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Abstract

A major problem of deep neural networks for image
classification is their vulnerability to domain changes at
test-time. Recent methods have proposed to address this
problem with test-time training (TTT), where a two-branch
model is trained to learn a main classification task and also
a self-supervised task used to perform test-time adaptation.
However, these techniques require defining a proxy task spe-
cific to the target application. To tackle this limitation, we
propose TTTFlow: a Y-shaped architecture using an unsu-
pervised head based on Normalizing Flows to learn the nor-
mal distribution of latent features and detect domain shifts
in test examples. At inference, keeping the unsupervised
head fixed, we adapt the model to domain-shifted examples
by maximizing the log likelihood of the Normalizing Flow.
Our results show that our method can significantly improve
the accuracy with respect to previous works.

1. Introduction

Deep learning has become increasingly effective for
computer vision tasks such as segmentation or classifica-
tion. Nevertheless, these achievements are often made un-
der the assumption that training and test data share the same
distribution, which is not always the case in practice. Fur-
thermore, a small distribution shift between the training and
test data can lead to an important drop in model perfor-
mance [20]. Two types of methods were proposed to in-
crease the robustness of the model to distributional change:
Domain Generalization and Domain Adaptation. Domain
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Generalization (DG) [24, 19, 26] involves training on a
large set of source data from several domains to help the
model be more robust and generalize to unseen domains.
However, DG requires a large amount of data from differ-
ent domains, which can be difficult to obtain, and there is no
guarantee that the new model can generalize well to an un-
seen domain at test-time. On the other hand, Domain Adap-
tation (DA) [3, 14, 27] aims to avoid performance degrada-
tion of a model trained on a source domain when used on
a test set from a different domain. The distribution shift in
this context is reduced without prior training on different
domains, but in some cases requires access to the labeled
source samples.

Test-Time Adaptation (TTA) [13, 25, 22, 2] is an emerg-
ing field that studies approaches to quickly adapt a pre-
trained deep network to domain shifts during test-time. Un-
like DG, the source training typically involves a single do-
main. Moreover, in contrast to DA, it is possible to fine-tune
the network at test-time. This task remains challenging as it
is expected that the source data is not available during test-
time, hence directly measuring the domain discrepancy be-
comes complicated. However, finding a solution for TTA is
an attractive endeavor, as it promises a more widely useful
deployment of deep networks in real-world contexts. Re-
cent TTA techniques have explored adapting batch statis-
tics in the feature extractor of deep networks [25]. While
this strategy provides some robustness, it is often subopti-
mal, as a sufficiently diverse batch of samples is needed in
order to capture enough information to adapt the weights of
the network. Another strategy, inspired by self-supervised
learning, is to include additional tasks [22, 15]. Although
this strategy has been used successfully for TTA, it is sensi-
tive to the chosen proxy task and requires pseudo-labels.
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In this paper, we present TTTFlow, a novel approach for
unsupervised Test-Time Adaptation, which makes use of a
Normalizing Flow as a domain shift detector. Our method
does not require access to the source data during inference,
can measure domain discrepancy in a tractable way, and
does not require special proxy tasks to be solved along with
the source training. Moreover, TTTFlow could be built on
top of any off-the-shelf network without additional techni-
cal adjustments.

Specifically, the contributions of this work can be sum-
marized as follows:

• We introduce an unsupervised method under the test-
time training paradigm of TTA. Our approach is de-
signed to directly measure the domain shift between
target and source images, without the need of an extra
task.

• To the best of our knowledge, this is the first work that
employs Normalizing Flows to measure domain shift
in Test-Time Adaptation. While they have been re-
cently investigated for domain alignment, their appli-
cation in tasks related to Domain Adaptation remains
unexplored.

The remainder of this paper is organized as follows. Sec-
tion 2 presents prior work on Test-Time Adaptation. Sec-
tion 3 then introduces the proposed TTTFlow method. Sec-
tion 4 describes the experimental setup used to evaluate our
method, and Section 5 reports the results.

