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Abstract

In few-shot open-set recognition (FSOSR) for hyper-
spectral images (HSI), one major challenge arises due to
the simultaneous presence of spectrally fine-grained known
classes and outliers. Prior research on generative FSOSR
cannot handle such a situation due to their inability to ap-
proximate the open space prudently. To address this is-
sue, we propose a method, Meta-learning-based Open-set
Recognition via Generative Adversarial Network (MOR-
GAN), that can learn a finer separation between the closed
and the open spaces. MORGAN seeks to generate class-
conditioned adversarial samples for both the closed and
open spaces in the few-shot regime using two GANs by
judiciously tuning noise variance while ensuring discrim-
inability using a novel Anti-Overlap Latent (AOL) regular-
izer. Adversarial samples from low noise variance amplify
known class data density, and we use samples from high
noise variance to augment “known-unknowns”. A first-
order episodic strategy is adapted to ensure stability in the
GAN training. Finally, we introduce a combination of met-
ric losses which push these augmented “known-unknowns”
or outliers to disperse in the open space while condensing
known class distributions. Extensive experiments on four
benchmark HSI datasets indicate that MORGAN achieves
state-of-the-art FSOSR performance consistently. '

1. Introduction

Hyperspectral imaging (HSI) sensors capture the mate-
rial reflectance from the earth’s surface in a densely sam-
pled wide range of wavelengths with a multitude of real-life
applications. In the case of traditional closed-set HSI clas-
sification, a pixel is assigned to one of the available known
classes based on its spectral-spatial properties. However,
HSI datasets inherently put a caveat on their limited training
data availability for certain known classes compared to its
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Figure 1. (a) The original image of the Salinas HSI dataset is
shown. (b) The annotated land cover maps of known classes are
displayed as per the actual ground truth. (c) One more open class
is further annotated with existing known classes, which often get
erroneously recognized as one of the known classes.

wide range of spectral bands referred to as the ‘curse of di-
mensionality’ [4]. Recent advancements in few-shot learn-
ing (FSL) [35, 7, 23] have become a de-facto standard in
many computer vision applications to bridge this gap. FSL
has also been explored successfully for HSI classification
[25] over machine learning, and deep-learning-based ap-
proaches [18, 28]. Nevertheless, a closed-set trained model
is prone to encountering outliers during testing in real-life
scenarios due to i) being deployed in a new geographical
area ii) the presence of unannotated known class pixels due
to the cost involved in HSI labeling. It becomes evident that
a reliable HSI classifier should also be aware of outliers,
apart from its pristine known class distribution knowledge.
As a result, the emergence of FSOSR for HSI datasets has
garnered increasing interest in the geoscience community
[1, 21, 26] (Fig. 1).

Existing OSR [2, 8, 11] and FSOSR [13, 20] methods
tend to apply an empirical threshold on the model predic-
tions to demarcate the outliers from the known classes. Uti-
lizing such a threshold is seemingly discouraging as it is
a purely dataset-dependent approach. Thanks to the re-
cently introduced Outlier Calibration Network (OCN) [26],
a three-layer binary classifier that meta-learns the pseudo-
decision boundary between the known and outliers is found
to improve the FSOSR performance. Interestingly, when we
delved deeper into [26], we found ~ 10% lower open accu-
racy than closed-set for the 5-shot evaluation on the Indian
Pines dataset, i.e, severe misclassification was observed for
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open class ‘Grass-pasture-mowed’ which is spectrally sim-
ilar to known ‘Grass-pasture’ and ‘Grass-trees’ classes.

It is evident that [26] cannot handle the scenario where
fine-grained classes may simultaneously be present in the
closed and open set. We suspect this is due to the limited
generalization ability of [26] since it meta-learns a closed-
set boundary from the available base classes without pay-
ing attention to approximate the broad knowledge of the
open space. This invariably affects the open-set classifica-
tion performance in HSI. For fine separation of the open
and closed spaces, we argue that the presence of represen-
tative open samples of varied similarity measures with the
closed-set data is necessary. This leads to our first research
question how to hallucinate fine-grained open space sam-
ples from the available closed-set data for better learning
the known-unknown class separator in FSOSR?

The generative modality hallucination techniques using
GANSs [27] so far follow a fully supervised approach and
generate in-distribution data. Naturally, they cannot be
trained optimally in the few-shot regime, as estimating the
data density from a few training samples is extremely diffi-
cult. Additionally, they follow a closed-set model and can-
not perform open space data synthesis. This motivates us to
ask the next research question on how fo stably train a GAN
model to simultaneously synthesize closed-set and open-set
samples from few available closed-set training samples?

Finally, we seek to obtain a dense and discriminative fea-
ture space for the closed-set samples while ensuring that the
generated open space samples are scattered over a region.
This will ensure the model to estimate the open space distri-
bution better. In this regard, [26] ensures the discriminative
closed-set representation; however, the open space scatter-
ing is overlooked in [26] as it does not explicitly model the
open space distribution. This brings in the third research di-
rection of ensuring a discriminative closed-set distribution
and diversity of the open space concurrently in FSOSR.

