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Abstract

Cell instance segmentation that recognizes each cell
boundary is an important task in cell image analysis. While
deep learning-based methods have shown promising perfor-
mances with a certain amount of training data, most of them
require full annotations that show the boundary of each cell.
Generating the annotation for cell segmentation is time-
consuming and human labor. To reduce the annotation cost,
we propose a weakly supervised segmentation method using
two types of weak labels (one for cell type and one for nu-
clei position). Unlike general images, these two labels are
easily obtained in phase-contrast images. The intercellular
boundary, which is necessary for cell instance segmenta-
tion, cannot be directly obtained from these two weak la-
bels, so to generate the boundary information, we propose
a single instance pasting based on the copy-and-paste tech-
nique. First, we locate single-cell regions by counting cells
and store them in a pool. Then, we generate the intercel-
lular boundary by pasting the stored single-cell regions to
the original image. Finally, we train a boundary estima-
tion network with the generated labels and perform instance
segmentation with the network. Our evaluation on a pub-
lic dataset demonstrated that the proposed method achieves
the best performance among the several weakly supervised
methods we compared.

1. Introduction

Phase-contrast microscopy is widely used for long-term
monitoring of living cells without staining. Instance seg-
mentation that recognizes each cell boundary in a phase-
contrast image provides key information for cell morpho-
logical analysis and cell behavior analysis [10]. Since the
phase-contrast image contains a large number of cells in one
image (over one hundred), automated cell segmentation is
required for large-scale analysis. As shown in Figure 1, the
cell boundary is typically ambiguous, and the cell has var-
ious morphologies. Therefore, instance segmentation is a
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Figure 1. Weak supervision settings. (a) Our recognition aim. (b)
Image-level annotation (cell type label). (c) Point-level annotation
(cell position label).

challenging task.
Deep learning-based cell segmentation methods [31, 6,

27, 33, 10] have achieved promising results with a certain
amount of training data. However, cell segmentation re-
quires instance-level annotation indicating the boundaries
of each cell for each imaging condition (e.g., type of cell,
microscopy, growth factor, and density). Collecting these
annotations is time-consuming and human labor.

Weakly supervised segmentation, which performs seg-
mentation with an easily obtained annotation rather than
pixel-level annotation, is one promising solution to reduce
annotation costs [17, 40, 42, 29, 5, 43, 26]. Image-level
annotation (i.e., a class label) is widely utilized as a weak
label in general images [17, 2, 44] and organ images [40].
However, it is difficult to recognize the boundaries of the
same class instance from the image-level annotation since it
only contains semantic information. Point-level annotation,
which indicates the cell position, is mostly used on cell or
nuclei segmentation tasks [42, 29, 5, 43, 26]. While point-
level annotation contains instance clues, there is no bound-
ary information. Some methods use the color or contrast
information of the input image to complement boundary
information [42, 29]. However, the contrast of the phase-
contrast image is typically low, and the foreground and
background pixels tend to have a similar value, as shown
in Figure 1(a). This makes it difficult to recognize indi-
vidual cell boundaries in a phase-contrast image only using
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Figure 2. Key concept of proposed method. (a) Characteristics of
phase-contrast image. (b) Our idea of single instance pasting. If
cells are captured from seeding, there are single-cell regions in an
initial state, and the number of cells gradually increases over time
by cell division. Our idea with single instance pasting is to find
a single cell region from the initial state and then paste the region
into another image in order to generate intercellular boundaries.

the point-level information. It is therefore necessary to uti-
lize additional boundary information to identify each cell
boundary.

The base idea of this paper is to use two types of weak
labels, namely, image-level annotation and point-level an-
notation, for complementing the lack of information. In the
phase-contrast image, these labels can be easily obtained
without additional manual annotation costs. The first type
is a cell-type label (Figure 1(b)). Usually, a single cell type
is used for experiments when observing cells, and the type
of cells used is recorded, which means the cell class label
can be automatically collected without additional costs. We
can obtain foreground information from the image-level an-
notation by using an off-the-shelf CAM-based weakly su-
pervised segmentation method [17]. The second type is
a cell nuclei position label, which can be automatically
obtained from nuclei-stained cells by simultaneously cap-
turing phase-contrast and fluorescent images (Figure 1(c)).
These labels can also be collected without additional human
annotation costs. By using these two labels, we can obtain
information on foreground regions and cell positions.

