This WACYV 2023 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Mapping DNN Embedding Manifolds for Network Generalization Prediction

Molly O’Brien!
Johns Hopkins University
3400 N Charles St, Baltimore, MD

mollynnobrien@gmail.com

Mathias Unberath®

unberath@jhu.edu

Brett Wolfinger!
bwolfinl@jhu.edu

Aria Pezeshk*
Center for Devices and

Julia Bukowski
Villanova University
800 Lancaster Ave, Villanova, PA

julia.bukowski@villanova.edu

Greg Hager! *
hager@jhu.edu

Radiological Health, U.S. FDA
Silver Spring, MD

aria.pezeshk@gmail.com

Abstract

Deep Neural Networks(DNN) often fail in surprising
ways, and predicting how well a trained DNN will gener-
alize in a new, external operating domain is essential for
deploying DNNs in safety critical applications, e.g., per-
ception for self-driving vehicles or medical image analy-
sis. Recently, the task of Network Generalization Predic-
tion (NGP) has been proposed to predict how a DNN will
generalize in an external operating domain. Previous NGP
approaches have leveraged multiple labeled test sets or la-
beled metadata. In this study, we propose an embedding
map, the first NGP approach that predicts DNN perfor-
mance based on how unlabeled images from an external
operating domain map in the DNN embedding space. We
evaluate our proposed Embedding Map and other recently
proposed NGP approaches for pedestrian, melanoma, and
animal classification tasks. We find that our embedding map
has the best average NGP performance, and that our em-
bedding map is effective at modeling complex, non-linear
embedding space structures.

1. Introduction

It is well known that Deep Neural Networks (DNNs) are
black box systems that achieve state of the art performance
in essentially every perception task proposed in the last
decade. DNNs are composed of tens to hundreds of layers
with millions of learnable weights, and they excel at tasks
such as image classification, object detection, and semantic
segmentation. It is also well documented that DNN perfor-
mance often degrades when DNNs are deployed in operat-
ing domains that are different from their training and testing

domains [13]. For instance, in perception for self-driving
vehicles, differences in camera characteristics, lighting and
weather conditions, and foreground and background objects
can impact DNN performance. In medical image analy-
sis, the input data distribution can be impacted by choice of
scanner vendors, pre- and post-processing algorithms, dose
levels, image compression, and patient and disease distri-
butions. Because of this performance degradation, even as
DNN performance continues to improve and approach hu-
man performance in many benchmark datasets, it is chal-
lenging to deploy DNNs in commercial products that per-
form safety critical tasks in unconstrained environments. In
order for DNNs to reach their full potential for commercial
use, we need techniques that can predict how a DNN will
perform in an external operating domain before it causes
automated, harmful failures [28].

While DNNs are different from traditional software in
that the learned weights cannot be read and interpreted,
there is still structure in the mappings that DNNs learn.
Feed-forward DNNs perform a high-dimensional, non-
linear projection of input data into an embedding space, and
the final prediction is a linear projection of the embedding.
We are interested in identifying structure in the DNN em-
bedding space as it relates to the DNN performance.

Our primary contribution is a new NGP approach that
can accurately predict DNN performance in a novel operat-
ing domain based on how unlabeled images from the novel
operating domain map in the DNN embedding space. We
evaluate our NGP method on pedestrian, melanoma, and
animal classification tasks and demonstrate accurate NGP
across different DNN architectures, external datasets, and
classification tasks. Additionally, we visualize the DNN
embedding space for a pedestrian classification experiment
and propose that DNN architecture impacts what NGP ap-
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proach is most accurate in a given experiment.

2. Network Generalization Prediction

DNNs are typically trained and tested on different parti-
tions of a labeled, internal dataset before the DNN is used
in multiple external operating domains; see Figure 1. In un-
constrained environments, e.g., perception for self-driving
vehicles, medical image analysis, etc., the external operat-
ing domain may vary significantly from the internal test set.
Typically, labeled examples from the external operating do-
main are not available, though some unlabeled data from
the external operating domain may be available. Network
Generalization Prediction (NGP) is the task of predicting
how a DNN will generalize in an external operating domain,
without requiring labeled test data from the given operating
domain.