2. Related Work

Normalizing Flows In the field of generative modeling,
Normalizing Flows have gained important traction due to
their capabilities of learning tractable distributions in the
latent space [11, 18]. Their goal is to transform a generally
unknown data distribution into a known one, typically the
normal distribution, from which we can easily sample new
data points and measure their exact likelihood. The transfor-
mation of the flow model is guaranteed to be bidirectional
by using an invertible and differentiable architecture. Al-
though Normalizing Flows have not been formally used in
the field of Domain Adaptation, recent works suggest that
they can be an effective tool for Domain Alignment [6, 23],
where the domain of two different datasets must be fitted
with indistinguishable distributions. In this work, we take a
step further by proposing Normalizing Flows as an alterna-
tive to learn and codify a domain, so that it can later be used
at test-time.

Test-Time Adaptation These methods allow using off-the-
shelf models without any additional training. In general
terms, test-time adaptation focuses on adapting models that
were not trained with a special configuration prior to being

used at inference. One of the first approaches of this cate-
gory, called TENT [25], requires to be given the model and
target data. It then updates the model layers containing nor-
malization statistics by minimizing the Shannon entropy of
predictions. The authors of [16] improve TENT by using
a log-likelihood ratio instead of entropy, and by estimating
the statistics of the target batch. In SHOT [14], the entire
feature extractor is fine-tuned using a mutual information
loss along with pseudo-labels to correct inaccurate predic-
tions from the pretrained model. LAME [2] is an adaptation
method that do not alter the network layers, but just focuses
on a post-hoc adaptation of the softmax predictions through
Laplacian regularization.

Batch Norm Adaptation To increase robustness of a
model, Batch Normalization (BN) can be used for a faster
convergence and increased stability during training. Nev-
ertheless, a shift in the distribution causes the statistics to
change, which is why some papers suggest adapting nor-
malization statistics to improve performance. For instance,
Prediction Time Batch Normalization [17] proposes to use
the mean and variance from the batch of test samples as
statistics in the batch norm layer. However, this estimation
can be inaccurate due to a small number of data samples.
To avoid this, the authors of [21] compute a new mean and
variance, which is a mix of the BN statistics computed at
training and the new estimation at test time. The same ap-
proach is used by SITA [9] to estimate statistics, with the
difference that it can be used on a single data example. To
achieve this, SITA generates a pseudo-batch by randomly
augmenting this example and then computes the statistics
on this pseudo-batch.

Test-Time Training Methods based on Test-Time Train-
ing (TTT) [22] update the model at inference, but use a Y-
shaped architecture with a main task and a self-supervised
task which are learned at training time. The model is trained
by jointly minimizing the losses in both branches. After
the model has been trained, the parameters of the main
task branch are frozen. At test-time, the parameters of
the shared encoder are updated so to minimize the self-
supervised loss. Following this approach, [22] uses rotation
prediction [5] as self-supervised task, where images are ran-
domly rotated by multiples of 90◦ (0◦, 90◦, 180◦, 270◦) and
the model should recover this rotation. A major problem
of this approach is the choice of the self-supervised loss,
which should be related to both source and target datasets.
Inspired by TTT, TTT++ [15] adds a loss which promotes
online feature alignment by comparing the statistics of the
source data with those of the current batch. For the self-
supervised task, the rotation prediction loss is replaced by a
contrastive loss which encourages the encoded features for
two different augmentations of the same image to be simi-
lar, and the ones of different images to be dissimilar. Lastly,
the authors of MT3 [1] use meta training at inference on the
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second task to improve the performance of TTT.

3. Method
We start by defining the problem of Test-Time Training

and then present our TTTFlow method for this problem.

3.1. Problem definition

In the context of classification, we denote the domain as
the joint distribution PXY between the input space X and
the label space Y , and define the marginal distribution of
the inputs as PX . At training time, a deep network learns
from the data out of a source domain (Xs,Ys), whilst at test-
time, the network must be adapted to a new target domain
(Xt,Yt), such that PXs

̸= PXt
. Both domains share the

same label space (Ys = Yt), but the labels for the target
inputs are unknown. The goal of Test-Time Training is to
learn a function gf : Xt → Yt on the basis of an already
known function f : Xs → Ys.