In this paper, we propose a weakly supervised instance
segmentation method using the cell type label and cell po-
sition label. The foreground region and the cell position
are obtained from these two weak labels, but intercellu-
lar boundaries are not provided. We, therefore, generate
labels that include intercellular boundary information our-
selves using a newly developed single instance pasting. Fi-
nally, we train a boundary estimation network with the self-
generated labels and perform instance segmentation.

The objective of the single instance pasting is to locate
single-cell instances and paste them into another image. As
shown in Figure 2(a), the cell density gradually increases

over time by cell division. Thus, the single-cell instance is
easily obtained from the initial state of time-lapse images
by counting cells using the foreground regions and cell po-
sitions that are obtained from the two weak labels (Figure 2
(b)).

Our main contributions are as follows.

• We propose a weakly supervised instance segmenta-
tion framework using two types of weak labels ob-
tained without any additional manual annotation costs.
Our method utilizes two types of weak labels to com-
plement the lack of intercellular boundary information.

• We propose a single instance pasting to generate an
intercellular boundary from two types of weak labels.
A single instance is identified by cell counting and the
intercellular boundary is then generated by pasting the
detected single instance into another image.

• We evaluate our method under three conditions on
a public dataset and demonstrate its state-of-the-art
performance compared to conventional weakly super-
vised methods.

2. Related work
Cell segmentation: Traditionally, image processing-based
methods using thresholding, level-set, and watershed have
been utilized for automated cell segmentation [7, 37, 36, 4].
These methods need to be customized for each recognition
target.

Deep learning-based cell segmentation methods have
outperformed these image processing-based methods
thanks to training with a certain amount of data [31, 6,
27, 33, 10, 24]. Ronneberger et al. proposed Unet, a
fully convolutional network with skip-connection [31], and
showed that it outperformed other image processing-based
approaches in a cell tracking challenge dataset. However,
these methods require annotations for each imaging condi-
tion, such as type of cells, type of microscopy, cultured con-
dition, and density. The imaging conditions vary depending
on the research field, so creating annotations for each con-
dition is both time-consuming and labor-intensive.
Weakly supervised semantic segmentation: Weakly su-
pervised semantic segmentation is the task that estimates
class labels for each pixel (not, i.e., distinguishing the same
class instance). Most methods use an image-level annota-
tion leverage class activation map [44] to generate pseudo
segmentation labels [2, 17, 9]. The main focus of these
methods is how to extend the CAM clues. For example,
Ahn et al. [2] expand CAM clues by training an affinity
net that learns inter-pixel semantic affinity from the clues.
Thanks to recent developments, the boundaries of different
class objects can be retrieved accurately using classifica-
tion labels. However, the boundary of the same class object
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is difficult to obtain since the class label does not contain
much instance information.

Class labels and saliency detection labels have been used
to improve this task [22, 39]. Lee et al. [22] have proposed
a training strategy to extract segmentation information from
these two labels. Xu et al. [39] improved the segmentation
performance by jointly learning the affinity of the segmen-
tation task and saliency detection task. However, there is no
saliency detection label in the cell image.
Weakly supervised instance segmentation: Weakly su-
pervised instance segmentation is the task that estimates the
segment for each instance (i.e., identifies the same class in-
stance as a different instance). Various methods have used
the class label [45, 1, 12], similar to semantic segmenta-
tion. For example, Zhou et al. [45] have proposed a peak
response map to obtain instance clues from the class la-
bel. However, since these methods are designed for gen-
eral images, they do not consider densely distributed ob-
jects, which makes it difficult to recognize cell images, as
they often include such objects.

The bounding box label has sometimes been used [15,
38, 20, 34, 16]. The basic idea is to treat the weakly
supervised instance segmentation task as a multi-instance
learning problem and extend the object detection model
(e.g., RCNN) to the instance segmentation model by multi-
instance learning loss. However, these labels require much
higher annotation costs than point-level and image-level an-
notation.
Weakly supervised segmentation for cell image: The
bounding box and scribble labels are sometimes used for
cell or nuclei segmentation tasks [8, 41, 21]. Lee et al.
[21] proposed a method using scribble labels that selects
pseudo-labels by the iteration average of the estimation re-
sults. Dong et al. [8] used bounding boxes and recognized
object by using a peak response propagation.

Point-level annotation, which can be easily obtained
rather than the bounding box, is widely utilized for weakly
supervised cell or nuclei segmentation.

