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Abstract

Great successes have been achieved using deep learn-
ing techniques for image super-resolution (SR) with fixed
scales. To increase its real world applicability, numerous
models have also been proposed to restore SR images with
arbitrary scale factors, including asymmetric ones where
images are resized to different scales along horizontal and
vertical directions. Though most models are only optimized
for the unidirectional upscaling task while assuming a pre-
defined downscaling kernel for low-resolution (LR) inputs,
recent models based on Invertible Neural Networks (INN)
are able to increase upscaling accuracy significantly by op-
timizing the downscaling and upscaling cycle jointly. How-
ever, limited by the INN architecture, it is constrained to
fixed integer scale factors and requires one model for each
scale. Without increasing model complexity, a simple and
effective invertible arbitrary rescaling network (IARN) is
proposed to achieve arbitrary image rescaling by training
only one model in this work. Using innovative components
like position-aware scale encoding and preemptive chan-
nel splitting, the network is optimized to convert the non-
invertible rescaling cycle to an effectively invertible pro-
cess. It is shown to achieve a state-of-the-art (SOTA) perfor-
mance in bidirectional arbitrary rescaling without compro-
mising perceptual quality in LR outputs. It is also demon-
strated to perform well on tests with asymmetric scales us-
ing the same network architecture.

1. Introduction
Recent deep learning based image super-resolution (SR)

methods have advanced the performance of image upscal-
ing significantly but they are often limited to fixed integer
scale factors and pre-determined downscaling degradation
kernels. To work in real world applications where an im-
age is commonly rescaled to arbitrary sizes, additional im-
age resizing is often needed, which leads to degradation in
both performance and efficiency. Lately there are growing
interests in SR models that support arbitrary scale factors
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and great successes have been achieved in recent works
[5, 7, 21]. However, they are only optimized for the uni-
directional upscaling process with the LR inputs either syn-
thesized from a predefined downscaling kernel or in its na-
tive resolution. Considering the potential mutual benefits
between downscaling and the inverse upscaling, some im-
age rescaling models [9, 19, 24] are developed to optimize
these two processes jointly and significant improvements
in upscaling accuracy are achieved comparing to unidirec-
tional SR models of the same scale factors. The state-of-
the-art (SOTA) performance for such bidirectional image
rescaling is set by the invertible rescaling net (IRN) as pro-
posed by Xiao et al. [24]. As shown in Fig. 1, it is able
to achieve the best performance so far since both the Haar
transformation and the invertible neural network (INN) [2]
backbone are invertible processes, and its forward and in-
vertible backward operations can model the downscaling
and inverse upscaling cycle naturally. Denoting the forward
downscaling process as (yL, zL) = f(xH), the HR image
can be fully restored as xH = f−1(yL, zL) if the latent
variable zL is preserved. When the network is optimized
to store as much information as allowed in yL and convert
zL as input-independent random variables, the optimal HR
output x̂H can be restored as f−1(yL, ẑL) where ẑL is ran-
domly sampled with minimized loss in restoration accuracy.
However, limited by the nature of INN architecture that the
number of pixels must be equivalent when differences in
resolution are accounted for (LR features have more chan-
nels), the applicable scale factors are limited to integers.

To overcome the above issues, we propose a new invert-
ible arbitrary rescaling network (IARN) that is able to im-
plement bidirectional arbitrary rescaling using similar INN
backbone and it is able to train one model for a range of
arbitrary scales, including asymmetric ones. As shown in
Fig. 1, it replaces the Haar wavelet transformation blocks in
IRN with a preemptive channel-splitting step denoted as

xlf
H = s(xH)

xhf
H = xH − xlf

H

(1)

where subscript H is used to specify that all images are pre-
served in original high-resolution. Note that this step is in-
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Figure 1: Comparison between IRN [24] and the proposed IARN. xH , yL and zH,L denote input HR image, output LR image
and the latent variables. Note that subscripts H,L refer to high- and low-resolution respectively, and superscripts hf, lf refer
to high and low frequency channels respectively. The main differences in IARN include channel-splitting in high-resolution
in place of Haar transform, the additional near-invertible rescaling between yH and yL, and enhancement in transformation
blocks inside the INN backbone.

trinsically invertible as xH = xlf
H + xhf

H for the inverse di-
rection. The feature transformation step using similar INN
backbone, which is also invertible, is denoted as

(yH , zH) = f(xlf
H ,xhf

H ) (2)

The downscaling and inverse upscaling are included as the
last step and it consists of two separate processes as

yL = d(yH)