3.2. Proposed framework

Our framework exploits a multi-head architecture where
a Normalizing Flow is used to encode domain-specific in-
formation from a pretrained feature extractor. An important
benefit of this configuration is that it can be applied on any
pretrained network without the need of a special training
on the source data. In what follows, we describe the differ-
ent components of TTTFlow and the mechanisms that allow
test-time training with domain shift. The overall scheme of
the model can be seen in Fig. 1.

3.3. Source Training

Although our TTFlow method can be used on top of any
architecture, in this work we consider a CNN as the clas-
sification backbone. This CNN can be divided in a feature
extractor fθ (parameterized by θ) followed by a classifier
head hφ (parameterized by φ). Let x = fθ(I) ∈ Rc×h×w

be the 2D feature map from an input image I, and ŷ =
hφ(x) ∈ [0, 1]K be the softmax predictions from the clas-
sifier, where K is the number of classes. The source train-
ing of the network is performed in a supervised way using
the cross-entropy loss. However, and as shown in further
sections, using a more robust source training (e.g., adding
contrastive learning) can help to achieve better adaptation
results.

3.4. Normalizing flows as a domain shift detector

Once the CNN is trained, we need a way to encode the
source domain distribution, such that domain shifts can be
detected at test time. We propose using Normalizing Flows
[11, 4, 10] for this purpose, because of their ability to model
complex, high-dimensional distributions effectively. Nor-
malizing Flows are generative models capable of transform-
ing data from a complex and often unknown distribution

into a latent space with a well-defined and tractable dis-
tribution. In this study, the feature map x follows an un-
known distribution P (x), which is related to PX . A func-
tion gϕ transforms the feature map into its latent repre-
sentation z = gϕ(x) ∈ Rc×h×w with z ∼ Pϕ(z), such
that Pϕ(z) is a tractable distribution (e.g. standard multi-
variate Gaussian distribution) with a known probability den-
sity function. The flow-based function gϕ should meet two
requirements: (1) being invertible, i.e. x = g−1

ϕ (z), and (2)
being differentiable w.r.t. the input in both directions. Fur-
thermore, a higher representation power can be achieved if
a composition of invertible and differentiable functions is
used: gϕ = g1 ◦ g2 ◦ · · · gM . Knowing that x is transformed
into z ∼ Pϕ, the likelihood of the original variable can then
be computed exactly using the change of variable rule,

logP (x) = logPϕ(z) + log
∣∣∣ det( dz

dx

) ∣∣∣
= logPϕ(z) +

M∑
i=1

log
∣∣∣ det( dgi

dgi−1

) ∣∣∣, (1)

where log |det(dgi/dgi−1)| is the logarithm of the Jacobian
matrix determinant.

Affine coupling layers are a popular choice to build Nor-
malizing Flows [4, 10], so that the resulting Jacobian matrix
is upper triangular and its determinant is easily computed
as the product of its diagonal elements. The model can be
trained by minimizing the negative log-likelihood in Eq. (2):

Luns = − logP (x). (2)

A Normalizing Flow based on RealNVP [4] is placed
on top of the frozen feature extractor fθ to learn the latent
space of z from the source inputs x ∼ Xs in an unsuper-
vised way (i.e., using Eq. (1) directly). We hypothesize that
this model captures the domain information from the source
data, thus can be used to measure domain shift in the target
data.