Some methods [29, 5, 30] have used color information
by implementing color clustering to generate pseudo-labels.
However, as these methods are designed for H&E stained
images, which have high contrast, they do not work for
phase-contrast images, which have low contrast.

Some methods utilize the learning ability of a neural net-
work [42, 26]. Yoo et al. [42] used a shallow network to ob-
tain edge information based on the assumption that the shal-
low network tends to extract edge information. Nishimura
et al. [26] utilized a relevance map (i.e., the relevant pixel
for output) of a detection network. However, as these meth-
ods rely on the implicitly learned features of the network,
they are Therefore, we could not adjust how well the neural
network extracts boundary information.

In contrast to the weakly supervised methods discussed

above, our method enables us to create the boundaries be-
tween cells ourselves and learn the boundaries directly.
Copy-and-paste augmentation: Copy-and-paste augmen-
tation has been used as an effective data augmentation
method for instance segmentation. The basic strategy is to
copy some instances from one image and paste them onto
another image [13, 11]. In contrast to methods that use
copy-and-paste for supervised learning, our method utilizes
it for weakly supervised learning, which enables us to com-
plement the intercellular boundary information.

3. Weakly supervised cell segmentation
Overview: First, we train a foreground estimation network
ff using class labels and a cell detection network fd using
cell position labels. Next, we generate self-generated labels
that include the intercellular boundary information from the
foreground estimations and cell detection results. To create
self-generated labels, we propose a single instance pasting
that identifies single instances and pastes them to generate
an intercellular boundary. We then train a boundary estima-
tion network fb with the self-generated labels. Instance seg-
mentation is performed by combining the estimation results
of the boundary estimation network fb and the cell detection
network fd.

3.1. Networks training with two weak labels

In this section, we explain how to train a foreground
estimation network ff and a cell detection network fd by
utilizing weak labels and existing methods. We leverage
CAM-based techniques [17] to train the foreground estima-
tion network ff . For the cell detection network fd, we use
a heatmap-based detection method [26].
Foreground estimation with image-level annotation: In
this step, we train the foreground estimation network ff
from the class label. We first extract a foreground clue Cfg

and background clue Cbg from a foreground activation map.
Cfg and Cbg are sets of pixels estimated to be foreground
or background, respectively. Then, we train the network ff
with the clues Cfg and Cbg .

We follow the approach of Jo et al. [17] to obtain the
foreground activation map. First, a classification network is
trained with binary cross-entropy between a class output of
the network and class label, the same as a normal classifi-
cation problem. Given the input image xi, a feature map
Mi ∈ RW

4 ×H
4 ×K is extracted by the ResNet-based feature

extractor. Then, the class output is obtained from the fea-
ture map Mi by a global averaging operation. W and H are
the width and height of the input image, and K is the num-
ber of classes. The feature map implicitly learns the fore-
ground clues by the classification loss (binary cross-entropy
and reconstruction loss) with class labels. In contrast to the
method of Jo [17], where the aim is to extract an activation
map for each class, we obtain a foreground activation map
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Figure 3. Overview of single instance pasting. Single cell regions (yellow yi pixel) and multiple cell regions (white yi pixel) are obtained
by cell counting. The single instance is added to a single-instance pool S, and then self-generated labels x′

i and y′
i are created by pasting

the single-cell instances that are sampled from the single instance pool.

Mfg
i ∈ RW×H by the max operation of class direction and

a resize operation. Finally, we obtain the foreground clue
Cfg and the background clue Cbg by foreground threshold-
ing thfg and background thresholding thbg from Mfg

i .
We train the foreground segmentation network ff with

the foreground clues Cfg and the background clues Cbg .
The loss is calculated only on the pixels in the clues, and
the other pixels are ignored. The loss function of network
ff is defined as

Lbseg = 1
Nfg

∑
p∈Cfg

− log r̂i(p)

+ 1
Nbg

∑
p∈Cbg

− log (1− r̂i(p)), (1)

where r̂i = ff (xi), p indicates the coordinate, and Nfg and
Nbg are the number of foreground and background pixels.
The network ff is trained to output r̂(p) = 1 in the pixel in
Cfg , and r̂(p) = 0 in the pixel in Cbg by this loss function.
If a pixel does not belong to both sets , it is not used for the
loss calculation.
Cell detection with nuclei positions: To obtain cell posi-
tions, we use a heatmap-based cell detector [26] that can be
trained with cell position labels. The cell detection network
fd is trained to output the cell position heatmap hi, and
then cell positions are obtained by taking the peak of the es-
timated heatmap ĥi. An example of the estimated heatmap
is shown in Figure 4 ĥi. The heatmap hi is generated by ap-
plying a 2D Gaussian filter on the annotated cell positions.
Then, fd is trained with the MSE loss between the heatmap
hi and an estimated heatmap ĥi, as Ldet = MSE(hi, ĥi).
After training, the cell positions pi can be obtained by tak-
ing the local maximum of the estimation ĥi.