ŷH = u(yL)
(3)

To optimize the network for invertible arbitrary rescaling,
in addition to the similar objectives to maximize informa-
tion saved in yH and make zH signal independent, one key
challenge is to make the last step invertible. If it satisfies
that ŷH = yH , the whole network is invertible. While this
bidirectional process in Equation 3 is not invertible in gen-
eral, for a given scale factor and specific downscaling func-
tion d(·) and upscaling u(·), like nearest neighbour (NN) or
bicubic interpolation, we can find a set of images which are
invertible to this rescaling process and our goal is to trans-
form yH as one of these rescaling invertible images so the
full process is effectively invertible. To help the transfor-
mation of yH and make it approaching invertibility faster,
a new preemptive channel-splitting step s(·) that converts
xlf
H as rescaling invertible in advance is proposed and it is

shown to be very effective. Lastly, as the aforementioned
rescaling-invertible feature is scale-dependent, an innova-
tive position-aware scale encoding is proposed as additional
inputs of the network to make the network capable of han-
dling large variations in arbitrary scale factors, including
asymmetric ones. This component is not illustrated in Fig. 1
for simplicity reasons but will be discussed in details later.
In summary, the main contributions of our work include:

• The first to use invertible neural network for bidirec-
tional arbitrary image rescaling and set new SOTA per-
formances in both generated LR and restored HR.

• A preemptive channel-splitting step, which separates
the rescaling-invertible component from the input HR

image, is advanced to make the learning of invertible
arbitrary rescaling more effective.

• A position-aware scale encoding, which is independent
of input image size and compatible with asymmetric
rescaling, is proposed to further boost model perfor-
mance in a large range of arbitrary scales.

2. Related Works
Arbitrary Scale Super-Resolution. Single image super-
resolution, as a form of image rescaling with a fixed inte-
ger scale factor like ×2 and ×4, has been studied exten-
sively. For the last few years, deep learning based meth-
ods like [6, 10, 15, 28, 27] have brought great successes in
this field, but these methods commonly train one model for
each scale factor. More recent models proposed by Lim
et al. [15] and Li et al. [12] are capable of training one
model for multiple scaling factors but only limited to in-
teger ones. Inspired by the weight prediction techniques in
meta-learning [11], a single Meta-SR model was proposed
by Hu et al. [7] to solve image rescaling of arbitrary scale
factors, by predicting weights of convolutional layers for
arbitrary scale factors within certain range. Alternatively,
Behjati et al. [3] proposed the OverNet to generate over-
upscaled maps from which HR images of arbitrary scales
can be recovered using optimal downsampling. In the lat-
est ArbSR, Wang et al. [21] proposed a plug-in module that
can optimize existing SR models for arbitrary asymmetric
rescaling, where scale factors along horizontal and vertical
directions could be different. While these methods are of-
ten limited to a maximum scale factor like ×4 to maintain
high performance, Chen et al. [5] proposed recently to use
learned pixel representation features to replace pixel value
features in previous methods. Using the innovative local
implicit image function (LIIF), this model can extrapolate
well to out-of-distribution large scales that are not seen in
training. Different from the above models which are op-
timized for upscaling reconstruction only, we consider the
bidirectional arbitrary rescaling of downscaling and upscal-
ing as one process in this work.
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Bidirectional Image Rescaling. To take advantage of the
potential mutual benefits between downscaling and the in-
verse upscaling, Kim et al. [9] proposed an auto-encoder
framework to jointly train image downscaling and upscaling
together. Similarly, Sun et al. [19] suggested a new image
downscaling method using a content adaptive-resampler,
which can be jointly trained with any existing differentiable
upscaling (SR) models. More recently, Xiao et al. [24] ad-
vanced an invertible rescaling net (IRN) that has achieved
SOTA performance for learning based bidirectional image
rescaling. Based on the invertible neural network (INN) [2],
IRN learns to convert HR input to LR output and an aux-
iliary latent variable z. By mapping z to a case-agnostic
normal distribution during training, inverse image upscal-
ing is implemented by randomly sampling ẑ from the nor-
mal distribution without need of the case specific z. While
the above bidirectional image rescaling methods are lim-
ited to a fixed integer scale factor like ×4, Pan et al. [18]
proposed the BAIRNet as the first to solve bidirectional
arbitrary rescaling by utilizing local implicit image func-
tions for both downscaling and upscaling with better over-
all cross-scale performance over IRN. Most recently, Xing
et al. [25] proposed an encoder-decoder network (AIDN)
to tackle the same challenge with consistent improvements
over both IRN and BAIRNet. Instead of using separate en-
coder and decoder to model image downscaling and upscal-
ing respectively, we propose here to model the downscal-
ing and upscaling processes as forward and backward op-
erations of one INN backbone. While very similar, their
performances in the upscaling task are consistently lower
than ours with very few exceptions in certain scales. Addi-
tionally, LR outputs from our IARN have better perceptual
quality comparing to AIDN in both blind or non-blind im-
age quality assessments. As it is shown in [13] that there
is a performance trade-off between the generated LR and
restored HR, our IARN is obviously the superior one com-
paring to AIDN when both downscaling and upscaling tasks
are considered.