3.5. Test-time training with flow-based model

At test-time, the pretrained network must adapt its pa-
rameters to unlabeled inputs from an also unknown target
domain Xt. We achieve this by only focusing on the extrac-
tor parameters θ, similarly to [22, 15]. The frozen Normal-
izing Flow transforms each new test image feature map xt

into its latent representation zt = gϕ(xt) to compute its log-
likelihood using Eq. (2). Note again that the log-likelihood
is measured with respect to the multivariate Gaussian dis-
tribution, into which the unsupervised head transforms the
features’ distribution. This value provides information of
the domain shift, as a feature map that is closer to the latent
space of the source data should have a higher log-likelihood
than a feature map that is farther away. Hence, negative
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Figure 1. Architecture of TTTFlow. The feature maps from a pretrained network are transformed into an isotropic Gaussian distribution
through a Normalizing Flow gϕ. The log-likelihood of an input x is measured based on the likelihood in the latent space z = gϕ(x). At
test-time, the frozen unsupervised head is then used as a domain shift detector to fine-tune the extractor. Target images show examples of
pixelate, zoom blur and Gaussian noise corruptions (from left to right) from the CIFAR-10-C dataset.

log-likelihood can be once again used as the loss function
to adapt the extractor for the target input.

4. Experimental setup
We evaluate our TTTFlow method on two popular test-

time adaptation benchmarks based on the CIFAR-10 dataset
[12], CIFAR-10-C [8] and CIFAR-10.1 [20], and compare
its performance against state-of-art approaches for this task.
As explained in Section 3.2, the first step is to train a CNN
on source data from CIFAR-10, a natural image classifica-
tion dataset consisting of 10,000 images for training and
2,000 images for testing, with 10 different classes.

Once the CNN is trained, the training of the Normal-
izing Flow (NF) is performed as explained in Section 3.4.
We adopted RealNVP [4] as it has become a standard tool
for flow modeling. Our compact version is made of three
coupling layers with two resblocks in each of them. The
checkerboard coupling was found to be more effective than
its channelwise counterpart. Similar to [15], the flow model
is placed on top of the second layer of the ResNet50’s fea-
ture extractor based on the common assumption that domain
information is mostly located at the early stages of feature
extraction while class information is encoded at later stages
[28]. More implementation details can be found in the sup-
plementary material, as well as the corresponding ablation
study on the flow architecture.

We use CIFAR-10 images without any label information
for this step, as the NF model is trained in an unsupervised
manner. The training was performed for 100 epochs using
SGD with an initial learning rate of 0.1 and a cosine anneal-
ing scheduler.

Following previous work, ResNet50 [7] is chosen as the
main architecture. The model is trained for 350 epochs with
SGD, using a batch size of 128 images and an initial learn-
ing rate of 0.1 which is reduced by a factor of 10 at epochs
150 and 250.

Method Accuracy (%)

TTT [22]
Separate 61.18
JT as in [22] 57.96

TTTFlow
Separate 62.75
JT (β = 0.01) 58.16
JT (β = 0.001) 58.44

Table 1. Comparison of joint versus separate training for TTT and
TTTFlow on CIFAR-10-C data with Level 5 Gaussian Noise Cor-
ruption.

After the two-step source training, the NF model is used
to detect domain shift through negative log-likelihood and
update the part of the network from where the features are
collected (i.e., up until second layer). For all the experi-
ments at test-time, we keep the batch size of 128 images
and use a learning rate of 0.001, along with SGD as the
main optimizer. At each new batch, we initialize our fea-
ture extractor with the weights of the learning part. This is
to avoid computing on an error made by the optimization,
and is based on the assumption that each batch can have
different corruptions as made by [22] in their offline mode.

We use the pretrained CNN as baseline, and compare
our results against TENT [25], TTT [22], and TTT++
[15]. For a fair comparison, we reproduced these previ-
ous methods under the same experimental conditions as
in TTTFlow, i.e. using the same hyperparameters such
as batch size, number of adaptation epochs, and so on.
Our codebase can be found in https://github.com/
GustavoVargasHakim/TTTFlow.git.