3.2. Label generation with single instance pasting

The foreground and cell positions are obtained by the
above process, but the results do not contain intercellu-

lar boundary information. We therefore propose a single
instance pasting to train a boundary estimation network
fb. We design the single instance pasting so that the self-
generated label contains two types of information. The first
is the intercellular boundary information. Since the weak la-
bels do not contain intercellular boundary information, we
generate the boundary by pasting. The second is unknown
boundary region information (multiple cell regions). Al-
though multiple cell regions include intercellular boundary
information, we do not know the boundary. We identify
these regions so that they can be ignored.

Figure 3 shows an overview of the single instance past-
ing, which consists of two steps. First, we find single-cell
regions and multiple-cell regions by cell counting and add
the single-cell regions to a single-instance pool. Second, we
generate intercellular boundaries by pasting the instances
that are sampled from the pool.

Cell counting: Given the estimated foreground region r̂i
and the cell positions pi, we count cells in the foreground
segment (i.e., the connected component of r̂i) to identify the
single-cell regions and multiple-cell regions. The single-
cell regions are used for intercellular boundary generation,
and the multiple-cell regions are used to ignore the loss cal-
culation of unknown regions in the final training step.

The counting provides the single-cell regions (yellow yi

pixels in Figure 3) and the multiple-cell regions (white pix-
els). We add the pixels in the multiple-cell regions to a set
of ignoring pixels I (white yi pixels in Figure 3). We gen-
erate an initial label yi by giving a label to the single-cell
region, as indicated by the yellow yi pixel in Figure 3. We
then add an instance image sk into a single instance pool S,
where sk is generated by masking the input image xi with
the single instance region (e.g., sk in Figure 3). We omit
the instance when the instance size is too small or too large,
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Figure 4. Instance segmentation process. First, the heatmap ĥi and
boundary map b̂i are obtained from input image xi. Then, an in-
stance segmentation result is obtained by using marker-controlled
watershed.

specifically if the width or height of the instance is smaller
than thsm or larger than thla.
Instance pasting: Given the input image xi, the initial la-
bel yi, and the set of Nc sampled instances {si, ..., sj}, our
single-instance pasting generates the pasted image x′

i and
the updated instance label y′

i. Nc is the number of sam-
ples . The cell is captured as a series of time-lapse images,
where the appearance of the cell differs between the initial
state and the late state. We prepare the image, label, and
paste instances from a close frame to generate a natural im-
age. The input image xi and the initial label yi, which are
generated in cell counting, are selected from the image that
contains a certain amount of single-cell regions (i.e., a pair
containing more than thss single instance pixels). To sam-
ple the pasting instance from a close frame to the image and
label pair, we divide the instance pool S into several sub-
set pools by time. Specifically, we generate the subset pool
every tht hours, and we sample the Nc instances si from
the subset pool to which the selected frames belong. We
then generate the pasted image x′

i by randomly pasting in-
stances {si, ..., sj} into the input image xi, as indicated by
the red arrow in Figure. 3. The updated instance label y′

i is
generated by giving a new label to the pasted regions of the
initial label yi (blue arrow). The red dotted circle shows an
example of the generated boundary.

3.3. Instance segmentation

To achieve the instance segmentation, we first train a
boundary estimation network fb by the self-generated im-
ages and labels. Then, we perform instance segmentation
by combining the boundary estimation result b̂i and the de-
tection result ĥi.
Training with self-generated label: We use distance
formed representation [3] for the boundary estimation net-
work fb. An example of a distance formed boundary map is
shown in Figure 4 b̂i, where the center of the cell has a high
pixel value that gradually decreases towards the boundaries.