Our contributions: To tackle the aforesaid problems, we
propose a novel dual-conditional-GAN-based generative
model called MORGAN, where two different noise vari-
ance values are used to hallucinate the “pseudo-known”
and “known-unknown” samples. We propose to augment
the closed-set data using “pseudo-known” features gener-
ated from an abating Gaussian distribution with a low noise
variance in MORGAN. In parallel, we train a “known-
unknown” generator from high noise variance and the hallu-
cinated outliers are coupled with annotated known-unknown
queries to maximize the open-world diversities. Then, a
novel AOL regularizer asserts the discriminability between
these pseudo-known features and outliers by restricting the
known-unknown generator to synthesize samples from non-
overlapping regions of the low and high noise variance com-
ponents. To stabilize GAN training from a few samples,
we proposed to integrate episodic first-order optimization-

based meta-learning, Reptile [23], in our MORGAN frame-
work for simultaneous pseudo-closed and open sample gen-
eration. Learning to reject these fine-grained class-specific
outliers tighten the known class prototypes and put con-
straints on known class distribution to span inside a closed
boundary in the metric space. Also, instead of only increas-
ing population density per known class, we hypothesize that
open space risk is further minimized by scattering out fine-
grained boundary outliers to an open space. In order to
execute the same, we introduce Outlier Scattering Loss to
maximize the separation between the fine-grained pseudo-
outliers and the closed-set distributions. Chiefly, our contri-
butions are summarized as follows:

- To amplify data density in FSOSR, we develop a meta-
learning-based method, MORGAN, which simultaneously
generates class-conditioned pseudo known features and out-
liers by simulated controlling low and high noise variance.
Also, a new regularizer, AOL, is proposed to distinguish
pseudo outliers from the generated pseudo-known features.
- We adapt episodic first-order optimization-based meta-
learning to stabilize GAN. Besides, we propose a prototype-
based Outlier Scattering Loss to maximize the separation
between closed-set boundary and open space and incorpo-
rate other metric losses to optimize the feature extractor.

- Proposed MORGAN is a lightweight model and gets opti-
mized faster, which we have shown in qualitative analysis.
We conduct extensive experiments by assigning a few spec-
trally similar classes as open-closed pairs and thereby learn
to reject fine-grained outliers on benchmark HSI datasets 2,
namely, Indian Pines, Pavia, Salinas, and Houston-2013.

2. Related works

Few-shot open-set recognition: The problem of FSOSR
is attempted in PEELER [20] by forming Gaussian clusters
with a limited support set. Even though the closed-set distri-
bution is learned well, outliers are not pushed away from the
prototypes, failing to reject spectrally fine-grained outliers.
SnaTCHer [13] thresholds the difference between original
prototypes and query replaced transformed prototypes to
find outliers. Contemporary FSOSR methods on HSI [1, 21]
apply a threshold to reject outliers. However, it is hard to
find an optimal threshold to reject outliers with a marginal
spectral difference to the known land-cover samples. Again,
reciprocal points classification loss [3] lag compact known
class distribution in FSL, causing lower closed-set accuracy.
Hence, we hypothesize that adversarial feature augmenta-
tion is required to simultaneously boost known class distri-
bution and open-set in the FSOSR context.

Generative open-set recognition: A fine-grained open-
set classifier must know the enriched closed-set distribution
and be well up on the open space. Existing generative OSR

2hltp://WWW.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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Figure 2. The framework of the proposed MORGAN. First, Feature extractor (f,,) produces support features Sy for the known classes
and query features Q for a combination of known and pseudo-unknown classes. Then, an adversarial process optimizes a latent vector
sampled from isotropic Gaussian to produce pseudo-known features s; by Generator (G o). s; is augmented with Sy to enrich the closed-
set distribution, and prototypes P are computed. To enrich open space, we augment query features with sp, obtained from Generator (G#)
by sampling another Gaussian noise. Outlier detector (O¢) classifies a query from augmented query set Qq.4 as an outlier based on its
Euclidean distance Qg;s: from P. For known query prediction, we obtain its class by applying softmax over Qg;s:.

methods disjointly prioritize 1) reconstruction error-based
outlier rejection [5, 33, 29] 2) pseudo-open-set generation
[8, 22], and 3) closed-set distribution enrichment [31, 37].
Majorly generative OSR methods apply GAN [16] or au-
toencoder [24] utilizing large-scale training datasets. Class
conditional auto-encoder (C2AE) [24] suffers from known
sample selection bias from the training set for obtaining low
reconstruction error on the known samples. OpenGAN [16]
augments fake features and penalizes discriminator to learn
to reject outliers. We strongly argue that all the adversar-
ial samples are not always outliers; they can also be known
class representative samples. The fundamental challenge
in generative-FSOSR is the non-convergence of GAN from
limited training data [6]. The adopted training strategy of
MORGAN seems to be of help in this regard.

Few-shot feature hallucination: DAWSON [19] gener-
ate only pseudo-known samples by quickly adapting a new
domain using optimization-based meta-learning, namely
MAML [7] and Reptile [23] but it can not generate out-
of-distributions data. MetaGAN [38] generates only fake
data for few-shot classification and FAML [30] generates
fake images by concatenating two noise vectors with a fea-
ture vector using unsupervised meta-learning. D2GAN [17]
introduces an anti-collapse regularizer to maintain discrim-
inability and diversity in a few-shot regime. This regularizer
minimizes the logarithmic similarity between generated ad-
versarial samples to the logarithmic similarity of unit vari-
ance Gaussian noise. The strategy for fusing input images
with random interpolation coefficients in F2GAN [12] can
generate arbitrary landcover classes. FSGAN [32] magni-
fies singular values related to age, pose, skin tone from sin-
gular value decomposition [10] performed on StyleGAN2
[14]. However, the range of endmembers in the HSI datasets
is infinite, leading to intractable singular values.