NGP has been the focus of growing attention over the
last year and has been denoted Automatic Model Evaluation
(AutoEval) [6], Accuracy Estimation [8], Network General-
ization Prediction (NGP) [27], and Detection Performance
Modeling [29] in different prior works. Unlike other ML
tasks, the goal of NGP is to accurately predict what the
DNN performance will be in a novel, external operating do-
main; it is not to improve the overall DNN performance.

2.1. Previous NGP Approaches

Prior NGP works have relied on unlabeled operating do-
main images [6], [8] or expensive context annotations to
predict DNN generalization [27], [29]. Deng et al. pro-
pose to simulate different labeled test sets by applying se-
quential image transformations to the internal test images
[6]. They modify the image background and foregrounds
separately, which is possible in binary images, e.g., MNIST
[16], or object detection images with object masks, e.g., MS
COCO [20], but it is unclear how these image transforma-
tions could be performed on a broad set of natural images.
They generate 1600 simulated test datasets, and then they
use the Fréchet distance to measure the distribution shift be-
tween the unmodified internal test set and the modified test
sets. They then fit a regressor, linear or DNN, to learn the
generalization gap for a given magnitude distribution shift.
This approach requires significant computational time and
memory to test the DNN on additional test sets.

Guillory et al. propose a similar approach where they
use ImageNet as the internal dataset and ImageNet-V2,
ImageNet-VidRobust, ImageNet-Rendition, and ImageNet-
Sketch as labeled test sets from different distributions [8].
Again Guillory et al. model the decrease in model accuracy
as a function of the magnitude of the distribution shift. They
investigate multiple distance metrics to measure distribution
shift including the Fréchet distance and several metrics that
they propose. The most effective distance metric is the Dif-
ference of Confidences (DoC). DoC measures the change

in the average predicted softmax score between the internal
test sets and the external operating set. The authors train
a regressor to predict the change in accuracy based on the
magnitude of the distribution shift observed across multiple
labeled test sets.

O’Brien et al. proposed an interpretable context sub-
space (CS) that identifies context features, i.e., metadata,
or image statistics like brightness, that are informative for
NGP [27]. The previous work can accurately predict DNN
performance for changes in context feature distribution, but
does not capture changes that occur when moving from one
dataset to another, e.g., changes in camera parameters or
changes in the image structure. Ponn et al. trained a ran-
dom forest on image attributes, e.g., pedestrian occlusion,
bounding box size, presence of rain, etc., to predict whether
a pedestrian would be detected [29].

In contrast to previous NGP methods, we propose the
first NGP approach that can predict DNN performance di-
rectly from the way in which unlabeled images map in the
DNN embedding space.

3. Related Works

NGP is related to the fields of Domain Generalization
and Out-of-Distribution detection, that aim to improve the
performance of DNNs in unconstrained environments and
detect when an input is outside the known distribution, re-
spectively.

3.1. Domain Generalization

DNNs trained using domain generalization algorithms
aim to perform well in operating domains that differ from
the training or testing domains. While many domain gener-
alization algorithms have been proposed in the last decade
[2], none has been shown to consistently out-perform stan-
dard Empirical Risk Minimization (ERM) [9].

Jiang et al. demonstrate that the margin distribution of
internal layers in a DNN is correlated with the generaliza-
tion gap between the internal training set and the internal
test set [12]. Recent work has proposed that Generalized
Reweighting optimization techniques do not out-perform
ERM because current DNNs are over parameterized and the
optimization techniques carry the same biases as ERM [41].
See [9] for a review of Domain Generalization techniques.
It has been proposed that underspecification can cause DNN
performance to degrade when deployed in operating do-
mains different from the training domains [5]. To facili-
tate domain generalization research, the WILDS benchmark
was released to provide datasets with “in-the-wild” distribu-
tion shifts between the training and test data [13].