3. Proposed Method

3.1. Network Architecture

Elaborated from the general pipeline shown in Fig. 1, the
detailed architecture of the proposed IARN is illustrated in
Fig. 2. For the forward downscaling process to generate
LR output yL from HR input xH , the overall process is
summarized in the following four steps:

xlf
H = s(xH)

xhf
H = xH − xlf

H

yH , zH , p̃lf
H , p̃hf

H = f(xlf
H ,xhf

H ,plf
H ,phf

H )

yL = d(yH)

(4)

where s(·) is the preemptive channel splitting function de-
tailed below, f(·) is the forward function of the INN back-
bone and d(·) is a downscaling function like nearest neigh-
bour or bicubic interpolation. For variables, x is the input
in forward direction, y is the output, and p and p̃ are the
position-aware scale encoding at the input and output side
respectively. Details about this position-aware scale encod-
ing will be introduced in later subsection. For subscripts
and superscripts, H and L means high- and low-resolutions,
while hf and lf represents high and low frequency compo-
nents respectively. Similarly the inverse upscaling process
consists of the following three steps:

yH = u(yL)

xlf
H ,xhf

H ,plf
H ,phf

H = f−1(yH , zH , p̃lf
H , p̃hf

H )

xH = xlf
H + xhf

H

(5)

where u(·) is an upscaling function and f−1(·) is the inverse
function of f(·).

The process presented in Equation 5 is an ideal inverse
process, where yH is perfectly restored after the downscal-
ing and upscaling cycle, and zH , p̃lf

H , p̃hf
H are all preserved.

This ideal situation does not exist in real application where
only yL is saved and ŷH ̸= yH . Similar to the previous
studies, a generated ẑH is used in place of zH . For scale
encoding, as they are utilized to carry position and scale
factor information for each pixel for both forward and back-
ward directions, and they are independent of low and high-
frequency branches, one general p is used for plf

H and phf
H

during forward process and the same for p̃lf
H and p̃hf

H dur-
ing backward upscaling. As a result, the restored HR output
x̂H is calculated as

ŷH = u(yL)

x̂lf
H , x̂hf

H = f−1(ŷH , ẑH ,pH)

x̂H = x̂lf
H + x̂hf

H

(6)

While the primary goal is to minimize the restoration er-
ror between x̂H and xH , the overall loss used to train the
network includes multiple losses for different objectives as
shown below

L = λ1Lr + λ2Lg + λ3Ld + λ4Li. (7)

Here Lr is the L1 reconstruction loss for upscaled HR out-
put x̂H and Lg is the L2 guidance loss for downscaled
LR output yL in reference to a downsampled LR refer-
ence yL using bicubic interpolation. For Ld, it is similar
to the distribution regulation loss of latent variable z as in
IRN [24]. However, with the newly introduced position-
aware scale encoding, in place of the L2 loss between zH
and z0H , it is calculated between (zH , p̃lf

H , p̃hf
H ) and refer-

ence (z0H ,pH ,pH). Here z0H is a zero tensor, following
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Figure 2: Network architecture of the proposed IARN, including the full process of preemptive channeling splitting s(·), the
feature transformation INN backbone and the rescaling-invertible module consists of downscaling d(·) and upscaling u(·),
and the enhanced dense atrous block used for transformation blocks ϕ, ρ, η.

the practice in IRN for the surrogate distribution matching
loss L′

distr. The last term Li is a novel rescaling-invertible
loss that aims to make the full process effectively invert-
ible. As discussed earlier, the proposed process is only par-
tially invertible since the downscaling and upscaling cycle
is not invertible. In general cases, ŷH = u(d(yH)) ̸= yH .
However, given specific pair of d(·) and u(·), there are
certain subset of rescaling invertible images yi

H satisfies
yi
H = u(d(yi

H)). For example, as explained later in Sec-
tion 3.2, for NN resampling, we can generate a rescaling-
invertible xlf

H from any input image xH . The rescaling-
invertible loss Li is introduced here as the L2 loss between
ŷH and yH . When the loss is zero, then yH is rescaling
invertible.