The ground-truth of distance formed boundary map bi

is generated by taking the max of the normalized distance
map of each instance [3]. We do not calculate the loss on

A172 SH-SY5Y MCF7 SKOV3

Huh7 BV2 BT-474 SkBr3

Figure 5. Examples of images in LIVECell dataset [10]. The
appearance of cells varies depending on the cell type, including
spherical morphology (e.g., BV2 and SkBr3) and adherent mor-
phology (e.g., A172, SKOV3, and Huh7).

multiple cell regions since we do not know their accurate
boundaries. We expect the network to implicitly learn the
boundaries from self-generated images and labels by ignor-
ing the unknown regions. The approach is inspired by the
segmentation training using CAM [17, 2], which trains a
segmentation model with high-confidence foreground clues
and background clues (like Eq. 1).

The loss function of the boundary estimation network fb
is defined as

Lb =
1

Nnm

∑
p/∈I

(b(p)− b̂(p))2, (2)

where b̂i is the estimation result of fb, I is the set of co-
ordinates in multiple cell regions, and Nnm is the number
of pixels that are not on multiple regions. As indicated by
b̂i in Figure 4, the pixel value on the intercellular boundary
reaches a low value after the training.
Instance segmentation: We perform instance segmenta-
tion by using the boundary estimation network fb and the
cell detection network fd. As shown in Figure 4, given the
input image xi, the heatmap ĥi and distance formed bound-
ary map b̂i are estimated by fd and fb, respectively. Then,
we combine these estimations by marker-controlled water-
shed [25]. We treat the heatmap as a marker and the distance
estimation as an input image.

4. Experiments
Implementation details: We implemented our method us-
ing the PyTorch framework [28]. We used ResNet 50 [14]
pretrained with ImageNet [19] for the classification network
(used for the CAM extraction). We utilized the Unet [31] ar-
chitecture for the cell detection network fd, the foreground
estimation network ff , and the boundary estimation net-
work fb. The foreground threshold thfg and background
threshold thbg were 0.3 and 0.2, respectively. We set the
number of pasting instances to Nc = 3, the minimum size
of cell thsm = 10, the maximum size of cell thla = 200,
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Method L A172 BT474 BV2 Huh7 MCF7 SHSY5Y SkBr3 SKOV3 Avg.
Chalfoun [4] U 0.892 0.809 0.672 0.838 0.891 0.766 0.868 0.823 0.820

Qu [29] P 0.139 0.242 0.656 0.103 0.335 0.086 0.576 0.163 0.288
Nishimura [26] P 0.790 0.832 0.816 0.458 0.865 0.753 0.873 0.725 0.764

Ours P, I 0.921 0.814 0.809 0.775 0.880 0.788 0.842 0.860 0.836
Ronneverger [31] F 0.844 0.835 0.766 0.880 0.743 0.541 0.897 0.879 0.798

Edlund [10] F 0.938 0.890 0.886 0.914 0.905 0.844 0.942 0.940 0.907
Table 1. Quantitative evaluation results of instance segmentation on F1p for each cell type. Avg. is the average performance of whole-cell
types. L indicates label conditions: U is unsupervised, I is image-level annotation, P is point-level annotation, and F is fully supervised.
The boldface indicates the best performance in the weakly supervised setting.

Method L A172 BT474 BV2 Huh7 MCF7 SHSY5Y SkBr3 SKOV3 Avg.
Chalfoun [4] U 0.570 0.563 0.483 0.494 0.561 0.479 0.766 0.502 0.552

Qu [29] P 0.198 0.321 0.659 0.203 0.385 0.106 0.589 0.198 0.333
Nishimura [26] P 0.624 0.690 0.541 0.513 0.502 0.426 0.612 0.640 0.568

Ours P, I 0.678 0.565 0.643 0.608 0.577 0.449 0.649 0.773 0.618
Ronneverger [31] F 0.761 0.747 0.767 0.789 0.709 0.544 0.861 0.821 0.750

Edlund [10] F 0.779 0.788 0.655 0.830 0.644 0.623 0.806 0.856 0.748
Table 2. Quantitative evaluation results of instance segmentation on Diceo for each cell type. Avg. is the average performance of whole-
cell types. L indicates label conditions: U is unsupervised, I is image-level annotation, P is point-level annotation, and F is fully supervised.
The boldface indicates the best performance in the weakly supervised setting.

the single cell region threshold thss = 500, and the hours
of the subset pool tht = 12.