3. Proposed methodology
3.1. Preliminaries

FSOSR addresses the problem of open-set recognition
with a few known training samples. Precisely, a meta-
learner learns to reject the outliers together with the ac-
curate classification of the known class samples using an
episodic strategy. To this end, the meta-learner explores
two disjoint sets of classes, base classes for meta-training
and target classes for meta-testing. We select a random sub-
set of base classes as known-unknown to enrich the open
space, with the rest acting as known classes. For a given
KC known classes with m training samples per class, we
denote the support set as S = {(zf,y:)}™F and is also
termed as KC-way m-shot classification. Similarly, we form
the query set as Q = {(m?,yg)};v:‘(llcuu) with N samples
from each of the K known and U known-unknown classes.
x°, 29 € REXWXB represent the 3D HSI patches of height
H, width W, spectral bands B, and y°, y9 denotes the as-
sociated support and query set labels, respectively.

3.2. Overview of the MORGAN components

This section will first introduce the network architec-
ture. Thereby, we explain the concept of a few-shot class-
conditional closed and open feature generation strategy. Fi-
nally, we discuss the idea of the proposed AOL regularizer
to reject the overlapping fine-grained pseudo-outliers.

A. Network architecture: Fig. 2 illustrates the model ar-
chitecture for MORGAN. Considering the 3D HSI patches
as the inputs, we choose R3CBAM from OCN [26] as the
backbone feature extractor ( f,,) due to its superior spectral-
spatial HSI feature learning ability with the help of an
attention-based CBAM3D layer. f,, produces 64D feature
vector. We construct both MORGAN generators i.e., G g,
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G, using three consecutive dense layers with ReLU ac-
tivation having 32, 48 and 64 units. During meta-training,
we augment pseudo-known features (s;) produced by G
with support features (Sy) for better approximation of the
closed-set distribution, where S is obtained by passing S
through f,. The Known class prototypes P are measured
by computing the class-wise mean of the augmented closed
set features Sy (KC) U s;. Similarly, query features (Qy) are
augmented with fine-grained pseudo open samples (sy) by
G449 for better open space estimation. Discriminators D4,
D44 have five dense layers, with ReLU activation having
48, 32, 16, 8 and 1 unit. The objective of D, is to clas-
sify whether the input feature is real S¢ or pseudo-known
s1, whereas Dy classifies the input feature as real Sy or
pseudo-outlier s;,. We use a binary classifier with three
dense layers having 16, 8 and 2 units as outlier detector
O¢. During meta-training, O¢ learns to reject the outliers
Q¢(U) U sp. Finally, during meta-testing, an unlabeled
query is first predicted by O¢, as an outlier or known sam-
ple. In the case of known prediction, its class is estimated
based on the distance from the prototypes P

B. Conditional open-closed feature generation in FSL:
In literature, a generator in D2GAN [17] produces diverse
closed-set samples utilizing two noise vectors. In contrast,
we sample two noise vectors to generate pseudo closed and
open samples employing dual-GANs individually responsi-
ble for closed-set and open space enrichment. However, the
fundamental challenge in GAN meta-learning is obtaining
sufficient gradients from limited training data. Again, GAN
generates adversarial samples from an unknown probability
distribution that is not optimized using a closed-form likeli-
hood function. DAWSON [19] invokes optimization-based
meta-learning to bridge GANs’ likelihood-free training and
obtain gradients in FSL paradigm. Inspired by [19], we also
adapt first-order optimization-based meta-learning to train
MORGAN dual-conditional GANSs for the FSOSR task.

G ¢ uses noise vector z; sampled from general isotropic
Gaussian [N(0,0L)]. Due to low noise variation by oL,
D4 penalizes G ¢ to generate slightly fake known features
51, such that augmenting s; with Sy boosts the closed-set
representation. Similarly, Dy 4 penalizes Gy that receives
latent vector z; from another isotropic Gaussian distribu-
tion A/(0, 0 H) and produces highly fake feature s;,, where
ocH > oL. We consider sy, as pseudo-unknowns. During
meta-training, O¢ learns to reject sy, as outliers, and intu-
itively, it makes each known class distribution to span inside
a closed boundary in metric space. Also, due to generating
s; from Gaussian distribution, the probability of augmented
closed-set samples reduces from its prototype following the
CAP [34] theory. Thus a discriminative boundary of each
known class distribution is established in FSOSR.