Note that while the layers of Invertible Blocks (In-
vBlock) in our INN backbone is similar to the ones in
IRN [22], there are some key differences. First, position-
aware scale encoding is introduced to both the lower low-
frequency (LF) and upper high-frequency (HF) branches to
enable the network adaptive to arbitrary scales. Secondly,
for transformation functions between the upper and lower
branches, including ϕ(·), ρ(·) and η(·), the original densely
connected convolutional block in IRN is enhanced with di-
lated convolutions where the dilation varies from 1 to l,
which is the number of layers in each block. l is simplified
as 2 here in Fig. 2. This enhanced Dense Atrous Block is in-
troduced to increase effective receptive fields of the network
with mixed dilation larger or equal to one. As the process in
the INN backbone is applied to original high-resolution im-
ages, the receptive fields of our IARN is the same as IRN in
pixel units, but would be smaller in terms of image regions
given the resolution difference if the network structure and
depth remains the same. Using a mixture of dilated con-
volutions in place of the original ones, it can increase the

receptive field without changes in the number of model pa-
rameters and model complexity.

3.2. Preemptive Channel Splitting

As seen in the Fig. 2, the HR output yH is located in
the lower branch of INN backbone and matches the low-
frequency HR input xlf

H in channel orders. While the trans-
formation functions in the INN backbone can transfer fea-
tures between lower and upper branches quite efficiently, it
may be beneficial to pre-process the inputs so that xlf

H is
close to yH even before feeding into the INN backbone,
making the learning task of transformation functions even
more efficient. As discussed above, it is ideal for yH to be
rescaling invertible for a given pair of resampling operation
d(·) and u(·). Here a preemptive channel splitting function
is proposed as s(·) = u(d(·)). As pointed out in BAIR-
Net [18], in the case of integer scale factors, s(·) would
be an idempotent operation when using bilinear downscal-
ing and nearest-neighbour upscaling. That is, for any im-
age x, s(s(x)) = s(x). In other words, s(x) is rescaling-
invertible. For arbitrary scales here, s(x) is only rescaling
invertible when using nearest-neighbour for both downscal-
ing and upscaling. Thus the preemptive channel splitting,
which splits the input image to two branches, is proposed
here as

xlf
H = uN (dN (xH))

xhf
H = xH − xlf

H

(8)

where N refers to nearest-neighbour resampling. Note that
the pair of d(·) and u(·) must be the same for both channel
splitting in the front and rescaling at the end. Experiments
are also conducted to demonstrate the advantage of nearest-
neighbour over other choices of resampling choices.
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3.3. Position-Aware Scale Encoding

Both the preemptive channel splitting and rescaling in-
vertible loss help the network transform yH to induce min-
imum losses during downscaling and rescaling steps and
lead to optimal restoration of x̂H consequently. As this
transformation is sensitive to scale factors, to enable the
model robust to a large range of arbitrary scales, scale infor-
mation are necessary during the transformation between the
lower and upper branches. Additionally, depending on the
scale factor and rescaling method, the position of the pixel
inside the image is also needed to determine operations ap-
plied to the pixel itself. Using nearest-neighbour as an ex-
ample, some pixels are resampled from neighbours located
to the top-left direction while others resampled from differ-
ent directions. The naive option of using absolution pixel
locations would result in training in a limited image size
while testing in larger out-of-distribution image size. To
account for these factors, a position-aware and image size
independent scale encoding p is defined as (sh, sv,dh,dv).
Here sh and sv are the scale factors along horizontal and
vertical directions respectively, to accommodate asymmet-
ric scales. For dh and dv , they are the relative horizontal
and vertical distances from the input pixel to the closest re-
sampled pixel to its bottom-right direction and can be cal-
culated as below

dh(i, j) = min
i′,i′s′h−ish≥0

i′s′h − ish

dv(i, j) = min
j′,j′s′v−jsv≥0

j′s′v − jsv
(9)

where (i, j) and (i′, j′) are indices of the input pixel and re-
sampled pixel respectively, sh and sv are pixel sizes along
horizontal and vertical axes for input image, and s′h and s′v
are pixel sizes of resampled image. Experiments conducted
later also demonstrate that the position-aware scale encod-
ing is greatly beneficial to network performance and it is the
best to include it in both lower and upper branches.