5. Results and discussion
We first perform ablation and comparison experiments

on the CIFAR-10-C dataset containing different types of
image corruption, and then extend our evaluation to natu-
ral domain shift using the CIFAR-10.1 dataset.
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5.1. Object recognition on corrupted images

Our first experiments evaluate TTTFlow on the CIFAR-
10-C dataset which comprises 15 different algorithmic cor-
ruptions (e.g. Gaussian noise, zoom blurring, etc.) with
10,000 images each (see Fig. 1 for examples). Each cor-
ruption has five severity levels, with Level 1 corresponding
to mild corruptions and Level 5 to strongest ones. Unless
specified otherwise, we evaluate TTTFlow on Level 5, as it
represents the most challenging adaptation scenario.
Joint vs separate training As a first step, we compare our
method, which learns the NF on top of a frozen classifier
(separate training), with the Joint Training (JT) approach
training the classification task and unsupervised task at the
same time by minimizing

LJT = Lcls + βLuns, (3)

where hyperparameter β controls the trade-off between
the two losses. This JT approach follows previous work on
test-time training [22, 15]. An important problem with this
approach is the need to retrain the main classification net-
work when learning occurs along with the secondary task.
To avoid this issue and to exploit the weights of any pre-
trained backbone, we freeze all the parameters of the CNN,
except the batch norm statistics of the feature extractor, and
proceed to train the NF independently. This enables using
any backbone without retraining.

Table 1 gives the accuracy of our method using separate
training or JT with β=0.01 or β=0.001. As can be seen,
placing the NF model on a pretrained encoder yields better
performance than performing joint training. We conjecture
that the Normalizing Flow is particularly sensitive to the
joint training, as it is forced to learn a Gaussian distribution
out of the continually changing feature maps distribution, as
they are being modified for classification. Moreover, the in-
formation needed to encode the domain of examples seems
different from the information needed to classify them. The
same analysis is performed for TTT [22], which has a rota-
tion prediction semi-supervised loss in addition to the clas-
sification loss. As reported in Table 1, we find once again
that training the TTT model in two separate steps is better
than the JT approach in [22]. For remaining experiments,
we therefore use the separate training strategy for TTTFlow
and TTT.
Number of adaptation iterations We compare the accu-
racy of TTTFlow for different iterations of adaptation at
test-time. As we can see in Fig. 2 and 3, our model’s accu-
racy typically increases monotonically with a greater num-
ber of iterations. Furthermore, in most cases, a maximum
accuracy is reached after about 20 iterations. Beyond this
point, performing more iterations increases runtime with-
out any significant gain in performance. For some corrup-
tions like Snow, which severely degrade the image, we find
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Figure 2. Evolution of accuracy over iterations of the average of
each Level
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Figure 3. Evolution of accuracy for every corruption on Level 5.

that performance actually drops when doing more adapta-
tion iterations. When testing other approaches, we do not
observe the same stability of performance with respect to
the number of iterations. To have a fair comparison, for all
methods, we thus compute the accuracy for 1, 3, 10, 20 and
50 iterations and report the maximum accuracy.

Comparison to methods using a classifier trained with
only Lcls As shown in Table 2, TTTFlow achieves an aver-
age accuracy improvement of 14.54% with respect to the
pretrained ResNet50 Baseline. Significant improvements
in accuracy are obtained for all corruption types except
JPEG compression and Elastic transform. Moreover, TENT
yielded a very low accuracy for all corruption types, due to
collapsing predictions. Compared to TTT, using the same
classifier trained with only Lcls, our method obtains an im-
provement in average accuracy of 0.84%. These results sup-
port our hypothesis that the NF can be used to measure do-
main shifts and improve the extractor accordingly in an un-
supervised manner. As said in the article and in addition
with these results, it confirms our hypothesis that the NF
can be used to measure domain shifts and improve the ex-
tractor accordingly in an unsupervised manner.