An emerging topic in domain generalization is hidden
stratification: the idea that average performance can obscure
subpopulations of data where the DNN performs poorly.
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Figure 1. Overview of Network Generalization Prediction (NGP). A DNN is trained using internal training data. Next, the DNN is tested
with the internal test data. The internal test results are used to predict the DNN performance for the external operating data.

This can lead to harm if the task is safety critical, e.g., med-
ical image analysis [25]. Sohoni et al. propose the frame-
work GEORGE that identifies subgroups of data by clus-
tering examples in the DNN embedding space and training
classifiers that demonstrate robust performance across sub-
groups [35].

3.2. Out-of-Distribution Detection

DNNs are trained in limited environments, and are not
typically capable of correct predictions for input samples
that are unlike the data with which they were trained. Auto-
matically recognizing Out-of-Distribution (OOD) samples
is a broad area of research that is relevant to safely de-
ploying DNNs in unconstrained environments. Many prior
works use the DNN embedding, i.e., the output from the
penultimate DNN layer, or the softmax scores to detect
OOD samples [10],[19], [24], [22], [33]. The baseline in
[10] uses the softmax scores to predict whether an image is
misclassified in addition to OOD detection. Previous work
has investigated input sample Euclidean or Mahalanobis
distance from training data in the embedding space to iden-
tify OOD and adversarial examples [17], [7] , [23]. Re-
cent work proposed the Multi-level Out-of-distribution De-
tection (MOOD) framework for computationally efficient
OOD [21].

4. Methods

We consider a trained, feed-forward DNN, f, where
f(x) denotes the DNN prediction. The layers of f, exclud-
ing the final layer, are a feature extractor, denoted ¢, that
projects the input image x into a D dimensional DNN em-
bedding space (embedding space), ¢(x) € R”. The DNN f
is tested with images from an internal test set, i.e., a test set
drawn from the same distribution as the training data. The
images in the internal test set are denoted X = {x;}~; and
are labeled y = {y; }/¥,. Images from an external operating

set X = {#;}M, are analogous data from a new distribu-
tion. However, for the external operating set we assume that
labels y are unknown.

We are interested in finding structure in the embedding
space that provides information about the DNN perfor-
mance; specifically we aim to link the embedding space to
the DNN outcome. Depending on the task, the outcome
of interest could be determined by the loss, e.g., success
or failure, or by the loss and the label, e.g., True Positive
(TP), False Positive (FP), False Negative (FN), True Neg-
ative (TN) for binary classification. We use the notation
o(f(z),y) to denote the outcome.

4.1. Decision Tree in Embedding Space

The internal test set embeddings, ¢(X), lie on some
manifold in the high-dimensional embedding space; see
Figure 2 Test (1). Decision trees are able to identify a
sparse set of the most informative features given high-
dimensional feature data [32]. We fit a decision tree on
the D-dimensional test set embeddings, ¢(X), so that
the decision tree can predict the observed test outcomes,
o(f(X),y). We set a maximum depth of the decision tree
to prevent the decision tree from overfitting.

The decision tree recursively selects the dimension of
the embedding feature that maximizes the information gain
about the DNN outcome. After the decision tree is fit, each
node in the tree corresponds to a value and a dimension in
the embedding space, e.g., value 0.78 at dimension 45. The
node in the DT corresponds to a hyper-plane in the embed-
ding space, i.e., images that map above a hyper-plane drawn
at 0.78 for dimension 45 follow the left branch, images that
map below the hyper-plane follow the right branch. See Fig-
ure 2 Test (2) for an illustration of the hyper-planes shown
as dashed lines.

Each leaf node in the DT corresponds to a contiguous re-
gion in the embedding space, defined using the hyper-planes
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in the DT along the path to the leaf node. The leaf nodes
are represented by the color boxes in Figure 2 Test (3). The
images that map to a leaf node in the tree correspond to im-
ages that map to the same region in the embedding space.
Each leaf node in the DT is identified using a sparse subset
of the embedding dimensions that give the most informa-
tion (in a greedy sense) about the DNN outcome. We refer
to the fitted decision tree as our embedding map, because
it maps regions in the embedding space to observed DNN
outcomes.

