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Abstract

Medical image segmentation is critical for effective
computer-aided diagnosis and localization of ailments. Au-
tomated segmentation of wound regions from patient im-
ages can aid clinicians in measuring and managing chronic
wounds and monitoring the wound healing trajectory.
While there exists a plethora of work on general medical im-
age segmentation, there is hardly any work on wound image
analysis and segmentation. Existing methods are limited to
segmenting a smaller subset of ulcers, such as foot ulcers,
with no special processing for wound images. In this pa-
per, we build segmentation models for eight different types
of wound images. Wound image analysis is a challenging
problem due to the lack of availability of extensive data
(labeled or unlabeled), and annotation is also challenging
due to the shortage of well-trained wound care clinicians.
To handle these challenges, we contribute WOUNDSEG1,
a large and diverse dataset of segmented wound images.
Generic wound image segmentation is complex due to the
heterogeneous appearance of wound area across images of
similar wound types. We propose a novel image segmen-
tation framework, WSNET, which leverages (a) wound-
domain adaptive pretraining on a large unlabeled wound
image collection and (b) a global-local architecture that uti-
lizes full image and its patches to learn fine-grained details
of heterogeneous wounds. On WOUNDSEG, we achieve a
decent Dice score of 0.847. On existing AZH Woundcare
and Medetec datasets, we establish a new state-of-the-art.
Further, we show the impact of using segmentation for im-
proving the accuracy of downstream tasks like wound area
and volume prediction.

1. Introduction
The magnitude of wound care costs is on a rise in the

health care industry. In 2018, around 8 million people
suffered from wounds, with the medicare cost estimates

*The author is also a Principal Applied Scientist at Microsoft.
1Link to code and data: https://github.com/

subbareddy248/WSNET

ranging from $28.1 billion to $96.8 billion [28]. Time is
crucial since the longer a wound is allowed to fester, the
harder it becomes to treat, and a quick response is the best
way to reduce wound care costs. Wound image segmen-
tation is critical for quick marking the region of interest
(the wound area), which can play a significant role in effec-
tive computer-aided diagnosis and localization of ailments.
Accurate wound image segmentation can be helpful in au-
tomatically identifying wound attributes like wound area,
wound volume, and wound stage. Such attributes can, in
turn, help evaluate and manage chronic wounds, monitor the
wound healing trajectory, determine future interventions,
predict the patient’s hospitalization risk, or predict the time
to heal [25], significantly reducing hospital admissions and
amputations.

Despite this critical need for automated wound im-
age segmentation methods, previous work has primarily
focused on broader medical image segmentation [6, 20]
with relatively sparse literature on wound image segmen-
tation [33, 35]. Broadly, medical image segmentation aims
to make anatomical or pathological structure changes more
clear in images. Popular medical image segmentation tasks
include liver and liver-tumor segmentation [18], brain and
brain-tumor segmentation [23], optic disc segmentation [2],
cell segmentation [27], lung segmentation, and pulmonary
nodules [37]. Lei et al. [17] and Hesamian et al. [9] pro-
vide a good overview of popular methods in the area. In
this work, we focus on the segmentation of wound images.

Our goal is to build a model highlighting the wound re-
gion from a given image. Developing such a system can
help clinicians reduce the time spent to diagnose the wound
by automatically measuring its area and volume, reducing
healing time and wound care costs. The problem is chal-
lenging because wound segmentation can depend on mul-
tiple factors like wound/ulcer type, wound location, wound
size, variations across images in terms of lighting condi-
tions, and skin color variations. The lack of large amounts
of publicly available labeled (or even unlabeled) data is
yet another challenge. Existing datasets like AZH Wound-
care [35] and Medetec [33] are small or contain only foot
ulcer images.
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Figure 1. Examples of eight different wound types from our WOUNDSEG dataset. The top row shows the actual wound images, while the
bottom row shows segmentation masks.

Wound Type Diabetic Pressure Trauma Venous Surgical Arterial Cellulitis Other All
# Images 441 636 368 690 268 99 113 71 2686
Wound Area (%) 9.0 12.5 10.7 13.3 12.5 8.7 13.0 18.9 12.3

Table 1. Basic statistics of WOUNDSEG Dataset.

