
clues has a major disadvantage. Because then, the model
can only detect forgery if that particular forgery footprint is
prominent in the forged image. This is unacceptable be-
cause, in real-life, different manipulation techniques can
leave behind wide variety of forgery clues. Thus, focus-
ing on specific forgery clues is not optimal. For example,
if a method focuses on edge inconsistency to detect forgery,
the method will not perform well on a forged image where
the boundary between untampered and manipulated region
is smooth. Again, if a method focuses on resampling fea-
tures, it will struggle to detect forgery if an image has the
same JPEG compression applied several times to both the
untampered and manipulated regions.

Another major disadvantage of existing methods is that
these methods use cross-entropy loss without additional
constraints for training. Recently, [40] stated that tra-
ditional cross-entropy based methods assume that all in-
stances within each category should be close in feature dis-
tribution. This ignores the unique information of each sam-
ple. Thus, cross-entropy loss encourages the model to ex-
tract similar features for same category. This might be help-
ful for classification or segmentation of datasets such as Im-
agenet or Cityscapes, where objects of the same category
should have similar features. However, in the case of image
forgery localization, extracting similar features for all the
tampered regions in the dataset is not optimal as different
manipulation operations leave behind different forgery foot-

prints in the tampered regions. Hence, without additional
constraints, a common cross-entropy loss-based framework
is prone to over-fitting on specific forgery patterns [28].
This is not conducive to generalization.

Taking all these limitations into consideration, we pro-
pose a novel forgery localization method named Contrastive
Forgery Localization Network or CFL-Net, based on re-
cently proposed contrastive loss [24]. Our method relies on
the general assumption in underlying forged region local-
ization that there remains a difference of feature statistics,
i.e., color, intensity, noise, etc., between untampered region
and manipulated region [22], irrespective of the forgery
type. In this paper, we focus on leveraging this difference
in the feature space to aid in image forgery localization via
contrastive loss. Specifically, our model learns mapping
into a feature space where the features between untampered
and manipulated regions are well-separated and dispersed
for each image. Thus, our method does not focus on spe-
cific forgery clues. Also, we calculate the contrastive loss
for each sample. Hence, our method treats the forgery clues
of each sample differently, which helps in generalization.
Our main contributions are summarized as follows:

• We propose a novel image forgery localization method
called CFL-Net. Our method leverages the difference
of feature distribution between untampered and manip-
ulated regions of each image sample and does not fo-
cus on specific forgery footprints. Hence, our method
is more well-suited to detect real-life forgery.

• We address the problem of using cross-entropy loss
without any constraints for general purpose image
forgery localization. We incorporate contrastive loss
and especially tailor it towards solving this problem.

• We perform extensive experiments on benchmark ma-
nipulation datasets to show that our method out-
performs several existing image forgery localization
methods.

2. Related Works
2.1. Image Forgery Localization

Image forgery methods are concerned with forgery clas-
sification or localization. Classification is basically predict-
ing whether an image is forged or non-forged, whereas,
forgery localization is concerned with locating the forged
region as well. The latter is a segmentation task.

In pre deep learning era, methods used hand-crafted fea-
tures such as local noise analysis [16, 10], CFA artifacts
[15], JPEG compression [5] etc. Recent works usually
use deep learning based methods in conjunction with these
forgery traces to localize forged regions. Bappy et al. [2]
exploit the edge inconsistency trace using LSTM to local-
ize forgery. The work is later improved in [3], where the
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Figure 2: Overall architecture of the proposed CFL-Net. We use a two stream encoder, one for the RGB input image and the
other for the SRM filtered image. The features produced by the encoders are fused and passed into the ASPP module. The
output features from ASPP block then go through both the Segmentation Head and Projection Head, where the first produces
the final prediction mask and the latter produces features that go into the contrastive learning module.

authors further exploit resampling traces using Laplacian
filters. They also use a separate encoder-decoder structure
to refine the predicted mask. RGB-N [41] proposes a two
stream faster R-CNN network, one for the RGB image and
other for the noise information traces generated by the Ste-
ganalysis Rich Model (SRM) filters [16]. SRM filters are
high pass filters that enhance the high-frequency informa-
tion, which becomes helpful in forgery localization. How-
ever, due to the R-CNN architecture, RGB-N is limited
to localizing to a rectangular box whereas real objects are
not necessarily rectangular. Mantra-Net [37] jointly detects
and localizes forged images. ManTra-Net is composed of a
VGG based feature extractor and an LSTM based detection
module. The feature extractor is trained to detect various
types of image manipulation traces. SPAN [22] proposes
Spatial Pyramid Attention Network models the relationship
between image patches at multiple scales by constructing a
pyramid of local self-attention blocks. CAT-Net [26] uses
two stream network similar to RGB-N, one for the RGB
pixel stream and the other for DCT co-efficients. DCT helps
to extract resampling trace features.