Comparison with TTT++ on baseline trained with Lcls
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and Lssl As discussed earlier, the unsupervised head of TT-
TFlow can be placed on top of any pretrained feature extrac-
tor. In TTT++ [15], the pre-training of the CNN is based on
a similar Y-shaped architecture, where the secondary task
is a self-supervised classification task using the contrastive
loss. The joint learning process is then performed using
Eq. 4 as the final loss function:

L = Lcls + λLssl (4)

where λ is a hyperparameter. Using contrastive learning
as an auxiliary task yields to a more robust network, and
in consequence, a stronger feature extractor. For this rea-
son, we propose to train the NF model using the TTT++
pre-training. As seen in Table 2, our method outperforms
TTT++ in all but two corruption types (Impulse noise and
Fog) and gives an average accuracy 2.10% higher than this
state-of-art approach.

Visualization of adaptation To visualize the result of our
adaptation method, we show in Figure 4 the t-SNE plots
of features at the end of extractor, before and after adapta-
tion. As can be seen, TTTFlow allows each sample to be
separated for better interpretation and prediction. However,
a collapse of feature vectors to the same point in space is
visible in the top right of Figure 4 (b) and (d). Since our
NF-based method pushes representations toward the mode
of the distribution, this could be a side effect of making too
many iterations for adaptation. Nevertheless, in our experi-
ments, accuracy generally remains stable and may even in-
crease after performing many adaptation iterations.

5.2. Object recognition on natural domain shift

We also evaluate TTTFlow when natural domain shift
is present. For this purpose, the CIFAR-10.1 dataset [20]
is used as the second benchmark. CIFAR-10.1 consists of
2,000 images sampled from the original CIFAR-10 set with
the objective of maximizing domain shift with respect to the
source data. TTTFlow is once again compared with previ-
ous methods, and the standard pretrained CNN is used as
baseline. Results are also compared with previous methods.

As reported in Table 3, TTT++ achieves a better perfor-
mance than TTTFlow in this case, with a 1.75% improve-
ment in accuracy. However, when looking at the accuracy
for the different adaptation iteration, we find that the bet-
ter performance of TTT++ only occurs for the first few it-
erations. Compared to our method, which remains stable,
TTT++’s accuracy degrades beyond 3 iterations. The su-
perior performance of TTT++ for this CIFAR10.1 could be
explained by the nature of this dataset, in which the distri-
bution shift is smaller compared to the corruptions found in
CIFAR-10-C. The distribution shift in this dataset, which is
more related to semantic content, may not be fully captured
by our NF model applied on the second ResNet50 layer. As

shown in the t-SNE plots of Figure 5, the features obtained
by our model at the end of the extractor are very similar for
CIFAR-10 and CIFAR-10.1, which supports that the adap-
tation over the iterations (Table 4) for TTTFlow is stable.

6. Conclusion
This work follows the line of former research on test-

time training, which develop techniques to adapt models at
test-time when distribution shifts are prevalent. To tackle
some limitations of previous works, we proposed using
Normalizing Flows as domain shift detector that can be
plugged into the feature extractor of any pretrained archi-
tecture, and that can be trained in an unsupervised manner
under maximum likelihood.

Our method, TTTFlow, provided of substantial accuracy
gains to the source model, also in comparison with the
state-of-the-art methods in test-time adaptation. Besides
the practical advantage of being compatible without any
model and not requiring a special joint training, it has been
shown that TTTFlow can also enhance the performance of
strongly trained source models, such as the one of a similar
work, TTT++.

Future work includes tackling the perceived limitations
of TTTFlow, which include: (a) sensitivity to the Normaliz-
ing Flow architecture, where a lower representation power
could yield underfitting to the domain information, and a
higher one could lead to a class collapse. (b) Depending
on the type of domain shift, different layers in the encoder
can be more useful to capture domain specific information,
for which further studies on the effects of the chosen shared
stage of the extractor are encouraged. (c) So far, TTTFlow
depends on the use of batches, whilst adapting for a single
sample is highly desirable. Devising a criterion to select
which samples the model should adapt to would have an
important impact both in performance and computational
costs.
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Encoder trained with Lcls only Encoder trained
with Lcls and Lssl