4.2. Approximating Internal Test Set Manifold

The embedding map found in Section 4.1 contains L
leaf nodes that define contiguous regions in the embed-
ding space, where leaf [ is identified using a sparse subset
d' << Dofthe embedding space dimensions. Note that the
number of dimensions in d’ is less than or equal to the max-
imum depth of the decision tree. Using the embedding map,
we can partition the internal test samples X = {z;}X, by
the leaf to which each sample maps, i.e.,

X =Uk X', XiNnXi=0 Vi#j (1)

where X' is the set of N test samples that map to leaf I.
l
Xt ={}is )

The internal test set X has associated labels y. Let
y = UL y! be the test set labels partitioned by the leaf

to which each sample maps and y' = {!}Y', be the labels
for the test samples that map to leaf [. Let I(a,b) be an in-
dicator function that is equal to 1 if a = b and 0 otherwise.
Assuming each test sample is equally likely, the probability
of outcome a in leaf [ can be computed as:

pal) = i Mo sa) O

Note, the boxes in Figure 2 Test (3) are colored to match
the most likely test outcome in the leaf region to illustrate
linking a region of embedding space to the DNN outcomes
observed in testing.

4.3. Network Generalization Prediction

We leverage the embedding map on unlabeled, external
operating data; see Figure 2 Operating (1). The external
operating samples can be mapped into the DNN embedding
space as ng(X ); see Figure 2 Operating (2). The external op-
erating samples can then be partitioned to the L leaf nodes:

X=uU X', X'nXI=0 Vi#£j 4)

where X' is the set of M external operating samples that
map to leaf [.

Xt = {2l (5)

The probability that a sample in the external operating
set maps to leaf [ can be approximated by the fraction of the
operating samples that map to leaf [:

Ml
l)=— 6
p(l) = 57 (6)
The probability of encountering outcome « in the operating
domain is:
pla) = p(all)p(l) (7)
leL

p(a) can be computed for each outcome a observed in test-
ing (assuming we have discrete outcomes and outcome pos-
sibilities) to perform NGP.

5. Experiments
5.1. Classification Tasks

In our experiments we demonstrate that our embedding
map can be used to accurately predict DNN performance for
unlabeled, external operating datasets for three binary im-
age classification tasks: pedestrian classification, melanoma
classification, and animal classification. Figure 3 shows ex-
amples of the images for each of these tasks. For pedes-
trian classification, we classify image patches as including
a pedestrian (the positive class) or not (the negative class),
where the negative image patches are randomly cropped
patches from driving scene images without pedestrians. The
Berkeley Deep Drive 100k (BDD) [40] dataset is the in-
ternal dataset and Cityscapes [4] and the Joint Attention in
Autonomous Driving (JAAD) [30] are the external datasets.
For melanoma classification, we classify an image of a skin
lesion as melanoma (the positive class), or benign (the neg-
ative class). We use the Human Against Machine 10000
(HAM) dataset [36] for our internal dataset and the STIM-
ISIC Melanoma Classification (ISIC) dataset [31] for our
external dataset. For animal classification, we classify an
image as an animal (the positive class) or an object (the
negative class), with STL10 [3] as the internal dataset and
the Common Objects Day and Night (CODaN) [18] and
CIFAR-10 [15] as external datasets. The internal and ex-
ternal datasets we investigate provide shifts in image statis-
tics like brightness and saturation, shifts in scene structure,
changes in image resolution, and unseen conditions like
night images.

