
Large-Scale Open-Set Classification Protocols for ImageNet

Andres Palechor Annesha Bhoumik Manuel Günther
Department of Informatics, University of Zurich, Andreasstrasse 15, CH-8050 Zurich

https://www.ifi.uzh.ch/en/aiml.html

Abstract

Open-Set Classification (OSC) intends to adapt
closed-set classification models to real-world scenar-
ios, where the classifier must correctly label samples
of known classes while rejecting previously unseen un-
known samples. Only recently, research started to in-
vestigate on algorithms that are able to handle these
unknown samples correctly. Some of these approaches
address OSC by including into the training set negative
samples that a classifier learns to reject, expecting that
these data increase the robustness of the classifier on
unknown classes. Most of these approaches are evalu-
ated on small-scale and low-resolution image datasets
like MNIST, SVHN or CIFAR, which makes it diffi-
cult to assess their applicability to the real world, and
to compare them among each other. We propose three
open-set protocols that provide rich datasets of natural
images with different levels of similarity between known
and unknown classes. The protocols consist of subsets
of ImageNet classes selected to provide training and
testing data closer to real-world scenarios. Addition-
ally, we propose a new validation metric that can be
employed to assess whether the training of deep learn-
ing models addresses both the classification of known
samples and the rejection of unknown samples. We
use the protocols to compare the performance of two
baseline open-set algorithms to the standard SoftMax
baseline and find that the algorithms work well on neg-
ative samples that have been seen during training, and
partially on out-of-distribution detection tasks, but drop
performance in the presence of samples from previously
unseen unknown classes.

1. Introduction
Automatic classification of objects in images has

been an active direction of research for several decades
now. The advent of Deep Learning has brought algo-
rithms to a stage where they can handle large amounts
of data and produce classification accuracies that were

beyond imagination a decade before. Supervised im-
age classification algorithms have achieved tremendous
success when it comes to detecting classes from a finite
number of known classes, what is commonly known
as evaluation under the closed-set assumption. For
example, the deep learning algorithms that attempt
the classification of ten handwritten digits [16] achieve
more than 99% accuracy when presented with a digit,
but it ignores the fact that the classifier might be con-
fronted with non-digit images during testing [6]. Even
the well-known ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [26] contains 1000 classes
during training, and the test set contains samples from
exactly these 1000 classes, while the real world contains
many more classes, e.g., the WordNet hierarchy [19]
currently knows more than 100’000 classes.1 Training
a categorical classifier that can differentiate all these
classes is currently not possible – only feature compar-
ison approaches [22] exist – and, hence, we have to deal
with samples that we do not know how to classify.

Only recently, research on methods to improve clas-
sification in presence of unknown samples has gained
more attraction. These are samples from previously
unseen classes that might occur during deployment of
the algorithm in the real world and that the algorithm
needs to handle correctly by not assigning them to any
of the known classes. Bendale and Boult [2] provided
the first algorithm that incorporates the possibility to
reject a sample as unknown into a deep network that
was trained on a finite set of known classes. Later,
other algorithms were developed to improve the detec-
tion of unknown samples. Many of these algorithms
require to train on samples from some of the unknown
classes that do not belong to the known classes of in-
terest – commonly, these classes are called known un-
known [18], but since this formulation is more confusing
than helpful, we will term these classes as the negative
classes. For example, Dhamija et al. [6] employed sam-
ples from a different dataset, i.e., they trained their sys-
tem on MNIST as known classes and selected EMNIST

1https://wordnet.princeton.edu
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Figure 1: Class Sampling in our Open-Set Protocols. We make use of the WordNet hierarchy [19] to define
three protocols of different difficulties. In this figure, we show the superclasses from which we sample the final classes, all of
which are leaf nodes taken from the ILSVRC 2012 dataset. Dashed lines indicate that the lower nodes are descendants, but
they might not be direct children of the upper nodes. Additionally, all nodes have more descendants than those shown in
the figure. The colored bars below a class indicate that its subclasses are sampled for the purposes shown in the top-left of
the figure. For example, all subclasses of “Dog” are used as known classes in protocol P1, while the subclasses of “Hunting
Dog” are partitioned into known and negatives in protocol P2. For protocol P3, several intermediate nodes are partitioned
into known, negative and unknown classes.

letters as negatives. Other approaches try to create
negative samples by utilizing known classes in different
ways, e.g., Ge et al. [8] used a generative model to form
negative samples, while Zhou et al. [30] try to utilize
internal representations of mixed known samples.