The training of two disjoint generators with z; C 2z,
can produce overlapping pseudo-known and pseudo-outlier
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bution causes mode collapse of the pseudo-open-closed features.
AOL regularizer penalizes G4 to generate sy, from the noise vec-
tors sampled from an isotropic Gaussian’s mutually exclusive or-
ange region as s; are generated from the blue region. (b) Effect of
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samples. Essentially, G should utilize the noise vectors
sampled from {N(0,0H)} — {N(0,0L)} region in Fig.
3a, or sy should be generated from noise vectors of stan-
dard deviation (0L < o < oH) of an isotropic Gaussian
distribution. To make it mathematically amenable, we pro-
pose the AOL regularizer aiming to generate disjoint s;, S,.
C. Anti-overlap latent regularizer: To disentangle over-
lapping noise vectors that can produce adversarial outliers
sp, with equivalent feature representation to that of pseudo-
known samples s;, we define AOL regularizer. To the best of
our knowledge, we are the first to introduce a novel regular-
izer in generative networks to control disentangled feature
generation from overlapping noise variance. Specifically,
we sample z;, z; and generate synthesized features from
the two generators for that class, i.e., s; = Go(S D z;) and
sn = Guo(Sy, z1). Since, z; C zy, some s;, samples are
anticipated to be collapsed to the same mode of s;. To alle-
viate this, we define the AOL regularization term,

Aaor(zi, zn, 1, 8h) = (1 + cos(zi, zn)).-max (e, cos(si, sk))
H
Where cos(i,j) = m represents the cosine simi-
larity between vectors ¢, j and e is a small positive constant.
We consider cosine similarity in formulating Asor due
to its inherent bounding nature of prediction variance [9],
causing empirical risk minimization. A 4o, penalizes Gy
for the similarity between adversarial features s;, s, when
their corresponding noise vectors z;, 2z, become very simi-
lar. We minimize Ao in optimizing Gy, Dy parame-
ters in (2). The effect of this regularizer can be visualized in
Fig. 3b. Without using it, z;, z;, sampled from overlapping
distribution can reduce discriminability between s;, Sp,.

3.3. Learning and inference protocol

For each randomly sampled episode, we extract Sy and
Q through feature extractor f,. Then, we optimize MOR-
GAN generators G rg, Gy¢ and discriminators Dy, Dyyg
for loss functions L£;, Ly, respectively, in Algorithm 2.
The generated adversarial samples are augmented to en-
rich the closed and open space. We compute summation
of three-loss components Lrg considering i) known-class
compaction loss L., ii) outlier scattering loss Lo and iii)
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outlier calibration loss Lo at the end of the episode. Fi-
nally, we optimize O¢ for Lo, and f,, for Lrpg. The steps
for MORGAN meta-learning is shown in Algorithm 1.

Meta-learning for conditional GANs: For a few-shot clas-
sification task, Reptile [23] computes the model weight dif-
ference between its previously trained and latest trained ver-
sions using a newly sampled episode and performs the first-
order optimization. Reptile quickly initializes task-specific
parameters by generating good gradients from limited data.
In MORGAN, first-order Reptile [23] is used in optimiz-
ing dual-conditional-GANs over second-order MAML [7].

Ly = min mazx Esws, [logDre(sly®)]
Gro Drg

+ E.on(0,00)[109(1 = Do (Gro(zly®)];

Ly = rcnig max Es~vs;[logDas (s|y”)]

+ E.on(0,0m)[l0g(1 = Dag(Gao(2y°)] + Aaor  (2)

Where, L}, £; are adversarial losses for generating sy, s;.
To optimize the MORGAN objective in (2), We ini-
tially update a clone copy of GAN model parameters using
stochastic gradient descent in Algorithm 2. Based on in-
put noise vector z € {z, 25}, the inner loop generates s;
or sp. We assign zero value for input s and z in optimiz-
ing Gro, D and use 1 € {0,1} as an indicator function
which evaluates to 0 iff [s = z = 0]; thus Asor, vanishes
for £; computation in (2). Asor(z, 2, s,s") only penalizes
Gp and Dy due to 1 is set as 1 when [s # 0, z # 0]. Fi-
nally, these gradients are returned to Algorithm 1 to update
original parameters of discriminators and generators as,

Ho +— Hop— BH x VDH; HO < HO — BH x VGH
Lo LP—PBLxVDL; LO <+ LO—PL X VGL 3)

Where Lo, L0, He, HO are the model parameters, 5L, 5H
are the learning rates and VDL, VGL,VDH,VGH are
the gradients obtained inside the inner loop.

Estimating the prototypes: We utilize the generated s; to
enrich the closed-set distribution. Then, we compute the
classwise mean of augmented support features to estimate
individual known class prototypes Pj. Also, to optimize for
outlier scattering loss, we compute the open space prototype
Py using the known-unknown queries.

Z folz

ac sesk

Usl,Pz,{— Ush,

Y fela
:rqu(U)
“)
Where S* is the real support set of k" known class.
Feature extractor and outlier detector optimization: Our
objective function to update f,, is an integral of threefold
loss components focused on each known class distribution
density maximization, fine-grained pseudo-outlier recogni-
tion, and scattering them from closed-set distribution. We
augment known-unknown queries with pseudo-outliers to
increase the open-set data density and compute loss for each

query in Qqyg, Where, Qqug — Qf(U) U sp,.