5.2. Experimental Setup

For each classification task, we fine-tune three classifiers
with different DNN architectures: VGG [34], AlexNet [14],
and DenseNet [11]; the pre-trained models are available in
the PyTorch library. Each round of training considers 100
batches of images with a batch size of 8, where the images
are sampled with a uniform probability for each class. The
VGG and AlexNet models are trained with 10 rounds of
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Figure 2. An illustration of the decision tree for mapping DNN embeddings. Test data lie on a manifold in the embedding space. We identify
structure in the embedding space as it relates to the DNN outcome. For binary classification the possible outcomes are true positive (TP),
false negative (FN), false positive (FP) and true negative (TN). The structure identified using labeled test data can be leveraged to predict
the DNN’s performance on unlabeled operating data, where the outcome is unknown. Best viewed in color.

training, a learning rate of le — 6 and a weight decay of
le — 3. The DenseNet models are trained with 4 rounds
of training, a learning rate of le — 4, and a weight decay
of le — 3. VGG and AlexNet have an embedding space
of 4,096 dimensions. DenseNet has an embedding space
of W x H x 1664 where W and H depend on the initial
image size. Like the full DenseNet architecture, we use a
Global Average Pooling (GAP) layer to convert from the 3D
embedding to a 1664 dimensional vector for each image.

5.3. Network Generalization Prediction

For each architecture in each task, we fit a decision tree
with a maximum depth of 10 to distinguish four outcomes:
TP, FP, FN, and TN. We refer to the fitted decision tree as
our embedding map. Next, we project the external dataset
images to the embedding space, ¢(X ), and map the external
embeddings to leaves in the embedding map. We compute
the probability of each outcome in the external dataset ac-
cording to Equation 7. The predicted DNN accuracy is the
sum of the probability of correct outcomes (TP + TN for
binary classification).
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Figure 3. Classification tasks. X indicates the internal dataset that is used to train the DNN classifier and fit the embedding decision tree.
X indicates the unlabeled, external operating dataset. For each dataset, the top row shows a random sampling of negative examples, and

the bottom row shows a random sampling of positive examples.
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Figure 4. Left: NGP Accuracy for all external operating datasets and DNN architectures, (higher is better). DenseNet shown as DN.
AlexNet shown as AN. Right: Average NGP Accuracy by method. Note, the CS baseline is not available for the animal classification tasks.
The CS average NGP accuracy is calculated across pedestrian and melanoma classification only.

We compare our NGP results to the DoC NGP approach
proposed in [8] and the Context Subspace NGP approach
proposed in [27], denoted CS. Guillory et al. propose to
measure the DoC and change in prediction accuracy using
multiple internal test datasets for a given task and then fit a
regressor for NGP. As we use only one internal test dataset
for each prediction task, we predict that the change in DNN
accuracy between the internal test set and the external op-
erating set will be equivalent to the average difference in
softmax score between the external operating dataset and
the internal test dataset.

The CS NGP requires distributions of each class and the
distribution of context features to make predictions. For
pedestrian classification, we use image brightness, scene
type, weather, and time of day as available context features,
as in the experiments of [27]. For melanoma classifica-
tion, we use average image hue, saturation, value, patient
age, sex, and lesion location as possible context features, as
in [26]. Labeled metadata are not available for the animal

classification task, so we do not include a comparison to CS
NGP for the animal external datasets.

In addition, we compare to an Average Test Performance
(ATP) baseline and a baseline Fully Connected (FC) NGP
approach. The ATP baseline predicts that the accuracy of
the external operating domain will be the same as the inter-
nal test set. In FC baseline, an additional FC layer is trained
that classifies the embedding as one of the four outcomes.
For each DNN model, we trained two FC baselines using
the internal test embeddings and outcomes 1) with balanced
sampling of examples for each outcome (FC Bal), and 2)
without balancing the training sampling by outcome (FC
Not Bal).

5.4. NGP Results

The work in [8] presents the NGP results using the Mean
Absolute Error (MAE), i.e., the absolute error between the
observed model accuracy and the predicted model accu-
racy. To make the results easier to visualize across multi-
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Figure 5. Ablation study by tree depth and DNN architecture.

ple datasets and architectures, we present our results using
the NGP accuracy, i.e., 1— MAE. Figure 4 shows the NGP
results for all tasks, external operating datasets, and DNN
architectures. See Appendix A for F1 scores for the NGP
task. The average NGP across all experiments is shown on
the right in Figure 4. Overall, our DT Map has the best
NGP performance, but it is closely followed by DoC and
ATP. The NGP results are heterogeneous, and suggest that
different NGP methods are more accurate depending on the
DNN architecture and external operating data. To investi-
gate these results further, we inspect the embedding space
of the JAAD dataset for each architecture, see Section 5.6.