One issue that is inherent in all of these approaches
– with only a few exceptions [2, 25] – is that they eval-
uate only on small-scale datasets with a few known
classes, such as 10 classes in MNIST [16], CIFAR-10
[14], SVHN[21] or mixtures of these. While many algo-
rithms claim that they can handle unknown classes,
the number of known classes is low, and it is un-
clear whether these algorithms can handle more known
classes, or more diverse sets of unknown classes. Only
lately, a large-scale open-set validation protocol is de-
fined on ImageNet [28], but it only separates unknown
samples based on visual2 and not semantic similarity.
Another issue of research on open-set classification is
that most of the employed evaluation criteria, such as
accuracy, macro-F1 or ROC metrics, do not evaluate
open-set classification as it would be used in a real-
world task. Particularly, the currently employed vali-
dation metrics that are used during training a network
do not reflect the target task and, thus, it is unclear
whether the selected model is actually the best model
for the desired task.

In this paper we, therefore, propose large-scale open-
set recognition protocols that can be used to train and
test various open-set algorithms – and we will show-

2In fact, Vaze et al. [28] do not specify their criteria to se-
lect unknown classes and only mention visual similarity in their
supplemental material.

case the performance of three simple algorithms in this
paper. We decided to build our protocols based on the
well-known and well-investigated ILSVRC 2012 dataset
[26], and we build three evaluation protocols P1, P2
and P3 that provide various difficulties based on the
WordNet hierarchy [19], as displayed in Fig. 1. The
protocols are publicly available,3 including source code
for the baseline implementations and the evaluation,
which enables the reproduction of the results presented
in this paper. With these new protocols, we hope to
foster more comparable and reproducible research into
the direction of open-set object classification as well
as related topics such as out-of-distribution detection.
This allows researchers to test their algorithms on our
protocols and directly compare with our results.

The contributions of this paper are as follows:

• We introduce three novel open-set evaluation pro-
tocols with different complexities for the ILSVRC
2012 dataset.

• We propose a novel evaluation metric that can be
used for validation purposes when training open-
set classifiers.

• We train deep networks with three different tech-
niques and report their open-set performances.

• We provide all source code3 for training and eval-
uation of our models to the research community.

3https://github.com/AIML-IfI/openset-imagenet
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2. Related Work
In open-set classification, a classifier is expected to

correctly classify known test samples into their respec-
tive classes, and correctly detect that unknown test
samples do not belong to any known class. The study
of unknown instances is not new in the literature. For
example, novelty detection, which is also known as
anomaly detection and has a high overlap with out-
of-distribution detection, focuses on identifying test in-
stances that do not belong to training classes. It can be
seen as a binary classification problem that determines
if an instance belongs to any of the training classes or
not, but without exactly deciding which class [4], and
includes approaches in supervised, semi-supervised and
unsupervised learning [13, 23, 10].

However, all these approaches only consider the clas-
sification of samples into known and unknown, leaving
the later classification of known samples into their re-
spective classes as a second step. Ideally, these two
steps should be incorporated into one method. An easy
approach would be to threshold on the maximum class
probability of the SoftMax classifier using a confidence
threshold, assuming that for an unknown input, the
probability would be distributed across all the classes
and, hence, would be low [17]. Unfortunately, often in-
puts overlap significantly with known decision regions
and tend to get misclassified as a known class with
high confidence [6]. It is therefore essential to devise
techniques that are more effective than simply thresh-
olding SoftMax probabilities in detecting unknown in-
puts. Some initial approaches include extensions of 1-
class and binary Support Vector Machines (SVMs) as
implemented by Scheirer et al. [27] and devising recog-
nition systems to continuously learn new classes [1, 25].

While the above methods make use only of known
samples in order to disassociate unknown samples,
other approaches require samples of some negative
classes, hoping that these samples generalize to all un-
seen classes. For example, Dhamija et al. [6] utilize neg-
ative samples to train the network to provide low confi-
dence values for all known classes when presented with
a sample from an unknown class. Many researchers
[8, 29, 20] utilize generative adversarial networks to
produce negative samples from the known samples.
Zhou et al. [30] combined pairs of known samples to
define negatives, both in input space and deeper in the
network. Other approaches to open-set recognition are
discussed by Geng et al. [9].