Dataset Wound Types Size
WOUNDSEG
(ours)

8 types (diabetic, pressure,
trauma, venous, surgical, arte-
rial, cellulitis, and others)

2686

AZH 1 type (foot ulcer) 1109
Medetec 1 type (foot ulcer) 607

Table 2. Proposed WOUNDSEG dataset is more diverse and large
compared to existing datasets.

Our first goal was to create a wound image segmentation
dataset with good diversity. Three qualified wound special-
ists provided annotations for 3000 images from Jun 2015–
Mar 2019 using Django-labeller2 with an intra-annotator
agreement of ∼0.95. As part of the annotation, we re-
quested experts to include the peri-wound skin area, i.e., the
tissue surrounding a wound. After two sanity checks, we
obtained 2686 masked images in size 384x384. Our dataset
is highly diverse, with images for eight types of wound ul-
cers (diabetic, pressure, trauma, venous, surgical, arterial,
cellulitis, and others). We provide statistics of our WOUND-
SEG dataset in Table 1. Fig. 1 shows a few samples of
wound images for each wound type from our dataset, along
with their segmentation masks. We also capture the com-
parison of WOUNDSEG with existing datasets in detail in
Table 2. We make our WOUNDSEG dataset available pub-
licly1.

To build accurate wound image segmentation models,
we start by performing extensive experiments with four
popular image segmentation architectures and 17 different
backbones. To improve upon these baseline models, we
propose a novel framework called WSNET. The framework
is based on convolutional neural networks (CNNs).

WSNET has the following main features:
2https://github.com/Britefury/django-labeller

• Usage of popular segmentation models with well-
known CNN backbones,

• specialized wound image specific pretraining on a
large unlabeled set,

• data augmentation strategies, and
• a novel global-local architecture to leverage multi-

level, heterogeneous information effectively.

Overall, in this paper, we make the following main con-
tributions.

• To the best of our knowledge, WOUNDSEG is the
largest wound segmentation dataset covering eight
types of wound ulcers (diabetic, pressure, trauma, ve-
nous, surgical, arterial, cellulitis, and others) unlike
previous work, which focused on only diabetic foot ul-
cer images.

• We experiment with four different image segmentation
architectures and 17 different backbones and a multi-
level heterogeneous ensemble model. We improve
upon baseline models via wound-domain adaptive pre-
training, dataset augmentation, and a novel global-
local segmentation architecture.

• Extensive experiments show that methods in our pro-
posed framework, WSNET, outperform baselines on
existing AZH Woundcare and Medetec datasets, as
well on our contributed WOUNDSEG dataset. Our
highly accurate wound image segmentation model also
helps us achieve state-of-the-art results in wound area
and volume prediction downstream tasks.

2. Related Work

In this section, we discuss related work in the areas of
wound image analysis and wound image segmentation.
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2.1. Wound Image Analysis

Chronic wound diagnosis, monitoring, and measuring
the area and volume of a wound is an ongoing research
area in medical image analysis. While several methods
have been proposed in the literature to classify the wound
tissue or segmentation of related skin lesions, these exper-
iments fail to provide a robust tool for process automa-
tion [36, 39, 40]. Classical image processing techniques
such as color descriptors and texture detectors have been
used to extract features from wound images, classify the
skin patches as normal or abnormal and to monitor the heal-
ing process automatically in [15, 16, 22, 26, 34, 38]. Re-
cently,Oota et al. [24] and [25] leverage wound attributes
like area and volume for tasks like re-admission risk pre-
diction and hospitalization probability, respectively. While
Oota et al. [24] obtain wound area and volume manually
from clinicians, [25] predict them directly from wound im-
ages. We leverage wound segmentation models to obtain a
better estimate of wound area and volume prediction. In
this work, we rigorously study the wound segmentation
problem by contributing a large dataset with eight wound
types and proposed a novel deep learning-based segmenta-
tion method.