Random crop and rotation were used for the data aug-
mentation. We used the Adam [18] optimizer with the learn-
ing rate = 1e-3 and the mini-batch size of 16 for all net-
works. The classification network and detection network
fd were trained by early stopping based on the classifica-
tion loss and the detection loss of validation, respectively.
The foreground estimation network ff was trained with 30
epochs. The boundary estimation network fb was trained
by early stopping based on the loss of self-generated labels
of validation.
Dataset: We used the LIVECell dataset [10] to evaluate
our method. This dataset contains eight types of cells cap-
tured by phase-contrast microscopy with 520 × 704 reso-
lution. The cells were cultured from early seeding to full
confluence. Unlike other cell segmentation datasets such
as the cell tracking challenge [35] and BBBC datasets [23],
LIVECell has variations in cell type and density. As shown
in Figure 5, the cells have various appearances depending
on cell type. The bounding box and the instance mask were
manually annotated for each image. The total number of
training, validation, and test data were 3188, 569, 1548. To
train our method, we treated cell types as the class label and
the center of the bounding box as a cell position label.
Metrics: We used pixel-level F1 score F1p and object-level
Dice coefficient Diceo [32] to evaluate the performance
of binary segmentation and instance segmentation, respec-
tively. F1p is calculated by F1p = 2TP

(2TP+FP+FN) , where
TP, FP, and FN are the number of true positives, false posi-
tives, and false negatives (determined by the foreground and

background labels). Diceo is defined as

Diceo =
1

2
(

Ng∑
i=1

γiDi(gi, pgi) +

Np∑
j=1

γjDi(pj , gpj
), (3)

where gi is the ith ground-truth object, pj is the jth pre-
dicted object, pgi and gpj

are the matched object of the pre-
dicted object and ground-truth object, Di is a dice opera-
tion, and Ng and Np are the number of ground-truth objects
and predicted objects, γi = |gi|∑Ng

i=1 |gi|
and γj =

|pj |∑Np
j=1 |pj |

,

respectively. The object-level dice is calculated as the dice
for each object by weighting it according to the size of the
object by γi and γj .

4.1. Comparisons

We compared our method with the following five con-
ventional methods. 1) Chalfoun et al. [4]: Image
processing-based instance segmentation method, which
uses the gradient of the image for segmentation (unsuper-
vised). 2) Qu et al. [29]: Weakly supervised nuclei segmen-
tation method, which uses Voronoi diagram and color clus-
tering with point-level annotation to calculate loss (weakly
supervised). 3) Nishimura et al. [26]: Weakly supervised
cell instance segmentation method, which uses the relevant
pixels for the detection of the segmentation (weakly super-
vised). 4) Ronneberger et al. [31]: Well-known supervised
segmentation method (Unet), which trains the network by
using weighted cross-entropy (supervised). 5) Edlund et
al. [10]: R-CNN-based instance segmentation method. The
weakly supervised methods are trained with the nuclei po-
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Figure 6. Example of estimation results. The color indicates the instance.

sitions, and the supervised methods are trained with the la-
beled data that is annotated for each cell boundary. We
used the same number of training and validation data for
the training.

Tables 1 and 2 list the performance of each method in
terms of F1p and Diceo. The method of Qu et al. [29]
relies on the color of images, and so it cannot capture an
accurate boundary of the cell. Since it is designed for H&E
stained images, the method cannot work on a phase-contrast
image. The method of Nishimura et al. [26], which uses
the relevance pixel of the detection network, outperforms
Chalfoun [4] in terms of Diceo. Our method outperforms
these weakly supervised methods on both metrics on aver-
age. Compared with the supervised methods, our method
is inferior on Diceo. In terms of F1p, our method outper-
forms the method of Ronneberger et al. [31]. Their method
uses weighted cross-entropy, which gives high weights to
the bounding pixels rather than other foreground pixels. As
a result, the pixels around the boundary tend to be recog-
nized as the background, which decreases the F1p.

Figure 6 shows the qualitative results of Nishimura’s
method and ours, where the five columns on the left show
success cases and the two on the right show failure cases.
Since both methods use a detection network, there is no
difference in the detection results. Regarding the accuracy
of the boundaries in the success cases, our method out-
performs Nishimura’s. Their method uses relevant pixels
that contribute to detecting cells, and since the cell bound-
ary does not always contribute to the detection, the bound-
aries are sometimes over- or under-estimated. In contrast,
our method tries to directly learn the boundary by the self-
generated labels, and as a result, the boundary estimation is
accurate.