5.5. Tree Depth Ablation Study

In the previous results, we show our NGP prediction per-
formance for a fixed tree depth of 10. We investigate how
the tree depth impacts the NGP results across the different
DNN architectures with maximum tree depths of 2, 4, 8, 16,
and 32; see Figure 5. Decision trees can terminate before
the maximum depth is reached if further splits do not im-
prove the performance; when the maximum depth was set
to 32, some decision trees terminated before a depth of 32.
We see that the NGP performance is consistent across dif-
ferent tree depths for VGG and AlexNet. For the DenseNet
architecture, there is some improvement in NGP when the
tree depth is > 16.

5.6. Interpreting the NGP Results

To understand these NGP results, we visualize the in-
ternal and external datasets in the embedding space using
t-SNE [37]. For each external operating dataset and each
DNN architecture, we first perform PCA [1] to reduce the
corresponding internal test embeddings and external oper-
ating embedding to 50 dimensions. Then we use t-SNE to
reduce the embedding dimensionality to 2 and plot the im-
age embeddings, see Figure 6, for the embedding plots for
the pedestrian internal test set, BDD 100K, and external op-
erating set, JAAD. We see a similar embedding structure
in the VGG and AlexNet embedding spaces: a cluster of
points with an approximately linear DNN decision bound-

ary (drawn in a white dashed line in Figure 6) with TP to
one side of the decision boundary, TN to the other side of
the decision boundary, and FN and FP close to the decision
boundary. In contrast, we see a more complicated embed-
ding space structure for DenseNet. The embedded images
form an “S” shape for both BDD100K and JAAD. We still
see a separation of the TP and TN images in the embedding
space, and mostly FN images in between them; however, it
is not possible to draw a line in the embedding space for the
DNN decision boundary.

Our embedding map defines regions in the embedding
space associated with a given outcome. It is able to
map complicated, non-linear manifolds, and therefore is
more accurate in predicting the performance for the JAAD,
DenseNet DNN. In fact, our embedding map has the best
NGP performance in all DenseNet experiments except for
the ISIC dataset. In contrast, DoC is leveraging the soft-
max scores; in situations with an approximately linear de-
cision boundary, e.g., VGG and AlexNet in the JAAD ex-
periments, the softmax score can effectively measure how
close a prediction is to the decision boundary and DoC is an
accurate NGP method.

6. Discussion

Our NGP experiments show that our proposed DT em-
bedding map accurately performs NGP across a wide range
of classification tasks. In particular, we find that our em-
bedding map leverages the embedding space structure well
in non-linear embedding manifolds. This is complimentary
to the previously proposed DoC method which performs
well with linear decision boundaries. In [8] the authors con-
clude it is “sobering” that the simple DoC approach outper-
forms other, more complicated baselines. We find that DoC
does outperform our embedding map in some experiments,
but the embedding space visualization in Figure 6 provides
some insight as to why. If the distance from a linear de-
cision boundary is a good indication for whether a DNN
prediction is correct, as in VGG and AlexNet in Figure 6,
then DoC will be an accurate NGP approach. In contrast, if
the structure in the embedding space is more complicated,
as in DenseNet in Figure 6, then our embedding map will
be a more accurate NGP approach.