2.2. Wound Image Segmentation

Previous work on wound image segmentation was based
on feature engineering-based traditional machine learning
and image processing methods. Song et al. [30] described
49 features extracted from a wound image using K-means
clustering, edge detection, thresholding, and region grow-
ing in both grayscale and RGB. Other such methods include
(1) generating a Red-Yellow-Black-White probability map
followed by optimal thresholding or region growing [4], (2)
flood fill on contour obtained using energy minimizing dis-
crete dynamic contour algorithm [10], (3) K-means clus-
tering on the Independent Component Analysis (ICA) out-
put of pre-processed RGB images [7, 41]. Such feature en-
gineering methods require manual effort in designing fea-
tures, cannot handle heterogeneity in images, and lead to
relatively lower accuracies compared to recently proposed
deep learning methods. Additionally, the performance is
evaluated on a small biased dataset.

Several researchers have used deep learning models for
segmenting and classifying various ulcer images in [3, 5,
14]. However, across all such works, the corpus size is min-
imal (e.g., Medetec wound images dataset [33] has only 607
images), leading to relatively brittle systems. Liu et al. [21]
proposed a fully convolutional neural networks (FCN) ar-
chitecture for the task on a semi-automatically annotated
dataset. Recently, Wang et al. [35] proposed a new wound
image dataset called AZH Woundcare consisting of 1109
foot ulcer images. They propose a convolutional framework
based on MobileNetV2 to segment wound regions from nat-

ural images. However, such methods work with the entire
image and fail to capture subtle local signals. We compare
these approaches and show improved results in Section 5.
In [25], the authors proposed an automated wound image
heal classification to predict the risk of hospitalization of
the wound along with wound area and volume. However,
the efficacy of area and volume prediction is comparatively
low. In this paper, we improve upon their results, leading to
the new state-of-the-art for wound area and volume predic-
tion tasks.

3. WSNET Methodology

This section discusses our experiments with the large set
of image segmentation models with CNN backbones. Fur-
ther, we discuss wound data-specific pre-training, our data
augmentation strategy, and our global-local segmentation
architecture.

3.1. Wound Segmentation Models

First, we experiment with the following four popu-
lar segmentation architectures: U-Net [27], LinkNet [1],
PSPNet [43], and FPN [19]. Further, we experiment
with 17 backbones to explore the accuracy versus model
size trade-off for each segmentation model. These back-
bones belong to eight popular architecture groups: VG-
GNet [29], ResNet [8], ResNeXt [42], Inception [31],
DenseNet [13], SEResNet [12], EfficientNet [32], and Mo-
bileNet [11]. For each of these, we use ImageNet pre-
trained weights. Out of the 17 backbones, we select three
backbones (DenseNet121, DenseNet169, and MobileNet)
for further experiments. Results are reported in Table 4.
We chose the two DenseNet backbones since they perform
the best on average across all four architectures. MobileNet
is chosen since it is the smallest of backbones and is com-
monly used across multiple baseline systems.

3.2. Wound-Domain Adaptive Pretraining (WDAP)

The results of the 17 backbones with four segmentation
models are reported in Table 4. To further improve the per-
formance of wound image segmentation models, we create
pretrained models specifically on the wound image dataset
instead of using Imagenet pretrained weights.

We select three backbones (DenseNet121, DenseNet169,
and MobileNet) for such special pretraining. To create pre-
trained models on the wound image dataset, we classify
wound types into five different ulcer types: diabetic, pres-
sure, surgical, trauma, and venous, using the three back-
bones. The input to each model is a wound image, and the
five wound-type classes are given as our target output. We
use Adam optimizer with a learning rate of 0.001. We use
the categorical-cross-entropy loss with a batch size of 32,
and the model is trained for 20 epochs over a dataset of
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Figure 2. Architecture of our two-stream global-local image segmentation method.

125711 images from [25]. The class distribution is as fol-
lows: diabetic ulcer (19773), pressure ulcer (47541), sur-
gical wound (12238), trauma wound (13667), venous ulcer
(32492). We use Adam optimizer, a learning rate of 0.001,
batch size of 32, 20 epochs. To overcome the over-fitting
problem, we checked for early stopping if the validation loss
did not decrease for five consecutive epochs.