The failure cases in Figure 6 reveal the limitation of the

Original image Self-generated image Self-generated label

Figure 7. Example of self-generated images and labels. White
pixel indicates multiple-cell region and colors indicate single in-
stance label. Red outline indicates pasted instance. Top images
are enlarged images of red and blue dotted rectangles.

proposed method. In some cell types (e.g., BT-474 and
MCF7), the cell morphology changes upon contact with
other cells. The cells of the failure cases have this cell mor-
phology, which is different from the morphology of a single
cell. Therefore, the single instance pasting cannot generate
a similar label, and our method is not able to deal with this
type of image.

4.2. Ablation study

To check the image quality generated by single instance
pasting, we show examples of the self-generated images
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Method Nc F1p Diceo
w/o sip – 0.738 0.532

Ours

1 0.814 0.579
3 0.836 0.618
5 0.832 0.618
7 0.830 0.613

Table 3. Ablation study.

Ground truth Ours w/ sip w/o sipImage

Figure 8. Example of boundary estimation outputs.

and their labels in Figure 7. The white pixels of a self-
generated label indicate multiple cell regions and the color
means each instance label. The red outline indicates the
pasted instance label. As we can see, the appearance of the
self-generated images in Fig. 7 looks natural. Unlike gen-
eral images that capture different light or scale conditions,
the phase-contrast image is captured under the same condi-
tion, which makes the appearance of the pasted image more
natural.

To investigate the effectiveness of our single instance
pasting, we tested it without single instance pasting (w/o
sip in Table 3). In this setting, the boundary estimation net-
work fb is trained with the initial label yi while ignoring the
multiple-cell region. In addition, we examined the relation
between the number of pasting instances Nc and the perfor-
mance. Table 3 shows the average performance of each cell
type. We can see here that the performance in both met-
rics was increased by the single instance pasting. Ni = 3
is the best performance among other settings. By increas-
ing the number of pasted instances, the boundary estimation
network can better learn the intercellular boundaries. The
single instance pasting works robustly on Ni > 3.

Figure 8 shows examples of the distance-formed bound-
ary map of network d̂ on the test data. The two columns
on the right show estimation results with and without the
single instance pasting. In the case of single instance past-
ing, the output captures rough cell shapes, even if they are
dense. In contrast, the output of w/o sip could not estimate
the cell boundary under the dense condition. Without the
single instance pasting, the intercellular boundaries cannot
be learned and therefore the method does not work under
the dense condition.

Method F1p Diceo
Chalfoun [26] 0.892 0.570

Qu [29] 0.246 0.271
Nishimura [26] 0.481 0.435

Ours 0.920 0.650
Table 4. Comparison of weak or unsupervised methods on appli-
cation setting.

4.3. Application

As mentioned in the introduction, our method enables
the class label and point label to be obtained without any
additional manual annotations. To demonstrate the effec-
tiveness of the proposed method in a realistic situation, we
trained it with labels that were obtained in this manner.

The LIVECell dataset [10] includes paired phase-
contrast and fluorescent images that can be obtained by cap-
turing the cells stained with nuclei. The point labels (i.e.,
cell position) were obtained from the fluorescent images by
using thresholding and finding local maxima. Since the type
of cells used was recorded, the class labels can be obtained
without additional annotation cost. Cell types A172 and
A549 were used to capture the paired images. Therefore,
there are two class labels. The dataset includes 798 paired
images with 1408 × 1040 resolution. We used 157 manu-
ally annotated images for the test data. The images includes
A172 cells and are the same as the images used for the com-
parisons in Section 4.1. We compared our method with the
same weakly supervised methods that were used in Section
4.1.

Table 4 shows the performance comparisons. Compared
to the results discussed in Section 4.1, the performance
of Nishimura’s method [26] decreased dramatically. Their
method relies on the relevance map of the detection net-
work, so when there are fewer cell types in the training
data, the cell shape is not used for detection and the cell
shape cannot be estimated. In contrast, the performance of
our method did not decrease, which demonstrates its effec-
tiveness for realistic use cases.

5. Conclusion

In this paper, we proposed a weakly supervised cell seg-
mentation method with two types of weak labels obtained
without additional manual annotation costs. We generated
intercellular boundaries ourselves by pasting a single cell to
the original image to obtain the intercellular boundary la-
bel from two weak labels. Experiments on a public dataset
demonstrated that our method achieves a state-of-the-art
performance compared to conventional weakly supervised
methods.
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