One problem that all the above methods possess is
that they are evaluated on small-scale datasets with
low-resolution images and low numbers of classes. Such
datasets include MNIST [16], SVHN [21] and CIFAR-
10 [14] where oftentimes a few random classes are used

as known and the remaining classes as unknown [9].
Sometimes, other datasets serve the roles of unknowns,
e.g., when MNIST build the known classes, EMNIST
letters [11] are used as negatives and/or unknowns.
Similarly, the known classes are composed of CIFAR-10
and other classes from CIFAR-100 or SVHN are nega-
tives or unknowns [15, 6]. Only few papers make use
of large-scale datasets such as ImageNet, where they
either use the classes of ILSVRC 2012 as known and
other classes from ImageNet as unknown [2, 28], or
random partitions of ImageNet [25, 24].

Oftentimes, evaluation protocols are home-grown
and, thus, the comparison across algorithms is very
difficult. Additionally, there is no clear distinction on
the similarities between known, negative and unknown
classes, which makes it impossible to judge in which
scenarios a method will work, and in which not. Fi-
nally, the employed evaluation metrics are most often
not designed for open-set classification and, hence, fail
to address typical use-cases of open-set recognition.

3. Approach
3.1. ImageNet Protocols

Based on [3], we design three different protocols to
create three different artificial open spaces, with in-
creasing level of similarity in appearance between in-
puts – and increasing complexity and overlap between
features – of known and unknown classes. To allow
for the comparison of algorithms that require negative
samples for training, we carefully design and include
negative classes into our protocols. This also allows
us to compare how well these algorithms work on pre-
viously seen negative classes and how on previously
unseen unknown classes.

In order to define our three protocols, we make use
of the WordNet hierarchy that provides us with a tree
structure for the 1000 classes of ILSVRC 2012. Partic-
ularly, we exploit the robustness Python library [7]
to parse the ILSVRC tree. All the classes in ILSVRC
are represented as leaf nodes of that graph, and we
use descendants of several intermediate nodes to form
our known and unknown classes. The definition of the
protocols and their open-set partitions are presented in
Fig. 1, a more detailed listing of classes can be found
in the supplemental material. We design the protocols
such that the difficulty levels of closed- and open-set
evaluation varies. While protocol P1 is easy for open-
set, it is hard for closed-set classification. On the con-
trary, P3 is more easy for closed-set classification and
more difficult in open-set. Finally, P2 is somewhere in
the middle, but small enough to run hyperparameter
optimization that can be transferred to P1 and P3.
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Table 1: ImageNet Classes used in the Protocols. This table shows the ImageNet parent classes that were
used to create the three protocols. Known and negative classes are used for training the open-set algorithms, while known,
negative and unknown classes are used in testing. Given are the numbers of classes: training / validation / test samples.

Known Negative Unknown

P1
All dog classes Other 4-legged animal classes Non-animal classes

116: 116218 / 29055 / 5800 67: 69680 / 17420 / 3350 166 : — / — / 8300

P2
Half of hunting dog classes Half of hunting dog classes Other 4-legged animal classes

30: 28895 / 7224 / 1500 31: 31794 / 7949 / 1550 55: — / — / 2750

P3

Mix of common classes including
animals, plants and objects

Mix of common classes including
animals, plants and objects

Mix of common classes including
animals, plants and objects

151: 154522 / 38633 / 7550 97: 98202 / 24549 / 4850 164: — / — / 8200

In the first protocol P1, known and unknown classes
are semantically quite distant, and also do not share
too many visual features. We include all 116 dog
classes as known classes – since dogs represent the
largest fine-grained intermediate category in ImageNet
which makes closed-set classification difficult – and
select 166 non-animal classes as unknowns. P1 can,
therefore, be used to test out-of-distribution detec-
tion algorithms since knowns and unknowns are not
very similar. In the second protocol P2, we only look
into the animal classes. Particularly, we use several
hunting dog classes as known and other classes of 4-
legged animals as unknown. This means that known
and unknown classes are still semantically relatively
distant, but image features such as fur is shared be-
tween known and unknown. This will make it harder
for out-of-distribution detection algorithms to perform
well. Finally, the third protocol P3 includes ancestors
of various different classes, both as known and un-
known classes, by making use of the mixed 13 classes
defined in the robustness library. Since known and
unknown classes come from the same ancestors, it is
very unlikely that out-of-distribution detection algo-
rithms will be able to discriminate between them, and
real open-set classification methods need to be applied.