3.3. Fine-tuning and Data Augmentation

Pretrained models are fine-tuned on labeled image seg-
mentation data. Note that this data is disjoint from the
data used for pretraining. While our pretraining is done on
data labeled for wound type classification, our fine-tuning is
done on separate data labeled for wound segmentation task.
The encoder model weights corresponding to each back-
bone are frozen, and the decoder weights are fine-tuned over
the wound image dataset for the four segmentation models.

We validated several transformation methods and finally
chose horizontal flip, random rotation, optical distortion,
grid distortion, blur, random brightness contrast, and trans-
pose to perform the data augmentation. We applied the
same augmentation to both image and its corresponding
mask. Augmentation transformations are performed on the
training set only and not on the test set.

3.4. Global-Local Architecture

Wound images have less semantically distinctive infor-
mation. They usually contain just skin and wound; hence,
more granular analysis is necessary to segment the wound
from normal skin accurately. Thus, for effective segmenta-
tion, it is essential to obtain (global) signals from the entire
image and (local) signals from individual patches extracted
to capture the intricate details in wound images. Local con-
text information is essential for semantic segmentation of
wound images that contain different patches with similar
features. Convolution operations on local patches process
one local neighborhood at a time, which may cause incom-
plete segmentation of large wound patches. As shown in

Fig. 2, the Global-Local architecture can help us extract
high-level multi-scale semantic information. It consists of
two sub-networks – the top sub-network is the global seg-
mentation network to process the complete image, and the
bottom one, i.e., the local segmentation network, processes
a patch of the image.

We feed a 192×192×3 resized image as input. The
global sub-network uses one of these four popular segmen-
tation architectures: U-Net [27], LinkNet [1], PSPNet [43],
and FPN [19]. For the local sub-network, the image is split
into 16 different non-overlapping 48×48×3 patches, which
are stacked to obtain a 48×48×(3×16) volume. We exper-
imented with different patch sizes; 48×48×3 gave the best
results. The patches are dispatched in parallel to 16 local
models with shared weights for better throughput and effi-
ciency, as seen in Fig. 2. Another layer is used at the end of
the local network to stitch back the patches into a full-size
mask image (192×192×1). Outputs from global and local
networks are stacked to get a 192×192×2 output. A 1×1
convolution is then applied to get a 192×192×1 predicted
mask. The predicted mask is compared with the ground-
truth mask, and the loss is back-propagated to train the net-
work end-to-end.

4. Experiments
4.1. Baselines

Besides the models discussed in Section 3.1, we experi-
ment with the following traditional machine learning mod-
els: linear (Ridge Classifier) and tree-based models (Extra
Trees Classifier). Since the target mask contains multiple
outputs, we followed the multi-output classification during
model training3. By tuning on validation data, we chose the
following hyper-parameters: Ridge Classifier (regulariza-
tion strength= 1.0, CV as leave-one-out cross-validation),
Extra Trees Classifier (number of estimators=500, crite-

3https://scikit-learn.org/stable/modules/
multiclass.html
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rion=gini, and maximum depth=3). We also tried other
methods like Gradient Boosting Decision Trees, Random
Forests, and KNN-based multi-output regression methods.
However, they did not lead to better results, so we do not
present them here.

As another baseline, we consider a patch-based approach
as follows. We split the wound image into different non-
overlapping patches as input, and the corresponding mask
patch is used as a target to train the model. We build a
simple CNN model (patch-based CNN) consisting of two
regular convolutional layers with 32 and 64 filters, followed
by separable convolutional layers to predict the mask patch.