2.2. Contrastive Learning

Recently, contrastive learning [19, 8] has achieved great
progress in unsupervised learning problem. SimCLR [8]
proposes a simple framework to perform contrastive learn-
ing, where positive pairs are generated with two random
augmented views of the same image and negative ones
are obtained with different images, forming an image-level
discrimination task. Furthermore, MoCo [19] maintains a
queue of negative samples and turns one branch of Siamese
network into a momentum encoder to improve consistency

of the queue. Recently [24] has extended unsupervised
contrastive learning to fully-supervised setting that can ef-
fectively leverage label information. This setting has been
used in semantic segmentation to improve the state-of-the-
art performance. [34, 21] contrast the pixel embedding be-
tween different semantic categories in a supervised manner
to aid in segmentation.

Sun et al. [33] have also used supervised contrastive
loss to supplement cross-entropy loss for forgery detection
task. However, their work is targeted toward forged face im-
age classification. In contrast, our method is aimed toward
general-purpose image forgery localization, which is a seg-
mentation task. Also, the formation of our contrastive loss
is different. Fung et al. [17] use unsupervised contrastive
learning for deepfake face image forgery detection. This
method is also aimed toward only forgery classification.

3. CFL-Net

In this section, we first describe the overall framework of
our model. We then detail on the contrastive learning part.

3.1. Overall Framework

We present here the overall framework of our method.
The overall diagram is shown in Figure 2. We opt for a two
stream network similar to [41, 26, 33]. One stream takes
the input RGB image I ∈ R3×H×W as input. We use SRM
filters [16] to the RGB image and use that as an input for the
other stream. SRM filters are high pass filters that enhance
the high-frequency information of input image, thus high-
lighting the edge information more, which is helpful for lo-
calizing forgeries. We use ResNet [20] as the backbone for
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Figure 3: Contrastive Learning Module: For ease of visualization, the projection head in the figure is shown to output a
feature map F of shape 256 × 8 × 8. The feature map is then divided into 4 × 4 patches. Then, all the 4 spatial vectors
in each patch are averaged to get the embeddings of size 4 × 4 (denoted as ’k × k Embeddings with Label’ in figure). The
ground truth mask is also divided into 4 × 4 patches and maximum occurring pixel label in each patch is counted to get the
output 4 × 4 mask (denoted as ’k × k Mask’ in figure). Eqn. (2) is then used to calculate the contrastive loss for each pixel
embedding of the ’k × k Embeddings with Label’.

both the streams. We then fuse features from both streams
by concatenating features channel-wise. ASPP module [7]
is used on the fused feature map so that multi-scale infor-
mation can be extracted. It is reported in [41] that global
context helps to collect more clues, such as contrast differ-
ence, etc., for manipulation detection. ASPP module helps
in this regard by extracting information in different scales,
such that global context as well as more fine-grained pixel
level context information becomes available.

We then use a segmentation head/decoder head and a
projection head that takes the upsampled multi-scale fea-
ture extracted by the ASPP module as input. We opt for a
DeepLab style segmentation head which outputs the final
segmentation map of size H × W . The projection map is
composed of Conv-BatchNorm-Conv layer that projects the
feature map to F ∈ R256×H×W , 256 being the embedding
dimension. The embedded feature map F is passed on to
the contrastive learning module. The projection head is not
used during evaluation.

3.2. Contrastive Learning Module

Our goal is to contrast between the untampered and ma-
nipulated pixel embeddings of each sample so that the fea-
ture distributions between both regions get well-separated.
As our embedded feature map is of size H×W spatially and

we have the corresponding ground-truth mask M of similar
size, we know the label of each pixel embedding. Thus,
we can use supervised contrastive learning. For each query
pixel embedding zi the contrastive loss for that embedding
becomes:

Li=
1

|Ai|
∑

k+∈Ai

− log
exp(zi·k+/τ)

exp(zi·k+/τ) +
∑

k−
exp(zi·k−/τ)

(1)

Here, k+ or positive key is a pixel embedding that has
the same label as query zi. Ai denotes the set of all k+ in
the projection head output feature map F . Similarly, k− or
negative key, are pixel embeddings in F that have a different
label than zi.