To enable algorithms that require negative samples,
the negative classes are selected semantically similar
to the known or at least in-between the known and
the unknown. It has been shown that selecting nega-
tive samples too far from the known classes does not
help in creating better-suited open-set algorithms [6].
Naturally, we can only define semantic similarity based
on the WordNet hierarchy, but it is unclear whether
these negative classes are also structurally similar to
the known classes. Tab. 1 displays a summary of the
parent classes used in the protocols, and a detailed list
of all classes is presented in the supplemental material.

Finally, we split our data into three partitions, one

for training, one for validation and one for testing. The
training and validation partitions are taken from the
original ILSVRC 2012 training images by randomly
splitting off 80% for training and 20% for validation.
Since training and validation partitions are composed
of known and negative data only, no unknown data is
provided here. The test partition is composed of the
original ILSVRC validation set containing 50 images
per class, and is available for all three groups of data:
known, negative and unknown. This assures that dur-
ing testing no single image is used that the network has
seen in any stage of the training.

3.2. Open-Set Classification Algorithms

We select three different techniques to train deep
networks. While other algorithms shall be tested in
future work, we rely on three simple, very similar and
well-known methods. In particular, all three loss func-
tions solely utilize the plain categorical cross-entropy
loss JCCE on top of SoftMax activations (often termed
as the SoftMax loss) in different settings. Generally,
the weighted categorical cross-entropy loss is:

JCCE = − 1
N

N∑
n=1

C∑
c=1

wctn,c log yn,c (1)

where N is the number of samples in our dataset
(note that we utilize batch processing), tn,c is the
target label of the nth sample for class c, wc is a
class-weight for class c and yn,c is the output prob-
ability of class c for sample n using SoftMax activation:

yc,n = ezc,n

C∑
c′=1

ezc′,n

(2)

of the logits zn,c, which are the network outputs.
The three different training approaches differ with

respect to the targets tn,c and the weights wc, and how
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negative samples are handled. The first approach is the
plain SoftMax loss (S) that is trained on only samples
from the K known classes. In this case, the number of
classes C = K is equal to the number of known classes,
and the targets are computed as one-hot encodings:

∀n, c ∈ {1, . . . , C} : tn,c =
{

1 c = τn

0 otherwise
(3)

where 1 ≤ τn ≤ K is the label of the sample n. For
simplicity, we select the weights for each class to be
identical: ∀c : wc = 1, which is the default behav-
ior when training deep learning models on ImageNet.
By thresholding the maximum probability max

c
yc,n,

cf. Sec. 3.3, this method can be turned into a simple
out-of-distribution detection algorithm.

The second approach is often found in object detec-
tion models [5] which collect a lot of negative samples
from the background of the training images. Similarly,
this approach is used in other methods for open-set
learning, such as G-OpenMax [8] or PROSER [30].4 In
this Background (BG) approach, the negative data is
added as an additional class, so that we have a total
of C = K + 1 classes. Since the number of negative
samples is usually higher than the number for known
classes, we use class weights to balance them:

∀c ∈ {1, ..., C} : wc = N

CNc
(4)

where Nc is the number of training samples for class c.
Finally, we use one-hot encoded targets tn,c according
to (3), including label τn = K+1 for negative samples.

As the third method, we employ the Entropic
Open-Set (EOS) loss [6], which is a simple extension
of the SoftMax loss. Similar to our first approach, we
have one output for each of the known classes: C = K.
For known samples, we employ one-hot-encoded target
values according to (3), whereas for negative samples
we use identical target values:

∀n, c ∈ {1, . . . , C} : tn,c = 1
C

(5)

Sticking to the implementation of Dhamija et al. [6], we
select the class weights to be ∀c : wc = 1 for all classes
including the negative class, and leave the optimization
of these values for future research.