4.2. Evaluation Metrics

In order to validate the image segmentation performance
of our models, we use the following popular evaluation met-
rics: IoU score and Dice score.
IoU Score: Intersection over Union (IoU) is a standard met-
ric that allows us to evaluate how similar our predicted seg-
mented mask is to the ground truth mask. To measure the
IoU score, we compare the ratio of the area where the two
masks overlap to the total combined area of the two masks.
Given set A of predicted wound pixels and set B of ground
truth wound pixels, IoU is calculated as |A∩B|

|A∪B| .
Dice Score: The Dice score captures the similarity between
the segmented and the ground truth mask. More specifi-
cally, the Dice score ranges from 0 to 1 where a Dice score
of 1 denotes perfect and complete overlap. Given set A of
predicted wound pixels and set B of ground truth wound
pixels, the Dice coefficient is calculated as 2|A∩B|

|A|+|B| .

4.3. Experimental Settings

We perform 5-fold cross-validation to assess our mod-
els’ accuracy and report 5-fold average results. 4-folds were
used for training, 1-fold is for the test. In order to train/fine-
tune all the segmentation models, we use Dice loss as a loss
function to measure the error between ground-truth and pre-
dicted masks. Note that Dice loss=1-(Dice score). We set
the number of epochs as 100, batch size of 32, and optimizer
as Adam with a learning rate of 0.001. We set the number
of augmented samples to 8000. The experiments were per-
formed on a single V100 16GB RAM GPU machine.

5. Results
5.1. Baseline Results on WOUNDSEG

Wound segmentation results on WOUNDSEG using base-
line models are shown in Table 3. Baseline IoU and Dice
scores are poor. We observe that the Patch-based CNN per-
forms better than traditional machine learning methods.

Table 4 compares the performance of four popular seg-
mentation models with 17 backbones where each backbone
is loaded with ImageNet pretrained weights. We observe

Model IoU Dice Score
RidgeClassifierCV 0.250 0.500
ExtraTreesClassifier 0.278 0.530
Patch-based CNN 0.280 0.540

Table 3. Comparison for baseline methods. We observe that both
full image and patches-based baseline methods give similar re-
sults.

that both DenseNet121 and DenseNet169 backbones dis-
play better IoU and Dice Scores across three segmentation
models: LinkNet, PSPNet, and FPN. On the other hand,
EfficientNetB1 backbone displays a higher Dice score in
the U-Net segmentation model. Overall, out of the 17
backbones, both DenseNet121 and DenseNet169 backbones
yield higher Dice scores across the four segmentation mod-
els; hence, we use these backbones for further experiments
in this paper. We also consider the MobileNet backbone
due to its minimal training parameters and better portabil-
ity of models in hand-held devices. We also show results
for DenseNet121, DenseNet169 and MobileNet in Table 5
(Part A).

5.2. WSNET Results on WOUNDSEG

WSNET combines the global-local model, WDAP, and
data augmentation. Table 5 shows results using WSNET-
FF with backbone weights frozen during fine-tuning (Part
F) and WSNET with end-to-end fine-tuning (Part G). End-
to-end fine-tuning helped the global-local model achieve the
best results. Overall, our best combination (Part G) leads
to IoU=0.713 and Dice=0.847. Table 9 lists the perfor-
mance of individual models on different wound types in our
dataset. We observed that the best model performance is
uniform across all wound types.