4. Experiments
4.1. Data and Settings

For fair comparisons with recent relevant works like
IRN and BAIRNet, the DIV2K [1] training set is used
for baseline training. Another dataset, Flickr2K [20], is
also included for training the final model. For quantita-
tive evaluation, we use HR images from six commonly used
datasets for comprehensive comparison, including Set5 [4],
Set14 [26], BSD100 [16], Urban100 [8], Manga109 [8], and
the DIV2K validation set. Following previous practices, we
take the peak noise-signal ratio (PSNR) and SSIM [23] on
the luminance channel for all test sets, with the exception of
DIV2K which uses average of RGB channels.

To accommodate the large range of arbitrary scale fac-
tors, a total of 20 layer of invertible blocks are included in

the INN backbone, less than the total of 24 used in IRN×2
and IRN×4. For the Dense Atrous Block, 4 layers of di-
lated convolution are included with dilation setting as 1 to 4
consecutively. Mini-batches of 16 144×144 patches are ini-
tially used, each with a random scale sampled from an uni-
form distribution of U(1, 4). It is upgraded to 24 192× 192
patches for the final model when trained using both DIV2K
and Flickr2K. There are two stages of training for the final
models, each with 250k iterations where the learning rate
is reduced by half after each 50k iterations. Settings of the
two stages are the same except for the starting learning rate,
which is 2 × 10−4 for the first and changed to 1 × 10−4

when resuming the second stage training. The weights of
losses are set at empirically at 1, 16 and 2 for Lr, Lg and
Li respectively. As we have found out in experiments, and
similar to the findings by Li et al. [13], setting ẑ as zero for
training and inference achieves equivalent or better perfor-
mance comparing to randomly sampled ẑ. As a result, Ld

is set as zero for our experiments as it has little impact on
learning.

4.2. Arbitrary Rescaling Performance
To assess the performance of our proposed method for

arbitrary rescaling in symmetric scales, we compare restora-
tion quality of rescaled HR images in a set of arbitrary
scales and the results are included in Table 1. Similar to
BAIRNet, models trained for fixed integer scales are evalu-
ated for arbitrary scales using additional bicubic interpola-
tions to keep the resolution of LR images fed into respective
models identical across different methods. For models ca-
pable of arbitrary scales on their own, most of them are op-
timized for upscaling only so they are only assessed here for
HR outputs. Other than our IARN, BAIRNet is the only one
that is trained for bidirectional arbitrary image rescaling.

As shown in Table 1, results from our IARN are the
best for all test cases except for a couple of cases where
AIDN is slightly better. Using the challenging Manga109
test set as an example, it leads over BAIRNet in PSNR by
+3.04, +1.16 and +0.89 for ×1.5, ×2.5 and ×3.5 respec-
tively. As shown in visual examples in Fig. 3, bidirectional
methods like IRN, BAIRNet, AIDN and our IARN outper-
form others significantly. Among the four, IARN is able
to restore details more accurately, making it easier to rec-
ognize details like the number 00. The IARN model used
for comparisons here uses an asymmetric pre-training for
the first stage. For intra-model comparison, two other vari-
ants, IARN† and IARN‡, are also included in Table 1 with
×3.5 as an example. IARN† takes the same pre-training
strategy but only uses DIV2K with baseline batch and patch
sizes, resulting a slightly worse performance behind IARN.
IARN‡ is the same as IARN† in data settings but it is ex-
clusively trained using symmetric scales for both stages. It
is consistently worse than IARN, proving that pre-training
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Table 1: Quantitative comparisons of SOTA SR and rescaling methods with the best two results highlighted in red and blue
respectively (IARN† and IARN‡ are used for intra-model comparisons only and not ranked, and methods in bold means
requirement of multiple models and additional interpolations to conduct tests in arbitrary scales).