3.3. Evaluation Metrics

Evaluation of open-set classification methods is a
more tricky business. First, we must differentiate be-
tween validation metrics to monitor the training pro-
cess and testing methods for the final reporting. Sec-
ond, we need to incorporate both types of algorithms,

4While these methods try to sample better negatives for
training, they rely on this additional class for unknown samples.

the ones that provide a separate probability for the
unknown class and those that do not.

The final evaluation on the test set should differ-
entiate between the behavior of known and unknown
classes, and at the same time include the accuracy of
the known classes. Many evaluation techniques pro-
posed in the literature do not follow these require-
ments. For example, computing the area under the
ROC curve (AUROC) will only consider the binary
classification task: known or unknown, but does not
tell us how well the classifier performs on the known
classes. Another metric that is often applied is the
macro-F1 metric [2] that balances precision and recall
for a K+1-fold binary classification task. This metric
has many properties that are counter-intuitive in the
open-set classification task. First, a different thresh-
old is computed for each of the classes, so it is pos-
sible that the same sample can be classified both as
one or more known classes and as unknown. These
thresholds are even optimized on the test set, and of-
ten only the maximum F1-value is reported. Second,
the method requires to define a particular probability
of being unknown, which is not provided by two of our
three networks. Finally, the metric does not distin-
guish between known and unknown classes, but just
treats all classes identically, but consequences of classi-
fying an unknown sample as known are different from
misclassifying a known sample.

The evaluation metric that follows our intuition
best is the Open-Set Classification Rate (OSCR),
which handles known and unknown samples separately
[6]. Based on a single probability threshold θ, we
compute both the Correct Classification Rate (CCR)
and the False Positive Rate (FPR):

CCR(θ) =

∣∣{xn | τn ≤ K ∧ arg max
1≤c≤K

yn,c = τn ∧ yn,c > θ}
∣∣

|NK |

FPR(θ) =

∣∣{xn | τn > K ∧ max
1≤c≤K

yn,c > θ}
∣∣

|NU |
(6)

where NK and NU are the total numbers of known
and unknown test samples, while τn ≤ K indicates a
known sample and τn > K refers to an unknown test
sample. By varying the threshold θ between 0 and 1,
we can plot the OSCR curve [6]. A closer look to (6)
reveals that the maximum is only taken over the known
classes, purposefully leaving out the probability of the
unknown class in the BG approach.5 Finally, this def-
inition differs from [6] in that we use a > sign for both
FPR and CCR when comparing to θ, which is critical

5A low probability for the unknown class does not indicate
a high probability for any of the known classes. Therefore, the
unknown class probability does not add any useful information.
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when SoftMax probabilities of unknown samples reach
1 to the numerical limits.

Note that the computation of the Correct Classifi-
cation Rate – which is highly related to the classifica-
tion accuracy on the known classes – has the issue that
it might be biased when known classes have different
amount of samples. Since the number of test samples
in our known classes is always balanced, in our evalu-
ation we are not affected by this bias, so we leave the
adaptation of that metric to unbalanced datasets as fu-
ture work. Furthermore, the metric just averages over
all samples, telling us nothing about different behav-
ior of different classes – it might be possible that one
known class is always classified correctly while another
class never is. For a better inspection of these cases,
open-set adaptations to confidence matrices need to be
developed in the future.

3.4. Validation Metrics

For validation on SoftMax-based systems, often clas-
sification accuracy is used as the metric. In open-set
classification, this is not sufficient since we need to bal-
ance between accuracy on the known classes and on the
negative class. While using (weighted) accuracy might
work well for the BG approach, networks trained with
standard SoftMax and EOS do not provide a proba-
bility for the unknown class and, hence, accuracy can-
not be applied for validation here. Instead, we want to
make use of the SoftMax scores to evaluate our system.

Since the final goal is to find a threshold θ such that
the known samples are differentiated from unknown
samples, we propose to compute the validation metric
using our confidence metric:

γ− = 1
NN

NN∑
n=1

(
1− max

1≤c≤K
yn,c + δC,K

1
K

)

γ+ = 1
NK

NK∑
n=1

yτn γ = γ+ + γ−

2

(7)

For known samples, γ+ simply averages the SoftMax
score for the correct class, while for negative samples,
γ− computes the average deviation from the minimum
possible SoftMax score, which is 0 in case of the BG
class (where C = K + 1), and 1

K if no additional back-
ground class is available (C = K). When summing
over all known and negative samples, we can see how
well our classifier has learned to separate known from
negative samples. The maximum γ score is 1 when all
known samples are classified as the correct class with
probability 1, and all negative samples are classified as
any known class with probability 0 or 1

K . When look-
ing at γ+ and γ− individually, we can also detect if the
training focuses on one part more than on the other.