Baseline TENT [25] TTT [22] TTTFlow TTT++ [15] TTTFlow

Gaussian Noise 53.25 46.65 ±0.12 61.29 ±0.07 61.73 ±0.35 75.87 ±5.05 79.58 ±0.09

Shot Noise 57.71 46.31 ±0.25 64.37 ±0.10 65.08 ±0.14 77.18 ±1.36 80.20 ±0.03

Impulse Noise 43.79 37.95 ±0.15 58.97 ±0.20 58.48 ±0.12 70.47 ±2.18 67.30 ±0.08

Defocus Blur 51.80 59.77 ±0.29 83.80 ±0.11 84.75 ±0.17 86.02 ±1.35 90.96 ±0.06

Glass Blur 54.69 41.24 ±0.18 61.23 ±0.29 61.93 ±0.12 69.98 ±1.62 71.54 ±0.09

Motion Blur 64.97 56.40 ±0.33 76.86 ±0.13 82.31 ±0.10 85.93 ±0.24 85.95 ±0.07

Zoom Blur 61.62 59.23 ±0.35 84.67 ±0.08 85.82 ±0.17 88.88 ±0.95 91.90 ±0.05

Snow 74.12 55.93 ±0.21 75.63 ±0.1 77.84 ±0.19 82.24 ±1.69 84.28 ±0.12

Frost 67.98 46.44 ±0.20 77.17 ±0.17 77.05 ±0.10 82.74 ±1.63 85.88 ±0.05

Fog 63.67 52.70 ±0.20 81.15 ±0.12 81.02 ±0.25 84.16 ±0.28 74.02 ±0.05

Brightness 87.16 66.34 ±0.18 88.84 ±0.09 89.45 ±0.17 89.07 ±1.20 92.38 ±0.01

Contrast 22.89 49.03 ±0.45 84.79 ±0.12 84.20 ±0.18 86.60 ±1.39 92.20 ±0.10

Elastic Transform 76.96 50.27 ±0.36 72.45 ±0.09 72.20 ±0.24 78.46 ±1.83 80.47 ±0.08

Pixelate 48.22 52.52 ±0.25 74.71 ±0.09 76.50 ±0.13 82.53 ±2.01 88.84 ±0.05

Jpeg Compression 81.42 56.78 ±0.30 69.75 ±0.24 69.95 ±0.11 81.76 ±1.58 87.95 ±0.03

Average 60.68 51.84 74.38 75.22 81.46 83.56
Table 2. Accuracy (%) on CIFAR-10-C dataset with Level 5 corruption for TTTFlow compared to ResNet50, TENT, TTT, and TTT++ with
different encoders . Mean and standard deviation are reported over 5 runs
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Figure 4. t-SNE plots on defocus blur for the features at the output of the extractor from TTTFlow. (a) is the prediction of the model
without adaptation. (b) is the prediction of the model after 50 iterations. (c) is the ground truth of the model without adaptation. (d) is the
ground truth of the model after 50 iterations.
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Figure 5. t-SNE plots for the features at the output of the extractor from TTTFlow. Comparison between CIFAR-10 and CIFAR-10.1. (a)
is the ground truth of the model without adaptation for CIFAR-10. (b) is the ground truth of the model without adaptation for CIFAR-10.1.

Method Accuracy (%)

Baseline 84.70
TENT [25] 58.98 ±0.12

TTT [22] 84.49 ±0.15

TTTFlow (Lcls) 85.11 ±0.30

TTT++ [15] 88.24 ±0.17
TTTFlow (Lcls + Lssl) 86.49 ±0.02

Table 3. Accuracy of compared methods on the CIFAR-10.1
dataset containing natural domain shift.

Iterations
Accuracy (%)

TTT++ [15] TTTFlow (Lcls + Lssl)

1 88.19 ±0.09 86.49 ±0.02

3 88.24 ±0.17 86.41 ±0.13

10 86.49 ±0.22 86.36 ±0.07

20 85.03 ±0.99 86.29 ±0.08

50 80.43 ±0.34 86.48 ±0.07

Table 4. Comparison of accuracy over iterations for TTT++ [15]
and TTTFlow on th CIFAR-10.1 dataset.
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