Method
a

Scale Set5 Set14 BSD100 Urban100 Manga109 DIV2K

RCAN
a

[27] 1.5 40.97/0.9767 37.05/0.9578 35.59/0.9516 35.93/0.9660 42.33/0.9889 38.47/0.9701
Meta-SR [7] 1.5 41.47/0.9785 37.52/0.9601 35.86/0.9543 36.91/0.9696 43.17/0.9904 38.88/0.9718

LIIF [5] 1.5 41.23/0.9774 37.37/0.9591 35.76/0.9536 36.70/0.9684 42.84/0.9894 38.82/0.9717
ArbSR [21] 1.5 41.47/0.9786 37.51/0.9603 35.86/0.9547 36.92/0.9697 43.12/0.9904 38.84/0.9719
CAR [19]

a
1.5 40.50/0.9763 37.08/0.9596 35.72/0.9535 34.70/0.9635 40.90/0.9881 37.93/0.9683

IRN [24] 1.5 43.55/0.9891 39.52/0.9795 39.28/0.9833 36.52/0.9811 42.64/0.9936 40.18/0.9838
BAIRNet [18] 1.5 47.13/0.9849 43.12/0.9760 46.63/0.9959 44.01/0.9946 45.49/0.9948 44.99/0.9920

AIDN [25] 1.5 50.61/0.9961 46.70/0.9920 49.82/0.9983 46.26/0.9967 -1 47.01/0.9953
IARNA 1.5 51.02/0.9968 47.25/0.9938 50.91/0.9986 47.58/0.9975 48.58/0.9975 46.74/0.9949

RCAN [27] 2.5 36.05/0.9436 31.69/0.8815 30.47/0.8508 30.42/0.8990 36.59/0.9634 32.72/0.9079
Meta-SR [7] 2.5 36.18/0.9441 31.90/0.8814 30.47/0.8508 30.57/0.9003 36.55/0.9639 32.77/0.9086

LIIF [5] 2.5 35.98/0.9434 31.64/0.8813 30.45/0.8510 30.42/0.8992 36.39/0.9630 32.78/0.9091
ArbSR [21] 2.5 36.21/0.9448 31.99/0.8830 30.51/0.8536 30.68/0.9027 36.67/0.9646 32.77/0.9093
CAR [19]

a
2.5 37.33/0.9548 33.78/0.9169 32.53/0.9020 32.19/0.9301 37.63/0.9717 34.32/0.9310

IRN [24] 2.5 39.78/0.9742 36.39/0.9553 35.56/0.9540 33.99/0.9589 39.33/0.9836 36.60/0.9607
BAIRNet [18] 2.5 40.11/0.9664 36.62/0.9469 36.29/0.9563 36.62/0.9679 40.26/0.9830 37.46/0.9627

AIDN [25] 2.5 40.77/0.9750 37.62/0.9588 36.65/0.9593 37.10/0.9710 -1 37.88/0.9659
IARNA 2.5 40.93/0.9756 37.78/0.9598 36.81/0.9607 36.95/0.9703 41.38/0.9862 37.92/0.9662

RCAN [27] 3.5 33.47/0.9138 29.24/0.8141 28.42/0.7731 27.61/0.8348 32.74/0.9328 30.13/0.8511
Meta-SR [7] 3.5 33.59/0.9146 29.60/0.8140 28.42/0.7728 27.71/0.8356 32.75/0.9337 30.18/0.8524

LIIF [5] 3.5 33.41/0.9133 29.20/0.8131 28.39/0.7714 27.60/0.8334 32.60/0.9324 30.16/0.8517
ArbSR [21] 3.5 33.63/0.9149 29.58/0.8147 28.41/0.7744 27.69/0.8360 32.84/0.9339 30.14/0.8518
CAR [19]

a
3.5 34.98/0.9303 31.38/0.8643 30.14/0.8326 29.97/0.8871 35.00/0.9507 31.88/0.8865

IRN [24] 3.5 37.12/0.9546 33.65/0.9196 32.54/0.9047 31.84/0.9277 36.86/0.9690 33.84/0.9281
BAIRNet [18] 3.5 36.85/0.9472 32.97/0.9074 32.36/0.8986 32.71/0.9338 36.98/0.9671 33.87/0.9266

AIDN [25] 3.5 37.25/0.9538 33.87/0.9197 32.73/0.9032 33.20/0.9372 -1 34.19/0.9292
IARNA 3.5 37.44/0.9547 34.04/0.9218 32.90/0.9058 33.27/0.9371 37.91/0.9705 34.33/0.9308

IARN†A 3.5 36.82/0.9538 33.66/0.9194 32.69/0.9032 33.02/0.9350 37.72/0.9697 34.19/0.9292
IARN‡A 3.5 37.27/0.9537 33.74/0.9175 32.68/0.9019 32.81/0.9326 37.59/0.9690 34.09/0.9282

×
2
.5

GT RCAN LIIF ArbSR IRN BAIRNet AIDN IARN

×
3
.5

Figure 3: Visual examples of arbitrary rescaling at two scales: ×2.5 and ×3.5 (Zoom in to see improved sharpness in IARN
results comparing to AIDN, including the area marked by red arrows).

with asymmetric scales can help the final model performs
better in tests of symmetric scales.