When we examine the results in Figure 4 we see that our
embedding map tends to do well for the DenseNet architec-
ture across different external datasets and tasks. We believe
this is promising because it indicates there are patterns to
the DNN embedding space structure for a given DNN archi-
tecture across multiple datasets. In addition, the embedding
space structure is similar for AlexNet and VGG in the Fig-
ure 6 visualization. This is logical, because both AlexNet
and VGG have a series of convolutional layers followed
by fully connected layers, and both have the same embed-
ding space dimensionality. This suggests the possibility that
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Figure 6. Embedding space visualization for the pedestrian internal test set (BDD100K, top), and external operating set (JAAD, bottom)
for each DNN architecture. Each point indicates one image from the respective dataset in the embedding space. True Positive (TP) images
shown in green, False Positive (FP) shown in orange, False Negative (FN) shown in pink, True Negative (TN) shown in indigo. Best viewed

in color.

groups of architectures with similar layer structures and em-
bedding space dimensionalities have similar DNN embed-
ding space structures. An interesting avenue for future work
is to investigate whether patterns in the embedding space
structure are indeed seen across different tasks and datasets.

Our proposed approach is not restricted to binary classi-
fication problems, and is applicable for other feed-forward
supervised learning problems, such as, multi-class classi-
fication and object detection. For example, to apply our
embedding map to a multi-class classification problem, the
outcomes can be defined as ‘class 1 correct’, ‘class 1 in-
correct’, etc. for each class and the decision tree can be fit
using the procedure we describe.

6.1. Societal Impact

Training DNNSs that are fair to all subpopulations is es-
sential to safely deploy DNNs in operation. There is ev-
idence that both pedestrian detection [39] and melanoma
classification [38] can have lower performance for some
subpopulations, particularly people with darker skin tones.
We believe that our approach could be used to recognize if
a DNN'’s performance will be poor for people from under-
represented subpopulations before harmful failures occur.

7. Conclusions

We propose an NGP method that maps the structure of
the DNN embedding space and achieves the best average
NGP performance across different tree depths, classifica-
tion tasks, DNN architectures, and external operating do-
mains. Our embedding map efficiently maps structure in the
embedding space, and through embedding space visualiza-
tions, we see that in particular our proposed approach out-
performs previous NGP approaches in complex, non-linear
embedding space structures. More broadly, we believe that
the growing body of work around NGP is a promising di-
rection for further research and can be a step towards de-
pendable and practical DNNSs for safety critical tasks in un-
constrained environments.

7.1. Acknowledgements

M.O. was supported through a Critical Path grant from
the U.S. FDA, and by an appointment to the Research Par-
ticipation Program at the Center for Devices and Radiolog-
ical Health administered by the Oak Ridge Institute for Sci-
ence and Education. The contents of this work are solely
the responsibility of the authors.

6531



References

(1]

(2]

(4]

(3]

(71

(8]

[10]

[11]

[12]

[13]

Hervé Abdi and Lynne J Williams. Principal component
analysis. Wiley interdisciplinary reviews: computational
statistics, 2(4):433-459, 2010.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David

Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215-223. JMLR
Workshop and Conference Proceedings, 2011.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel, Christina
Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoff-
man, et al. Underspecification presents challenges for
credibility in modern machine learning. arXiv preprint
arXiv:2011.03395, 2020.

Weijian Deng and Liang Zheng. Are labels always neces-
sary for classifier accuracy evaluation? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15069—15078, 2021.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor
Darrell, and Ludwig Schmidt. Predicting with confidence
on unseen distributions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1134—
1144, 2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2020.

Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. CoRR, abs/1610.02136, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works, 2018.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy
Bengio. Predicting the generalization gap in deep networks
with margin distributions. In International Conference on
Learning Representations, 2018.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-
mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pages 5637-5664. PMLR, 2021.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

6532

Alex Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Y LECUN. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. Advances in neural infor-
mation processing systems, 31, 2018.

Attila Lengyel, Sourav Garg, Michael Milford, and Jan C.
van Gemert. Zero-shot domain adaptation with a physics
prior. 2021.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the re-
liability of out-of-distribution image detection in neural net-
works. In International Conference on Learning Represen-
tations, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollér, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740-755.
Springer, 2014.