However, calculating Li in such a manner has some
major limitations. First, calculating the contrastive loss
based on single pixel embedding does not take into account
the context information that the neighboring embeddings
have. Also, to calculate the loss, a dot-product matrix of
size HW × HW needs to be stored, which is memory-
consuming.

One possible solution is to randomly sample a few pixel
embeddings from F corresponding to the two different

4645



classes similar to [34]. Then, use those embeddings to cal-
culate (1). This way, the memory requirement is greatly
reduced. However, this solution does not take into account
the context information from neighboring pixels. Also, sim-
ilar to [21], another solution could be to average all the pixel
embeddings of the two regions and then use the mean em-
beddings to calculate the loss. Although this may be helpful
for computer vision tasks, such as segmentation of seman-
tic objects etc., it is inappropriate for image manipulation
detection tasks. Because, recent studies have shown that
pooling is undesirable for tasks that require subtle signals
since pooling reinforces content and suppresses noise-like
signals [6]. These fine-grained traces are helpful for detect-
ing forgery. Hence, to find a balance between context and
fine-grained traces, we opt for dividing F into local regions.

We first partition F spatially into k × k patches, thus
getting fi ∈ R256×h×w, where i ∈ {1, 2, 3...k2} and h =
H
k and w = W

k . We then take the average of the pixel
embeddings in each local region. Thus making each fi to a
shape of R256. In a similar manner, we divide the ground
truth mask M into k × k patches. M has value of 0 in the
untampered region and value of 1 in the forged region. We
get mi ∈ Rh×w, where i ∈ {1, 2, 3...k2} and h = H

k and
w = W

k . To get the value of the label of each mi, we count
the number of 0s and 1s in the h×w patch. We then assign
the value of mi as the maximum count of value occurring
in the patch.

Now, we have pixel embeddings fi and corresponding
label of each embedding mi. We can now use the super-
vised contrastive loss as:

Li=
1

|Ai|
∑

k+∈Ai

− log
exp(fi·k+/τ)

exp(fi·k+/τ) +
∑

k−
exp(fi·k−/τ)

(2)

Here also, Ai denotes the set of all other pixel embed-
dings k+ that have the same label as fi. Similarly, k− are all
the negative pixel embeddings that have different label than
fi. All the embeddings in the loss function are L2 normal-
ized. For a single image sample, we get the final contrastive
loss by averaging over all the embeddings:

LCON =
1

k2

∑
i∈k2

Li

Our final loss to optimize then becomes:

L = LCE + LCON

Here, LCE is the corss-entropy loss.

4. Experiments

In this section, we describe experiments on three dif-
ferent manipulation datasets to explore the effectiveness of
CFL-Net. These datasets are general manipulation datasets
containing several manipulation types and are not specific
to only a single manipulation type. The evaluation metric
we use is pixel-wise Area Under Curve (AUC) score [22].

4.1. Datasets

• IMD-20 [30] is a real-life manipulation dataset made
by unknown people and collected from the Internet.
Hence, this dataset contains various types of manipu-
lations. There are a total of 2010 image samples in the
dataset.

• CASIA [14] CASIAv2 contains 5123 images and
CASIAv1 contains 921 images. Samples from this
dataset are manipulated by splicing and copy-move
forgery. Also, image enhancement techniques includ-
ing filtering and blurring are applied to the samples for
post-processing.

• NIST-16 [29] contains 584 image samples with
ground-truth masks. Samples from NIST16 are ma-
nipulated by splicing, copy-move and removal, and are
post-processed to hide visible traces.

For each dataset, we use the same procedure as [18] for
train-val-test splits. It should be noted that, previous meth-
ods such as, [22, 3, 26] usually pre-train their models on
large (≈1M samples) synthetic manipulation datasets and
then fine-tune the models on the datasets mentioned above
to report the final result. However, in this paper, to evaluate
solely the model’s performance, we do not create a synthetic
manipulation dataset to pretrain our model. Interestingly,
without taking a resort to any large synthetic manipulation
dataset, our model outperforms the baseline models.