4. Experiments
Considering that our goal is not to achieve the

highest closed-set accuracy but to analyze the perfor-
mance of open-set algorithms in our protocols, we use
a ResNet-50 model [12] as it achieves low classification
errors on ImageNet, trains rapidly, and is commonly
used in the image classification task. We add one fully-
connected layer with C nodes. For each protocol, we
train models using the three loss functions SoftMax
(S), SoftMax with Background class (BG) and Entropic
Open-Set (EOS) loss. Each network is trained for 120
epochs using Adam optimizer with a learning rate of
10−3 and default beta values of 0.9 and 0.999. Addi-
tionally, we use standard data preprocessing, i.e., first,
the smaller dimension of the training images is resized
to 256 pixels, and then a random crop of 224 pixels is
selected. Finally, we augment the data using a random
horizontal flip with a probability of 0.5.

Fig. 2 shows OSCR curves for the three methods
on our three protocols using logarithmic FPR axes –
for linear FPR axes, please refer to the supplemental
material. We plot the test set performance for both
the negative and the unknown test samples. Hence,
we can see how the methods work with unknown sam-
ples of classes6 that have or have not been seen during
training. We can observe that all three classifiers in ev-
ery protocol reach similar CCR values in the closed-set
case (FPR=1), in some cases, EOS or BG even outper-
form the baseline. This is good news since, oftentimes,
open-set classifiers trade their open-set capabilities for
reduced closed-set accuracy. In the supplemental mate-
rial, we also provide a table with detailed CCR values
for particular selected FPRs, and γ+ and γ− values
computed on the test set.

Regarding the performance on negative samples of
the test set, we can see that BG and EOS outperform
the SoftMax (S) baseline, indicating that the classifiers
learn to discard negatives. Generally, EOS seems to
be better than BG in this task. Particularly, in P1
EOS reaches a high CCR at FPR=10−2, showing the
classifier can easily reject the negative samples, which is
to be expected since negative samples are semantically
and structurally far from the known classes.

When evaluating the unknown samples of the test
set that belong to classes that have not been seen dur-
ing training, BG and EOS classifiers drop performance,
and compared to the gains on the validation set the be-
havior is almost similar to the SoftMax baseline. Espe-
cially when looking into P2 and P3, training with the
negative samples does not clearly improve the open-set

6Remember that the known and negative sets are split into
training and test samples so that we never evaluate with samples
seen during training.
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Figure 2: Open-Set Classification Rate Curves. OSCR curves are shown for test data of each protocol. The
top row is calculated using negative test samples, while the bottom row uses unknown test samples. Curves that do not
extend to low FPR values indicate that the threshold in (6) is maximized at θ = 1.

classifiers. However, in P1 EOS still outperforms S and
BG for higher FPR, indicating the classifier learned
to discard unknown samples up to some degree. This
shows that the easy task of rejecting samples very far
from the known classes can benefit from EOS train-
ing with negative samples, i.e., the denoted open-set
method is good for out-of-distribution detection, but
not for the more general task of open-set classification.

5. Discussion

After we have seen that the methods perform well
on negative and not so well on unknown data, let us
analyze the results. First, we show how our novel vali-
dation metrics can be used to identify gaps and incon-
sistencies during training of the open-set classifiers BG
and EOS. Fig. 3 shows the confidence progress across
the training epochs. During the first epochs, the con-
fidence of the known samples (γ+, left in Fig. 3) is
low since the SoftMax activations produce low values
for all classes. As the training progresses, the models
learn to classify known samples, increasing the correct
SoftMax activation of the target class. Similarly, be-
cause of low activation values, the confidence of neg-
ative samples (γ−, right) is close to 1 at the begin-
ning of the training. Note that EOS keeps the low
activations during training, learning to respond only
to known classes, particularly in P1, where values are
close to 1 during all epochs. On the other hand, BG

provides lower confidences for negative samples (γ−).
This indicates that the class balancing technique in (4)
might have been too drastic and that higher weights
for negative samples might improve results of the BG
method. Similarly, employing lower weights for the
EOS classifier might improve the confidence scores for
known samples at the cost of lower confidence for nega-
tives. Finally, from an open-set perspective, our confi-
dence metric provides insightful information about the
model training; so far, we have used it to explain the
model performance, but together with more parameter
tuning, the joint γ metric can be used as criterion for
early stopping as shown in the supplemental material.