Results of continuous scales between ×1.1 and ×4 (in-
creasing by 0.1 at each sampling point) are also illustrated
in Fig. 5 for a more thorough assessment. As explained
in BAIRNet, there is a significant performance boost when

1Incomplete AIDN results due to lack of model or data.

the models are trained jointly for both downscaling and up-
scaling. Among this group, BAIRNet is obviously better
than CAR and IRN across the range overall, except trailing
slightly behind IRN for a limited choices of scales. Both
AIDN and our IARN model are able to outperform other
models across the full range of arbitrary scales, surpassing
IRN even at fixed scales like ×2 and ×4. Between the two,
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Figure 4: Visual examples of generated LR images with magnified view of worst-case visual artifacts.
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Figure 5: Cross-scale (×1.1−×4) performance for arbitrary
rescaling testing of DIV2K validation set.

our IARN has better performance for most of the scales,
especially for small scales close to ×1.1 and large scales
around ×3.

Table 2: Quantitative quality assessment (NIQE↓/SSIM↑)
of generated LR outputs.

Method S Urban100
a

Manga109
a

DIV2K
a

CAR [19]
a

2 6.360/0.9658 4.365/0.9772 3.660/0.9748
IRN [24] 2 5.956/0.9941 4.214/0.9959 3.347/0.9945

BAIRNet [18] 2 6.475/0.9797 4.431/0.9892 3.507/0.9864
AIDN [25] 2 -1 -1 3.516/0.9920
IARNA 2 5.783/0.9963 4.120/0.9971 3.359/0.9963

CAR [19]
a

4 22.731/0.9196 6.886/0.9529 5.549/0.9460
IRN [24] 4 18.035/0.9916 5.884/0.9932 4.094/0.9933

HCFlow [14] 4 18.475/0.9651 6.457/0.9738 4.744/0.9785
BAIRNet [18] 4 19.401/0.9716 7.632/0.9824 4.896/0.9841

AIDN [25] 4 -1 -1 4.165/0.9909
IARNA 4 18.020/0.9928 5.961/0.9932 4.088/0.9944

4.3. LR Image Quality

For the group of six bidirectional rescaling methods, LR
outputs are also generated from the learning based models
respectively. Without a known ground-truth reference, the
goal is to generate visually pleasant images which look sim-
ilar to the LR reference that is downsampled from the HR

input using conventional bicubic interpolation. As shown in
Table 2, the SSIM calculated in related to the LR references
and the blind image quality metric NIQE [17] are used for
comparison. To accommodate the native integer scales in
CAR and IRN, ×2 and ×4 are used for assessments. It
is clearly shown that our IARN is the best overall, slightly
ahead of IRN as the lose second best, while AIDN is trail-
ing behind as the third best. An example of ×4 LR images
with the most visible artifacts are included in Fig. 4 to com-
pare different models. While they are not much different
from the bicubic reference in overall view, the CAR one is
noticeably brighter. From zoomed-in views on the first row,
HCFlow and BAIRNet are obviously the worst two with
obvious false color artifacts. While the remaining three are
similar visually, the artifacts are slightly more noticeable in
AIDN, as marked by red arrows in the left zoomed-in win-
dow in particular.

Table 3: Ablation study for different modules (Color-
highlighted group in one column means they share the same
setting in all other columns).

Channel Scale Atrous Rescaling # PSNR
a

Splitting Encoding Convolution Method InvBlock Urban100 ×4

✗ Dual ✗ Bilinear 16 26.79
✓ Dual ✗ Bilinear 16 27.22
✓ HF ✗ Bilinear 16 26.93
✓ LF ✗ Bilinear 16 27.04
✓ None ✗ Bilinear 16 26.70
✓ Dual ✓ Bilinear 16 27.41
✓ Dual ✓ NN 16 27.50
✓ Dual ✓ Bicubic 16 27.11
✓ Dual ✓ NN 20 27.76
✓ Dual ✓ NN 24 27.79

4.4. Ablation Study

To show the effects of different modules proposed here,
we conduct a comprehensive ablation study for different
combinations using Urban100 ×4 as the testing benchmark.
For illustrative purpose, all models were trained for 100k it-
erations and the differences in performance is clearly shown
in Table 3. For easy cross-reference, colored highlight are
used to associate mini-groups for comparison. Two of the
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LR⋆ Bicubic⋆ ArbSR⋆ IRN⋆ BAIRNet⋆ IARN⋆ GT⋆