Algorithm 1: MORGAN meta-learning steps

Input: S(/C), orku), y*, vy, fg,, Og, Gro, Guo,
Drg, Dyg, oL, cH, BL, BH, iterations:
To, Z;, InnerLoop learning rates: oL, « H
Meta-Training Phase:
1 Extract features:
Sy [o(8(K)), Qf = fo(QAKUU)) ;
2 Train GANs: Randomly initialize £0, Lo, HO, Ho
and Sample episodes 7 ~S(K) ;
fori < 1toZ, do
2.1 Clone parameters: DA — Dy,
DA¢ «— DH(i” G (— Gﬁ@, G (— Gq.w )
22VDL,VGL, sl, 2z <—InnerLoop(D
G[:O’ D£¢, Gg@, aL IZ, T, OL 0 0)
23VDH ,VGH, sy, z, <InnerLoop(D
G@, DH¢, Gq.w, OéH, Ii’ T, O'H, S, Zl)
2.4 Update Lo, L8, He, HO using SL, SH (3);

Augment closed-set distribution and compute P (4);
Augment queries Q.4 for fine-grained open space;
Compute Lpg (8) using Lk (5), Los (6), Loc (7);
Optimize O, f, by Loc, LFE, respectively.
return Updated parameters o, L6, Lo, HO, Ho, &;
Meta-Testing Phase:
Output: Classification of the test-set query samples
785 ¢ [o(S(K)). Qf + [, (QK UU)):

8 Pass Sf to Gz, augment support and Compute P;
9 Compute query distances: Qu;st < |[|P — Q|13 ;
10 Classify Qf samples of by passing Qg;s¢ to O ;
if O¢ classifies query as known then

‘ Predict class by applying softmax over Qg;s; ;
else

L Classify the query as an outlier; ;

e

He’

A U A W

return Predicted class of the query samples;

Algorithm 2: MORGAN Inner Loop training

Input: Dq;, Gg:, Dy, Gg, o, L;,7, 0, 8, 2
Output: VD, VG, s’: new adversarial sample, 2’
1 Randomly draw K Samples {s1, ..., Sk} ~ ¢r, ;
2 fori < 1toZ; do
for k < 1to K do
2.1 8" < G4(2') with 2’ ~ N(0,0);
2.2 Update D$ and G; parameters:
O P—ax Vg(ﬁgq;(sk,s’) + 1. A a0L);

00— ax V@(E%’:g(s’) + 1. a0L);

| 2.3 Compute: VD < ¢ — 8 VG 0 — 5;
return VD, VG, s, 7
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i.Known-class compaction loss: Maintaining a com-
pact abating representation of each known class requires
minimizing the distance of each known query and support
feature from the corresponding prototype. The optimization
in (5) for each known query’s euclidean distance minimizes
intra-class variance of known classes and thereby helps in
maximizing closed-set distribution density.

efd<q!7py)

710 -
& Zle e—d(a,Py)

Lyc= quQf(IC)USfU5l ®)
Where, P, is the true prototype of query ¢ and d is the
squared Euclidean distance.
ii.Outlier scattering loss: To scatter an outlier query,
€ Qgug from a known class distribution, the metric dis-
tance of that query from the known class true prototype P,
should be maximized. Effectively, it minimizes the proba-
bility of that query belonging to that known class. However,
in multi-class classification, only repelling outliers from a
set of known classes creates an uncertain residence of the
outliers in metric space. Hence, we pull these outliers to-
wards an open space prototype P, and gain transferable
knowledge to scatter over the episodes. Also, penalizing
the non-parametric prototype helps a set of outliers collec-
tively and quickly move towards an open space to maximize
the separation margin. Thus, we minimize the risk of mis-
classifying a fine-grained outlier to a known instance.

e4(a:Py)

Zle 4@, Py) 4 e—d(a,Pu)

Los =Eqeau, |—log (6)
Where, 7 is a positive repel factor to control the distance of
an outlier query € Qg from P,

iii.OQutlier calibration loss: We pass the Euclidean dis-
tance (Qgist) Of each query from the prototypes to O¢. In
each episode, O¢ learns a transferrable knowledge of clas-
sifying a query € Qf(K) as known sample and a query
€ Quug as an outlier. Although Sy, s; could be classi-
fied as known, we experimentally found no significant per-
formance improvement by including S¢, s;. Using cross-
entropy loss, threshold-free O, parameters are optimized,

Loec =Eqeo;(x)ue;w)usy,
1=1

—Ztizog(og(gdist)i)] )

Where, t; € {0, 1} is the label for known or outlier class.
Total feature extractor loss: Finally, we compute the
overall loss function to optimize f, parameters in (8).

Lrg = Lxc+ Los+ Loc 3)

Inference strategy: We measure Qg;,; of a target query

from the prototypes. O classifies it as known or outlier

based on input Q ;. In case of known class prediction, its
class is further obtained by applying softmax over Q j;s¢.

4. Experiments

4.1. Datasets and preprocessing

We evaluate MORGAN on four benchmark HSI datasets.
Using AVIRIS sensor, Indian Pines (IP) dataset was ac-
quired in northwestern Indiana. IP has 145 x 145 pixels with
220 bands covering 16 land-cover classes. Salinas captured
at Salinas Valley, California, covers 16 labeled classes. It
has 512 x 217 spatial dimension with 204 spectral bands.
University of Pavia dataset was captured using ROSIS sen-
sor for nine land cover classes having 610 x 610 pixels with
103 bands. We consider one more Salinas and six Pavia
classes annotated in [21] for FSOSR. The Houston-2013
dataset has 349 x 1905 pixels with 144 bands and was cap-
tured at the University of Houston for 15 landcover classes.