We also analyze the SoftMax scores according to (2)
of known and unknown classes in every protocol. For
samples from known classes we use the SoftMax score
of the correct class, while for unknown samples we take
the maximum SoftMax score of any known class. This
enables us to make a direct comparison between differ-
ent approaches in Fig. 4. When looking at the score
distributions of the known samples, we can see that
many samples are correctly classified with a high prob-
ability, while numerous samples provide almost 0 prob-
ability for the correct class. This indicates that a more
detailed analysis, possibly via a confusion matrix, is
required to further look into the details of these errors,
but this goes beyond the aim of this paper.

More interestingly, the distribution of scores for un-
known classes differ dramatically between approaches
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Figure 3: Confidence Propagation. Confidence
values according to (7) are shown across training epochs
of S, BG and EOS classifiers. On the left, we show the
confidence of the known samples (γ+), while on the right
the confidence of negative samples (γ−) is displayed.

and protocols. For P1, EOS is able to suppress high
scores almost completely, whereas both S and BG still
have the majority of the cases providing high probabil-
ities of belonging to a known class. For P2 and, par-
ticularly, P3 a lot of unknown samples get classified as
a known class with very high probability, throughout
the evaluated methods. Interestingly, the plain Soft-
Max (S) method has relatively high probability scores
for unknown samples, especially in P2 and P3 where
known and unknown classes are semantically similar.

6. Conclusion
In this work, we propose three novel evaluation pro-

tocols for open-set image classification that rely on the
ILSVRC 2012 dataset and allow an extensive evalua-
tion of open-set algorithms. The data is entirely com-
posed of natural images and designed to have various
levels of similarities between its partitions. Addition-
ally, we carefully select the WordNet parent classes
that allow us to include a larger number of known,
negative and unknown classes. In contrast to previ-
ous work, the class partitions are carefully designed,
and we move away from implementing mixes of sev-
eral datasets (where rejecting unknown samples could
be relatively easy) and the random selection of known
and unknown classes inside a dataset. This allows us
to differentiate between methods that work well in out-
of-distribution detection, and those that really perform
open-set classification. A more detailed comparison of
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Figure 4: Histograms of SoftMax Scores. We
evaluate SoftMax probability scores for all three methods
and all three protocols. For known samples, we present his-
tograms of SoftMax score of the target class. For unknown
samples, we plot the maximum SoftMax score of any known
class. For S and EOS, the minimum possible value of the
latter is 1

K
, which explains the gaps on the left-hand side.

the protocols is provided in the supplemental material.
We evaluate the performance of three classifiers in

every protocol using OSCR curves and our proposed
confidence validation metric. Our experiments show
that the two open-set algorithms can reject negative
samples, where samples of the same classes have been
seen during training, but face a performance degrada-
tion in the presence of unknown data from previously
unseen classes. For a more straightforward scenario
such as P1, it is advantageous to use negative samples
during EOS training. While this result agrees with [6],
the performance of BG and EOS in P2 and P3 shows
that these methods are not ready to be employed in
the real world, and more parameter tuning is required
to improve performances. Furthermore, making better
use of or augmenting the negative classes also poses a
challenge in further research in open-set methods.

Providing different conclusions for the three different
protocols reflects the need for evaluation methods in
scenarios designed with different difficulty levels, which
we provide within this paper. Looking ahead, with the
novel open-set classification protocols on ImageNet we
aim to establish comparable and standard evaluation
methods for open-set algorithms in scenarios closer to
the real world. Instead of using low-resolution images
and randomly selected samples from CIFAR, MNIST
or SVHN, we expect that our open-set protocols will es-
tablish benchmarks and promote reproducible research
in open-set classification. In future work, we will inves-
tigate and optimize more different open-set algorithms
and report their performances on our protocols.
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