5.3. Ablation Results on WOUNDSEG

We experiment with different variations: pretraining
(ImageNet/WDAP), data augmentation (yes/no), architec-
ture (local/ global/ global-local). Table 5 (Part B) reports
the results of four segmentation models by using special-
ized wound image pretrained weights corresponding to each
backbone. Compared to ImageNet pretraining (Part A),
WDAP (Part B) shows an improvement in both IoU and
Dice scores for all the models. We achieve the highest Dice
score of 0.8 using LinkNet with DenseNet121 in Part B.
Further, Part C reports the data augmentation results along
with WDAP and global-only models. We observe that data
augmentation improves each metric performance for each
segmentation model by approximately 2-3% (Part B vs. Part
C). We also wanted to check the effectiveness of local-only
models. We observe from Part D that the local model only
results are worse compared to even Part A, implying that
it is insufficient to capture local signals only. Lastly, does
the pretraining type matter if we use global-local models?
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Models→ U-Net LinkNet PSPNet FPN
Backbone IoU Dice IoU Dice IoU Dice IoU Dice
VGG16 0.574 0.726 0.568 0.722 0.522 0.684 0.541 0.701
VGG19 0.581 0.733 0.597 0.746 0.544 0.702 0.575 0.729
ResNet18 0.588 0.738 0.603 0.751 0.559 0.714 0.601 0.750
ResNet34 0.596 0.744 0.569 0.724 0.542 0.702 0.577 0.731
ResNext50 0.599 0.746 0.588 0.739 0.567 0.722 0.610 0.755
DN121 0.617 0.761 0.617 0.762 0.585 0.736 0.623 0.766
DN169 0.613 0.758 0.624 0.768 0.596 0.745 0.614 0.760
SERN18 0.581 0.732 0.596 0.745 0.546 0.704 0.568 0.722
SERN34 0.600 0.747 0.571 0.724 0.569 0.725 0.614 0.760
ENB0 0.610 0.755 0.588 0.738 0.551 0.708 0.607 0.754
ENB1 0.621 0.764 0.594 0.743 0.561 0.716 0.605 0.750
ENB2 0.606 0.753 0.597 0.747 0.588 0.739 0.588 0.739
ENB3 0.597 0.744 0.585 0.736 0.541 0.700 0.605 0.752
ENB4 0.602 0.750 0.602 0.750 0.567 0.721 0.596 0.745
MN 0.593 0.742 0.571 0.724 0.561 0.717 0.594 0.743
MNV2 0.506 0.667 0.488 0.651 0.391 0.556 0.525 0.687
IV2 0.606 0.753 0.533 0.692 0.554 0.711 0.613 0.759

Table 4. Results of performance of four image segmentation models on WOUNDSEG dataset using 17 different Imagenet pretrained back-
bone models. EN=EfficientNet, DN=DenseNet, MN=MobileNet, SERN=SEResNet, IV2=InceptionV2

U-Net LinkNet PSPNet FPN
IoU Dice IoU Dice IoU Dice IoU Dice

(A) Models with ImageNet
pretraining

DenseNet121 0.617 0.761 0.617 0.762 0.585 0.736 0.623 0.766
DenseNet169 0.613 0.758 0.624 0.768 0.596 0.745 0.614 0.760
MobileNet 0.593 0.742 0.571 0.724 0.561 0.717 0.594 0.743

(B) Models with wound domain
adaptive pretraining (WDAP)

DenseNet121 0.648 0.783 0.657 0.800 0.625 0.765 0.652 0.793
DenseNet169 0.647 0.781 0.651 0.788 0.636 0.773 0.637 0.773
MobileNet 0.615 0.760 0.611 0.755 0.563 0.718 0.616 0.758

(C) Models with WDAP and
data augmentation

DenseNet121 0.680 0.818 0.687 0.820 0.653 0.797 0.680 0.817
DenseNet169 0.672 0.810 0.675 0.812 0.656 0.801 0.664 0.807
MobileNet 0.636 0.778 0.647 0.780 0.598 0.744 0.634 0.775

(D) Local (patch-based) models
with WDAP

DenseNet121 0.527 0.689 0.537 0.698 0.520 0.682 0.532 0.694
DenseNet169 0.534 0.696 0.530 0.691 0.519 0.681 0.533 0.696
MobileNet 0.512 0.673 0.514 0.677 0.493 0.660 0.510 0.670

(E) Global-local models with
ImageNet pretraining and data
augmentation

DenseNet121 0.648 0.784 0.649 0.786 0.621 0.763 0.651 0.792
DenseNet169 0.649 0.787 0.650 0.790 0.624 0.767 0.648 0.785
MobileNet 0.620 0.761 0.621 0.763 0.565 0.722 0.618 0.760

(F) WSNET-FF: Global-local
models with WDAP and data
augmentation

DenseNet121 0.685 0.823 0.706 0.840 0.663 0.805 0.700 0.834
DenseNet169 0.684 0.821 0.694 0.830 0.675 0.815 0.680 0.818
MobileNet 0.650 0.790 0.651 0.792 0.590 0.740 0.651 0.792

(G) WSNET: Global-local
models with WDAP, data
augmentation, end-to-end
fine-tuning

DenseNet121 0.695 0.831 0.713 0.847 0.683 0.820 0.707 0.840
DenseNet169 0.701 0.834 0.707 0.841 0.686 0.823 0.697 0.832
MobileNet 0.661 0.800 0.662 0.800 0.601 0.748 0.661 0.798

Table 5. Performance results of image segmentation models on WOUNDSEG dataset.