We apply PCA [36] on each of the IP, Pavia, and Salinas
datasets to reduce spectral dimensionality to 30 bands and
ten bands for the Houston dataset preserving 99% data vari-
ance for an individual dataset. Then, we slice cubic patches
of dimension (11, 11, ch) at each pixel location using zero
padding, where ch indicates the number of spectral bands.

4.2. Evaluation metrics

To evaluate MORGAN performance, we use the standard
OSR metrics, namely Closed Overall Accuracy (Close-
dOA), Open Overall Accuracy (OpenOA), and AUROC
(Area Under Receiver Operating Characteristics Curve).
ClosedOA indicates the percentage of known class samples
correctly classified. OpenOA evaluates the model in pres-
ence of outliers in (9), and AUROC refers to the outlier de-
tection capability under various threshold configurations.

K+1
OpenOA = —3 i TP + TN )
Py TPy +TNy+ FPr + FNy,
Where, T Py, T Ny, F' Py, FN, represent the true positive,
true negative, false positive, and false negative of the k"
known class, respectively. All the outliers are combinedly
considered as K + 1" class in OpenOA.

4.3. Experimental protocol

We pick ten random classes as base classes for each
dataset during meta-training and assign the remaining for
meta-testing. Again, we split the base classes into spec-
trally fine-grained open-closed class pairs. Then, we form a
query set with 15 samples per class from six randomly cho-
sen base classes. Also, the support set is formed with m dis-
joint samples from each of the three random query classes.
We use Adam optimizer [15] with a learning rate of 0.0001
for 8L, BH in Algorithm 1 and a value of 0.003 for oL,
aH in Algorithm 2. We set v as 1 in (6), € as 0.00001 in (1)
and oL, o H as 0.2 and 1.0 (refer Table 4). During testing,
we sample random episodes 500 times from target classes
as per literature and record the mean + standard deviation
results in Table 1 and 2 for reliable prediction. All the meth-
ods are compared using the same experimental settings.
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Table 1. 1-shot FSOSR performance comparison of the proposed MORGAN and SOTA Methods on the hyperspectral datasets

Model Indian Pines Pavia University Salinas Houston-2013
ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC

OpenMax [2] 43.33+£0.63 48.54+0.29 44.44+0.33 | 52.084+0.53 54.61+0.21 52.2240.35 | 51.92+0.52 42.50+0.23 50.33£0.34 | 37.50+0.73 31.33£0.71 36.11+0.33
RDOSR [1] 51.2840.34 50.13£0.41 47.29+0.23 | 50.85+0.27 51.68+0.32 55.4540.42 | 59.14+£0.35 60.19+0.33  54.23+0.21 | 58.92+0.27 63.53+0.51 61.08+0.34
MDLA40OW [21] 46.15+0.21  46.50+0.23 48.6640.32 | 56.664+0.22 54.89+0.21 51.114+0.34 | 58.33+0.21 57.28+0.31 52.77+0.32 | 41.66+0.43 43.42+0.34 43.88+0.32
PEELER [20] 71.41+£0.31 7545+0.24 71.84+0.21 | 57.1840.35 71.55£0.31 52.39+0.18 | 65.14+£0.53 69.63+0.43 57.78+0.33 | 46.95+0.41 74.344+0.17 53.75+0.32
SnaTCHer [13] 89.33+0.11 81.25+0.23 74.53+0.32 | 58.50+£0.29 75.57+0.34 50.35+0.33 | 65.94+0.67 78.91+0.28 53.88+0.43 | 58.73+0.35 77.4240.33 48.054+0.34
OCN [26] 80.674+0.63  82.72+0.34  75.93+0.32 | 59.50+0.21 84.77+0.34 89.96+0.43 | 82.64+0.31 74.27+0.32 81.36+0.21 | 60.84+0.32 78.93+0.46 74.26+0.17
MORGAN [Ours] | 91.47+0.14 87.42+0.08 90.83+0.12 | 79.88+0.16 85.22+0.21 90.11+0.09 | 83.24+0.17 90.22+0.14 91.96+0.12 | 77.15+0.22 89.20+0.15 91.06-£0.12

Table 2. 5-shot FSOSR performance comparison of the proposed MORGAN and SOTA Methods on

the hyperspectral datasets

Model Indian Pines Pavia University Houston-2013
ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC

OpenMax [2] 51.92+0.34 58.33+0.51 55.62+0.46 | 69.17+£0.32 58.12+0.53 53.36+0.53 | 69.23+0.25 58.12+£0.35 55.44+0.34 | 41.66+0.24 35.64+0.35 37.84+0.51
RDOSR [1] 55.98+0.51 55.9240.45 52.3840.52 | 64.74+£0.45 64.89+0.34 63.9440.37 | 67.80+£0.35 66.32+£0.51 60.28+0.47 | 68.82+0.52 66.374+0.31 62.56+0.43
MDLA4OW [21] 50.76+£0.53  46.96+0.35 64.51+0.51 | 65.33+0.25 62.66+0.19 48.66+0.41 | 75.01+£0.37 62.66+0.34 72.88+0.22 | 46.66+0.21 44.42+0.23 46.2240.33
PEELER [20] 82.81+0.39 87.37+0.34 74.19+£0.25 | 60.71+£0.23  72.69+0.53 60.36+0.51 | 74.20+£0.52 75.39+£0.31  60.39+0.36 | 57.98+0.47 75.574+0.57 55.47+0.34
SnaTCHer [13] 92.00£0.51 89.42+0.45 76.05+0.55 | 74.914+0.35 78.10+0.38 54.98+0.29 | 74.21+0.54 83.154+0.39 72.11+£0.43 | 69.24+0.34  83.29+0.52  49.094+0.45
OCN [26] 94.61+£0.38 84.71+0.51 88.40+0.38 | 71.55+0.32 87.94+0.34 91.90+0.45 | 84.88+0.37 85.61+0.39 88.52+0.34 | 71.97+0.29 84.96+0.48 88.504+0.47
MORGAN [Ours] | 95.094+0.18 90.43+0.24 95.59+0.12 | 81.11+0.19 92.18+0.18 92.98+0.14 | 86.64+0.09 93.70+0.11 94.99+0.11 | 83.64+0.21 92.18+0.14 95.17+0.16
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Figure 4. 5-shot AUROC comparison using different FSOSR methods on four benchmark HSI datasets. MORGAN (indicated in ‘Red’
color) shows the best True-Positive Rate (TPR) performance for a low False-Positive Rate (FPR) value over the other methods.

2 L L = —

Figurg) 5. Compaﬁson of 5-shg)t FSOSR clg)ssiﬁcation nglps by
SOTA methods, namely b) PEELER (c) SnaTCHer (d) OCN, and
proposed () MORGAN over (Top) Salinas (Middle) University of
Pavia and (Bottom) Indian Pines. The ground truth is shown in (a)
for each dataset with the open classes annotated in “White’ color.

4.4. Experimental results

We compare MORGAN against the state-of-the-art
(SOTA) 1-shot and 5-shot FSOSR methods in Table 1 and
2, respectively. Thanks to MORGAN’s fine-grain outlier
separation ability; it shows better 1-shot and 5-shot FSOSR
performance than other SOTA methods over HSI datasets.

OpenMax [2] and MDL4OW [21], initially developed
for large-scale OSR, are adapted in FSOSR by fitting
Weibull distribution in Prototypical Networks[35]. RDOSR
[1] performs OSR over HSI datasets in latent space using
limited supervised samples. PEELER [20], SnaTCHer [13],
and OCN [26] were developed for the FSOSR context and
readily evaluated on HSI datasets. For 1-shot FSOSR, we
see MORGAN beating the next best alternative by 4.7%
OpenOA, 14.9% AUROC over IP, a significant 20.38%
ClosedOA over Pavia, 11.31% OpenOA, 10.6% AUROC
over Salinas and 16.31% ClosedOA, 10.27% OpenOA,
16.8% AUROC raise over the Houston-2013 dataset. The
5-shot FSOSR performance also appears quite promising
by MORGAN. Over IP, it boosts 7.19% AUROC over other
methods.A stellar performance, 8.09% OpenOA gain over
Salinas, 11.67% ClosedOA, and 7.22% OpenOA hike are
observed over the Houston-2013 dataset. Overall, MOR-
GAN achieves the maximum area under the ROC curve in
Fig. 4 reflecting high fine-grained outlier recognition ca-
pability in a few-shot context. The classification maps are
compared in Fig. 5. PEELER and SnaTCHer misclassify a
few known classes for Salinas and Pavia. MORGAN recog-
nizes fine-grained open class ‘Grass-pasture-mowed’ in IP,
‘Building 2’ in Pavia better than other methods. The closed-
set recognition performance is also superior in MORGAN.
Like ‘Vinyard_vertical _trellis’ in Salinas, most of the known
class samples MORGAN recognized correctly.
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Table 3. Ablation study on our various novelties to optimize MORGAN’s generative components for 5-shot FSOSR over four HSI datasets

Model Indian Pines Pavia University Salinas Houston-2013

ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC
Without Lo, 88.31+0.37 83.394+0.29 80.32+0.45 | 80.22+0.28  77.544+0.37 82.43+0.22 | 81.754+0.28 86.55+0.31 91.794+0.30 | 81.48+0.29 86.574+0.31 90.34+0.25
Without AOL 94.57+0.39 86.71+0.25 89.4540.37 | 79.34+0.33 84.28+0.27 88.26+0.23 | 83.58+0.34 87.31+0.44 88.23+0.26 | 80.11+0.28 87.234+0.26 88.33+0.35
Without GAN 80.33+£0.26  81.27+0.23  80.55+0.30 | 71.78+0.24 86.85+0.35 84.37+0.35 | 74.80+0.22 82.884+0.20 86.71+0.36 | 74.50+£0.37 82.19+0.42 86.71+0.22
Inner loop - MAML[7] | 90.71+0.43  84.604+0.24  88.29+0.22 | 80.59+0.25 81.964+0.39 74.73+0.27 | 84.35+0.28 86.85+0.21 95.81+0.10 | 81.984+0.45 88.69+0.35 89.65+0.27
MORGAN [Ours] 95.09+£0.18 90.43+0.24 95.59+0.12 | 81.11+0.19 92.184+0.18 92.98+0.14 | 86.64+0.09 93.70+£0.11 94.99+0.11 | 83.64+0.21 92.18+0.14 95.17+0.16

Ly Lk + Los

Lge+Los + Loc

@-l—ap—sp ';l)r

T

Figure 6. t-SNE visualization of the metric space due to optimizing
MORGAN for various loss components over the IP dataset.