Figure 6: Visual examples of arbitrary asymmetric scales.

most critical modules to boost performance are preemp-
tive channel splitting and position-aware scale encoding.
As highlighted in red, when channel-splitting is activated
while keeping other configurations identical, the average
PSNR increases by +0.43. Note that when no channel-
splitting is applied, original RGB channels are fed to the
LF branch while inputs to HR are zeros. For scale encod-
ing options as highlighted in blue, it is the best to include it
for both branches, boosting PSNR by +0.52. When atrous
convolution is applied, another +0.19 is added in PSNR.
For rescaling, NN is the best choice while bicubic is far
behind the other two. This corroborates the methodology
discussed earlier that channel-split function s(·) makes xlf

H

rescaling-invertible when using NN resampling. While the
final PSNR is always better when the number of InvBlock
layers increases, it is set at 20 in other experiments for better
efficiency with minimum performance loss.

Table 4: PSNR for symmetric and asymmetric scale factors.

BSD100 Urban100
×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5 ×2
×3

×1.6
×3.2

×3.6
×1.2

×2.5

ArbSR [21]‡ 30.58 30.87 30.24 30.51 30.59 30.60 29.74 30.68
IRN [24] 34.87 34.69 34.19 35.56 32.75 32.44 32.09 33.99

BAIRNet [18] 36.28 36.96 36.64 36.17 36.32 36.74 35.82 36.43
IARN⋆ 36.96 38.04 39.17 36.65 37.06 37.92 38.56 36.83

4.5. Asymmetric Arbitrary Rescaling

As discussed earlier, our IARN model can be optimized
for asymmetric scales using the exact same network archi-
tecture. For fair comparisons with ArbSR and BAIRNet,
another model denoted as IARN⋆ is trained using asym-
metric scale in both stages. As shown in Table 4, two chal-
lenging large benchmark test sets are used for assessment in
three asymmetric and one symmetric scales. Results from
ArbSR, IRN and BAIRNet are used for comparisons, using
the same evaluation protocol as in BAIRNet. It is demon-
strated that, both in quantitative metrics and visual exam-
pled as included in Fig. 6, our IARN⋆ holds a clear advan-
tage over other peers in restoring more accurate details.

4.6. Model Complexity and Efficiency
To assess the efficiency of our proposed IARN, it is com-

pared with others in terms of model size and average in-
ference time per image for the BSD100 test set. As illus-

trated in Table 5, three most relevant models which are op-
timized jointly for downscaling and upscaling are included
so the inference time includes both downscaling and upscal-
ing and listed separately. Note that for CAR and IRN, they
have models of different sizes depending on the scale fac-
tor, while for BAIRNet and our IARN, only one model is
needed for both tests. It is shown that our IARN is com-
parable to IRN ×4 in terms of number of parameters, much
more smaller than CAR and BAIRNet. For inference speed,
it is slower than CAR and IRN. But for the only two models
capable of bidirectional arbitrary rescaling (AIDN not yet
available for assessment), our model is able to outperform
the previous SOTA BAIRNet consistently while using less
than 20% parameters and reducing inference time by 66%
and 60% for ×2 and ×4 respectively.

Table 5: Model size and inference time comparison.

Method
a

Scale Param Downscaling Upscaling

CAR [19] ×2 51.1M 0.004s 0.005s
×4 52.8M 0.004s 0.005s

IRN [24]
a ×2 1.66M 0.018s 0.021s

×4 4.35M 0.025s 0.026s

BAIRNet [18] ×2 22.4M 0.506s 0.129s
×4 0.459s 0.061s

IARN
a ×2 4.32M 0.058s 0.154s

×4 0.058s 0.154s

5. Conclusions

Image arbitrary rescaling using deep learning is a rela-
tively new and under explored topic in the field of low-level
image processing due to its complexity. In this paper, we
have presented the first invertible arbitrary image rescaling
work. Based on an INN backbone enhanced with a novel
preemptive channel splitting module and a new position-
aware scale encoding method, the newly proposed IARN
network is capable of handling bidirectional image arbi-
trary rescaling over a large range of scales using just one
trained model. Extensive experiments on a comprehensive
set of benchmark datasets validate a much better perfor-
mance of arbitrary image rescaling over the current related
SOTA methods in both HR and LR outputs, with reduced
model size and faster inference comparing to BAIRNet. In
addition, better performance is also achieved for asymmet-
ric arbitrary rescaling tests.
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