Hence, we trained global-local models with ImageNet pre-
training (Part E) and found them significantly worse than
WDAP-trained ones (Parts F and G). Dice score improve-
ments for WSNET (Parts F and G) indicate that the WDAP

and data augmentation has helped the model improve due
to training on a more extensive set of in-domain examples.
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Methods AZH Medetec
WSeg [21] NA 0.919
VGG16 [35] 0.810 0.790
SegNet [35] 0.851 0.730
M-RCNN [35] 0.902 0.932
MNV2 [35] 0.903 0.938
MNV2+CCL [35] 0.905 0.940

Table 6. Dice-score comparison on the AZH and Medetec Datasets
for baseline methods. WSeg results for AZH are not available.

5.4. Model size, Latency and Accuracy Tradeoff

For our best combination (global-local with WDAP, data
augmentation, and end-to-end finetuning), we analyze the
model size, latency (sec for a batch of 50 images), and Dice
score tradeoff in Fig. 3 across three different backbones and
four different architectures. Out of U-Net, LinkNet, PSP-
Net, and FPN, typically, PSPNet models have fewer param-
eters. Also, as expected, the Dice score is higher for larger-
sized models. We obtain the best Dice score of 0.847 using
a 16.7M parameter DenseNet121-LinkNet model with a la-
tency of 0.146s. However, for resource-constrained deploy-
ments, we recommend the DenseNet169-PSPNet model,
which has a small size of 6.3M parameters, 0.112s latency,
and a decent Dice score of 0.823.

Figure 3. Comparison of model size (million), Dice score and la-
tency (sec for a batch of 50 images) on WOUNDSEG for global-
local models with data augmentation, specialized pretraining and
end-to-end fine-tuning.

5.5. WOUNDSEG Case Studies

We show a few difficult examples in Fig. 4. The top illus-
tration shows multiple wounds, the middle example shows
two (one tiny and another bigger), while the bottom exam-
ple shows an image with low lighting conditions. We ob-
serve that in all cases, at least one of our models obtains a
finer boundary for the wound image than the ground truth
mask. In general, FPN performs better than the other mod-
els in these cases.

Models Methods WDAP WDAP+GloLocal
AZH Medetec AZH Medetec

U-Net
DN121 0.920 0.948 0.923 0.951
DN169 0.923 0.956 0.924 0.956
MN 0.915 0.946 0.920 0.948

LinkNet
DN121 0.927 0.932 0.927 0.940
DN169 0.913 0.945 0.921 0.948
MN 0.913 0.933 0.915 0.938

PSPNet
DN121 0.908 0.930 0.912 0.932
DN169 0.910 0.932 0.911 0.935
MN 0.890 0.920 0.897 0.925

FPN
DN121 0.910 0.942 0.916 0.947
DN169 0.912 0.953 0.920 0.954
MN 0.911 0.941 0.918 0.944

Table 7. Dice-score comparison on the AZH and Medetec
Datasets for our proposed WSTECH methods. DN=DenseNet,
MN=MobileNet.

Method Area MAE Volume MAE
HealTech [25] 1.14 1.28
WSNET with U-Net 0.66 0.78
WSNET with LinkNet 0.65 0.78
WSNET with PSPNet 0.71 0.82
WSNET with FPN 0.66 0.78

Table 8. Wound Area and Volume Prediction Results. Lower MAE
is better. Wound area and volume are in cm2 and cm3. MAE is
computed on quantities after taking log.

5.6. Results on Existing Benchmark Datasets

We also experiment with two existing benchmark
datasets: AZH [35] and Medetec [33], as described in Sec-
tion 2.