4.2. Implementation Details

We use ResNet-50 as encoder for both the streams. We
train CFL-Net with Adam optimizer with a learning rate of
1e-4. We reduce the learning rate by 20% after each 20
epochs. We resize the input images to 256×256. We divide
F into a total of 64 × 64 patches. The temperature τ of
(2) is set as 0.1. Cross-entropy loss is weighted to give the
tampered class ten times more weight. We set the batch size
to 4 and train the model on NVIDIA RTX Titan GPU over
100 epochs.

4.3. Baseline Models

We compare our method with various baseline models,
which are described below:
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Methods NIST CASIA IMD-20
J-LSTM (ICCV’17) - - 48.7
RGB-N (CVPR’18) 93.7 79.5 -
Mantranet (CVPR’19) 79.5 81.7 81.3
SPAN (ECCV’20) 96.1 83.8 -
Transforensics (ICCV’21) - 85.0 84.8
Ours 99.7 86.3 89.9

Table 1: AUC Scores (in %).

• J-LSTM [2] employs a hybrid CNN-LSTM architec-
ture to capture the discriminative features between un-
tampered and tampered regions.

• RGB-N [41] adopts a two stream parallel network to
separately discover tampering features.

• ManTraNet [37] uses a feature extractor to capture the
manipulation traces and a local anomaly detection net-
work to localize the manipulated regions.

• SPAN [22] uses a pyramid architecture to and self-
attention blocks to model the dependency of image
patches.

• Transforensics [18] uses vision transformers with
dense self-attention encoders and dense correction
modules to model all pairwise interactions between lo-
cal patches at different scales.

5. Results
In this section we report the results of our experiments.

We divide the result section into two subsections in order to
show the quantitative and qualitative results separately. We
also perform ablation study.

5.1. Quantitative Analysis

We report the AUC scores (in %) of our method and
the baseline models in Table 1. It should be noted that
the results of RGB-N and SPAN stated here are the fine-
tuned results as reported in their respective papers. J-
LSTM and Transforensics do not perform any pre-training.
Although ManTraNet pre-trains their model on synthetic
manipulation dataset, they do not fine-tune on specific
dataset. Looking at the table, it can be seen that CFL-
Net achieves the best localization performance on all the
datasets amongst the baseline models. Especially, CFL-
Net outperforms all the baseline models by a big margin on
IMD-20 dataset, which is a real-life manipulation dataset
with various forgery types. Specifically, CFL-Net achieves
an AUC score of 89.9% on IMD-20 dataset, which is a 5.1%
improvement over the second most well-performing model
- Transforensics. Hence, it validates our claim that CFL-Net

Datasets NIST CASIA IMD-20

NIST w/o 98.3 67.1 66.4
w 99.7 67.6 69.8

CASIA w/o 79.3 84.9 75.5
w 79.9 86.3 77.8

IMD-20 w/o 74.37 74.1 85.2
w 91.8 75.6 89.9

Table 2: The left-most column shows the datasets models
are trained on. The later columns are the datasets where
the models are evaluated on. ’w/o’ - CFL-Net trained with-
out contrastive loss, ’w’ - CFL-Net trained with contrastive
loss. Results are in % AUC.

is well-suited to localize real-life forgery. Our model also
outperforms baseline models on the rest of the datasets - Ca-
sia and Nist. Moreover, it is worth pointing out that CFL-
Net achieves these results without pre-training on synthetic
manipulation data.

We argued that, in consequence of adding contrastive
loss, our proposed model does not focus on specific forgery
footprints but learns more generalized features. Hence, our
model should generalize better across different manipula-
tion datasets than the model trained without contrastive loss.
For this reason, in our next experiment, to get an idea of
how well our proposed method generalizes across datasets,
we evaluate the models trained on one dataset and evaluate
on the test sets of the remaining datasets.

Table 2 shows the results. It is evident that CFL-Net
trained with contrastive loss performs very well in general-
izing across datasets. In all the cases this model performs
better than the model trained without the contrastive loss.
When trained on IMD-20 and evaluated on the test set of
NIST, our proposed model even outperforms the AUC score
of ManTraNet. The most performance boosts are seen when
trained on IMD-20 dataset. IMD-20 is the real-life im-
age manipulation dataset and hence training on this dataset
helps the model learn most generalizable features. Hence
our proposed model trained on IMD-20 and evaluated on
rest of the datasets yields the most performance improve-
ment over the model trained without contrastive loss.