Ziqian Lin, Sreya Dutta Roy, and Yixuan Li. Mood: Multi-
level out-of-distribution detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15313-15323, June 2021.
Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li.
Energy-based out-of-distribution detection. In H. Larochelle,
M. Ranzato, R. Hadsell, M. E. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, vol-
ume 33, pages 21464-21475. Curran Associates, Inc., 2020.
Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi
Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E
Houle, and James Bailey. Characterizing adversarial sub-
spaces using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613, 2018.

Sina Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang
Wang. Self-supervised learning for generalizable out-of-
distribution detection. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):5216-5223, Apr. 2020.
Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro,
and Christopher Re. Hidden stratification causes clinically
meaningful failures in machine learning for medical imag-
ing. In Proceedings of the ACM Conference on Health, In-

ference, and Learning, CHIL 20, page 151-159, New York,

NY, USA, 2020. Association for Computing Machinery.
Molly O’Brien, Julia Bukowski, Greg Hager, Aria Pezeshk,
and Mathias Unberath. Evaluating neural network robustness
for melanoma classification using mutual information. In
Medical Imaging 2022: Image Processing, volume 12032,
pages 173-177. SPIE, 2022.

Molly O’Brien, Mike Medoff, Julia Bukowski, and Gre-
gory D Hager. Network generalization prediction for safety
critical tasks in novel operating domains. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 614—622, 2022.



(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

Molly O’Brien, William Goble, Greg Hager, and Julia
Bukowski. Dependable neural networks for safety critical
tasks. In International Workshop on Engineering Depend-
able and Secure Machine Learning Systems, pages 126—140.
Springer, 2020.

Thomas Ponn, Thomas Kroger, and Frank Diermeyer. Iden-
tification and explanation of challenging conditions for
camera-based object detection of automated vehicles. Sen-
sors (Basel, Switzerland), 20(13), 2020.

Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Are
they going to cross? a benchmark dataset and baseline for
pedestrian crosswalk behavior. In Proceedings of the IEEE
International Conference on Computer Vision Workshops,
pages 206-213, 2017.

Veronica Rotemberg, Nicholas Kurtansky, Brigid Betz-
Stablein, Liam Caffery, Emmanouil Chousakos, Noel
Codella, Marc Combalia, Stephen Dusza, Pascale Guitera,
David Gutman, et al. A patient-centric dataset of images and
metadata for identifying melanomas using clinical context.
Scientific data, 8(1):1-8, 2021.

S Rasoul Safavian and David Landgrebe. A survey of deci-
sion tree classifier methodology. IEEE transactions on sys-
tems, man, and cybernetics, 21(3):660-674, 1991.

Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin
Sitawarin, Daniel Cullina, Mung Chiang, and Prateek Mittal.
Analyzing the robustness of open-world machine learning.
In Proceedings of the 12th ACM Workshop on Artificial In-
telligence and Security, AlSec’19, page 105-116, New York,
NY, USA, 2019. Association for Computing Machinery.
Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu,
and Christopher Ré. No subclass left behind: Fine-grained
robustness in coarse-grained classification problems. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 19339-19352. Curran Asso-
ciates, Inc., 2020.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The
ham10000 dataset, a large collection of multi-source der-
matoscopic images of common pigmented skin lesions. Sci-
entific data, 5(1):1-9, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008.

David Wen, Saad M Khan, Antonio Ji Xu, Hussein Ibrahim,
Luke Smith, Jose Caballero, Luis Zepeda, Carlos de
Blas Perez, Alastair K Denniston, Xiaoxuan Liu, et al. Char-
acteristics of publicly available skin cancer image datasets: a
systematic review. The Lancet Digital Health, 2021.
Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern.
Predictive inequity in object detection. arXiv preprint
arXiv:1902.11097, 2019.

Fisher Yu, Wengqi Xian, Yingying Chen, Fangchen Liu, Mike
Liao, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A
diverse driving video database with scalable annotation tool-
ing. arXiv preprint arXiv:1805.04687, 2018.

[41] Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Raviku-

6533

mar. Understanding why generalized reweighting does not
improve over erm. arXiv preprint arXiv:2201.12293,2022.