4.5. Further analyis

Effect of different loss components: In Table 3, we ob-
serve that MORGAN gains 7.04% OpenOA for IP, 14.64%
OpenOA, and, 10.55% AUROC for Pavia, 7.15% OpenOA
for Salinas, incorporating outlier scattering loss. Fig. 6
shows the t-SNE plots incorporating different loss functions
to train MORGAN. While optimizing by only compaction
loss, a couple of fine-grained outliers fall inside the closed
set distribution in Fig. 6a. Incorporating scattering loss cre-
ates a compact decision boundary separating the known and
fine-grained outlier pair, in Fig. 6b. Further outlier calibra-
tion loss helps distinguish outliers better in Fig. 6c¢.
Influence of AOL regularizer: The AOL regularizer gen-
erates fine-grained outliers encompassing the known class
distributions. It helps in boosting 3.72%, 7.9%, 6.39%
OpenOA and 6.14%,4.72%,7.76% AUROC respectively,
for IP, Pavia, and Salinas datasets in Table 3.

Impact of feature generation: We evaluated MORGAN
without generating any adversarial known and pseudo-
outliers. However, we observed a 14.76% ClosedOA,
9.16% OpenOA, and 15.04% AUROC drop for IP compared
to our adversarial feature augmentation strategy in Table 3.
Space complexity: MORGAN is quite a lightweight
model. Generators Gy, Gxp have only 5520 and dis-
criminators D4, Dy have 6129 parameters individually.
Feature extractor (f,,) is common for all comparing meth-
ods with 38,114 parameters, and O¢ has 218 parameters.
Time complexity: The dual-GANs in MORGAN are op-
timized by the Reptile-based first-order meta-learning [23]
in Algorithm 2, producing the fastest loss convergence in
Fig.7c. OCN [26] shows quite a long time to converge, and
MAML [7]-based MORGAN suffers from fluctuation due
to second-order optimization. Utilizing Reptile, accuracy
also boosts by 10.22% OpenOA, a massive 17.45% AU-
ROC for Pavia, and 5.5% AUROC for Houston dataset as
shown in Table 3. However, MAML is slightly better for
the Salinas dataset by a marginal 0.82%AUROC rise.

@ 0 W M0 60 B0 o) ) ©

Figure 7. 5-shot FSOSR loss decay comparison over Salinas using
(a) OCN [26], MORGAN with (b) MAML [7], and (c) Reptile[23].

Table 4. Ablation study on the noise variance (oL, o H) values of
G o, Ge over the Indian Pines dataset for 5-shot FSOSR task

Noise variance Indian Pines

oL ocH ClosedOA OpenOA AUROC
0.1 1.0 95.40+0.31 91.97+0.21 94.68+0.29
0.2 1.0 95.09+0.18 90.43+0.24 95.59+0.12
0.3 1.0 95.13+0.33 88.424+0.29 90.07+0.11
0.5 1.0 95.91+0.36 84.63+0.24 85.5140.32
0.5 0.8 93.69+0.43 87.28+0.38 88.21+0.27
0.5 0.6 91.71+0.35 91.42+0.41 91.91+0.38
0.3 1.2 95.11+0.61 87.07+0.57 89.82+0.25

Optimal noise variance values: Table 4 shows the abla-
tion study by varying the noise variance of two generators
responsible for generating pseudo-known and outlier sam-
ples. There exists three scenarios, (1) increasing oL from
0.1 to 0.5 and keeping o H = 1.0 (constant), OpenOA and
AUROC steadily decrease as pseudo-outliers become false
positives to the closed-set distribution. (2) keeping oL =
0.5 (constant) and decreasing o H from 1.0 to 0.6, Close-
dOA decreases, and OpenOA increases as many pseudo-
known samples fall just outside its known class boundary.
Finally, (3) increasing oH beyond 1.0 makes generated
pseudo-outliers mix with other known class samples, reduc-
ing OpenOA. We find an optimal selection of o L = 0.2 and
o H = 1.0 as the best noise variance combination for the two
MORGAN generators in evaluating HSI datasets.

5. Conclusions

This paper proposes a novel FSOSR method, MOR-
GAN, which simultaneously generates pseudo-known and
outlier samples to enrich the closed and open space, respec-
tively. Further, we introduce a new regularizer to retain
distinguishability between adversarial known-outlier pairs.
Also, we optimize the MORGAN feature extractor with
three-fold loss functions to jointly squeeze closed-set distri-
bution and spread away fine-grained outliers. Experimental
results over four benchmark HSI datasets and ablation stud-
ies prove our superior performance over existing FSOSR
methodologies. We plan to evaluate MORGAN for fine-
grained HSI cross datasets experiments in the future.
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