It should also be noted that both models trained on NIST
and evaluated on the other datasets perform poorly because
NIST has very few images, i.e., 584 images in the dataset.
Hence, it is difficult to generalize to other datasets using
NIST. Still, our proposed model managed to perform better
than the model trained without contrastive loss.

5.2. Qualitative Analysis

Here we visualize a few of the predicted masks from the
test sets. We also show the corresponding predicted mask
of ManTraNet [37] for comparison against our CFL-Net.
ManTraNet’s implementation and the saved model are made
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Manipulated Image GT Mask ManTraNet Prediction CFL-Net Prediction

Figure 4: Comparison of the predicted mask with ManTraNet. It is evident that prediction of CFL-Net is closer to the GT
mask compared to ManTraNet.

publicly available by the authors, which we employ here for
the experiment. The results are shown in Figure 4. From
the figure, it is evident that masks predicted by CFL-Net
are closer to the ground truth masks. On the other hand,
ManTraNet struggled to detect the manipulated region in
most of the cases.

Next, in order to show that our contrastive loss preserves
the feature variations by avoiding clustering of same class
features, we visualize via t-SNE the class features obtained
from the segmentation head in Figure 5. The left column
shows the mean feature vectors per image sample on IMD-
20 and CASIA test sets when CFL-Net is trained using

only cross-entropy loss. Visibly, the features correspond-
ing to both untampered (green color in figure) and tampered
(red color in figure) regions are congested here. On the
other hand, the right column shows the mean features when
CFL-Net is trained using both cross-entropy and contrastive
loss. Here, the features corresponding to both regions are
more dispersed. Hence, different manipulation footprints
are more separable. This experiment demonstrates that the
traditional cross-entropy loss reduces generalization in case
of image forgery localization due to the intra-category in-
variance, while our proposed method can improve the gen-
eralization by diverging the feature distribution.
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(a) CE Loss (IMD-20) (b) CE + CON Loss (IMD-20)

(c) CE Loss (CASIA) (d) CE + CON Loss (CASIA)

Figure 5: Left column shows t-SNE diagram of the mean
features on IMD-20 and CASIA testsets when CFL-Net is
trained using only cross-entropy loss. Right column cor-
responds to CFL-Net trained using both cross-entropy loss
and contrastive loss. Green = Untampered feature, Red =
Tampered feature.

5.3. Ablation Study

In this subsection, we conduct ablation experiments to
study how the proposed loss of CFL-Net influence the local-
ization performance. Specifically, we train CFL-Net with-
out the contrastive loss and then report the results to get an
idea of the influence of contrastive loss.

Methods NIST CASIA IMD
CE Loss 98.3 84.9 85.2
CE + CON Loss 99.7 86.3 89.9

Table 3: AUC scores (in %) for CFL-Net trained with dif-
ferent loss settings. CE = Cross-entropy loss, CON = Con-
trastive Loss.

In Table 3 we report the results. It is clear from the ta-
ble that adding the contrastive loss indeed helps in local-
ization. The improvement is much more prominent on the
real-life image manipulation dataset IMD-20. Contrastive
loss helps to improve the AUC score by 4.7%. It should be
noted that without the contrastive loss our method already
achieves very good results. The reason is that our model

is similar to RGB-N [41] in the regard that we also use two
stream network, i.e, RGB and SRM streams. In addition, we
carefully supplement our network with ASPP module and
Deeplab decoder head, which helps to improve the overall
performance compared to RGB-N. Using contrastive loss
further improves our results and helps to outperform all the
other baseline models.

6. Conclusion

In this paper, we approached the general-purpose im-
age forgery localization problem from a new perspective,
i.e., using contrastive learning. We identified a major draw-
back of existing methods that focus on specific forgery foot-
prints and use cross-entropy loss without any constraints
to localize forgery. To address the drawbacks, we supple-
mented cross-entropy loss with contrastive loss and pro-
posed a novel image forgery localization method named
Contrastive Forgery Localization Network or CFL-Net. We
conducted experiments on three benchmark image manipu-
lation datasets and compared our results with major forgery
localization methods of recent years. CFL-Net outper-
formed all the methods in terms of AUC metric. More-
over, the improvement is much more prominent on the real-
life image manipulation dataset IMD-2020. Amongst the
future works, a more sophisticated fusing mechanism can
be considered to fuse the feature maps from the RGB and
SRM streams. For example, attention modules or recently
proposed vision transformers can be employed as a fusion
mechanism.
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