Table 6 and 7 show Dice score comparison results for
previously proposed methods and our WSNET methods re-
spectively. WSNET outperforms existing baselines by a
significant margin across both the benchmarks. The im-
provements are statistically significant at 95% confidence.
For our WSNET methodology, we show results with just
WDAP and WDAP combined with global-local architec-
ture. The results show that WDAP+global local is better
than just WDAP, and both outperform existing baselines by
a significant margin across both the benchmarks. Using
patches in the local network helped detect wound borders
with better precision.

5.7. Wound Area and Volume Prediction Results

We analyze the effect of pretrained wound image seg-
mentation models on downstream tasks such as area and
volume prediction by fine-tuning task-specific labeled data.
The wound area data has 122417 images, while the wound
volume dataset has 99719 images. We divide the data into
70:10:20 for train, validation, and test splits. We use Mean

3240



Wound Image Ground Truth U-Net LinkNet PSPNet FPN

Figure 4. WSNET Predictions using the four global-local architectures (i) U-Net, (ii) LinkNet, (iii) PSPNet and (iv) FPN.

Models Methods Wound Type
Diabetic Pressure Surgical Venous Trauma Arterial Cellulitis Other

U-Net
DN121 0.744 0.792 0.786 0.761 0.749 0.747 0.745 0.825
DN169 0.742 0.789 0.771 0.761 0.757 0.752 0.752 0.826
MN 0.719 0.749 0.745 0.755 0.737 0.768 0.736 0.786

LinkNet
DN121 0.733 0.774 0.767 0.748 0.748 0.745 0.761 0.815
DN169 0.763 0.803 0.800 0.774 0.769 0.760 0.794 0.811
MN 0.719 0.744 0.740 0.738 0.720 0.729 0.734 0.772

PSPNet
DN121 0.630 0.662 0.654 0.674 0.640 0.643 0.662 0.642
DN169 0.616 0.640 0.643 0.660 0.633 0.621 0.627 0.653
MN 0.580 0.591 0.587 0.584 0.594 0.590 0.572 0.613

FPN
DN121 0.747 0.779 0.768 0.764 0.760 0.742 0.783 0.806
DN169 0.747 0.794 0.796 0.770 0.769 0.756 0.787 0.839
MN 0.722 0.771 0.760 0.770 0.753 0.751 0.782 0.803

Table 9. Dice-score comparison on the WoundSeg Dataset for our proposed WSNET methods. DN=DenseNet, MN=MobileNet.

Absolute Error (MAE) as the metric, with the Adam opti-
mizer and a learning rate of 0.001. Since the variation in
area and volume values is large, we applied the log scaling
to the target values. The average area is 7.74, and the max
area of the wound is 14.25 on a log scale. Similarly, the av-
erage volume is 8.95, and the max wound volume is 16.86
on a log scale.

Oota et al. [25] directly used wound images for wound
area and volume prediction. We used our models pre-
trained on wound segmentation for fine-tuning to predict the
wound area and volume. From Table 8, we observe that our
LinkNet models lead to the lower area and volume MAE
compared to the HealTech baseline [25]. The results indi-
cate that the segmentation training helped the model focus
on core wound regions, unlike earlier models. We believe
that the pretraining on a larger dataset and fine-tuning the
wound segmentation model helped develop the depth sense
needed for volume prediction.

6. Conclusion

We contribute a diverse dataset, WOUNDSEG, of 2686
images across eight wound types for the wound image seg-
mentation task. We experimented extensively with four
CNN model architectures and 17 backbones. We propose
a novel WSNET framework that consists of wound-domain
adaptive pretraining, data augmentation, global-local archi-
tecture, and end-to-end fine-tuning. The proposed methods
outperform baselines on existing benchmark datasets, show
beneficial results on the WOUNDSEG dataset, and even es-
tablish a new state-of-the-art on wound area and volume
prediction tasks. We comprehensively studied the current
best image segmentation models and improved the segmen-
tation performance by introducing a novel method. We also
contribute a better and larger wound image dataset, which
can help the research community to advance wound image
analysis further.
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