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Abstract

Ultra-Fine-Grained Visual Categorization (ultra-FGVC)
has become a popular problem due to its great real-world
potential for classifying the same or closely related species
with very similar layouts. However, there present many
challenges for the existing ultra-FGVC methods, firstly
there are always not enough samples in the existing ultra-
FGVC datasets based on which the models can easily get
overfitting. Secondly, in practice, we are likely to find new
species that we have not seen before and need to add them
to existing models, which is known as incremental learn-
ing. The existing methods solve these problems by Few-Shot
Class Incremental Learning (FSCIL), but the main chal-
lenge of the FSCIL models on ultra-FGVC tasks lies in their
inferior discrimination detection ability since they usually
use low-capacity networks to extract features, which leads
to insufficient discriminative details extraction from ultra-
fine-grained images. In this paper, a self-supervised feature
enhancement for the few-shot incremental learning network
(SSFE-Net) is proposed to solve this problem. Specifically,
a self-supervised learning (SSL) and knowledge distillation
(KD) framework is developed to enhance the feature extrac-
tion of the low-capacity backbone network for ultra-FGVC
few-shot class incremental learning tasks. Besides, we for
the first time create a series of benchmarks for FSCIL tasks
on two public ultra-FGVC datasets and three normal fine-
grained datasets, which will facilitate the development of
the Ultra-FGVC community. Extensive experimental re-
sults on public ultra-FGVC datasets and other state-of-the-
art benchmarks consistently demonstrate the effectiveness
of the proposed method.

1. Introduction

Ultra-FGVC tasks start getting people’s attention in re-
cent years and have shown their great potential in many sci-
ence fields like precision agriculture. Compared with clas-
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Figure 1: Normal classification tasks (green boxes) vs ultra-
FGVC tasks (pink boxes). Images in the same box represent
the same species (cultivars). Blue arrows indicate the im-
ages which have high similarity.

sic classification datasets which are usually designed for
distinguishing different types of objects, for example (e.g.),
birds [29], cars [18], and aircrafts [20], ultra-FGVC mainly
focuses on identifying objects from the same or closely
related species with large intra-class and small inter-class
variances, like different kinds of cotton leaves. As shown
in Figure. 1. It’s clear that the ultra-FGVC leaf datasets
have much higher intra-class and smaller inter-class vari-
ances, which is more challenging for the model to identify
different species compared with normal FGVC datasets.

Despite the high similarity among different classes, an-
other challenge of ultra-FGVC lies in the limitation of train-
ing samples. In existing ultra-FGVC datasets, there are
usually only a small amount of annotated images available,
which matches better with real-world scenarios, especially
in scientific fields. For example, there are only six im-
ages for each class in the ultra-FGVC dataset CottonCulti-
var [35]. On the other hand, as the need for in-depth feature
extraction increases as well as more and more new classes
of objects detected in nature, people find that it’s necessary
to extend the current ultra-FGVC model without losing too
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much performance, which is known as class incremental
learning.

The existing methods solve the above few-label and in-
cremental learning problems by few-shot class incremen-
tal learning [26, 11, 21, 37, 36, 43, 7] which has received
great attention in recent years. However, FSCIL has never
been applied to the ultra-FGVC problem which was first
proposed by Yu et.al. [35] in 2021 with a series of ultra-
FGVC datasets and benchmarks. Besides, we find that
the state-of-the-art FSCIL methods pay much attention to
the catastrophic forgetting problem while ignoring the in-
ferior feature extraction ability of their low-capacity back-
bones. Learning discriminative representation is vital for
extensive vision tasks [40, 39]. For example, most FSCIL
methods adopt ResNet18 [26, 21, 7, 43] as their backbone
network, leading to insufficient discriminative details ex-
traction from ultra-fine-grained images. The reason why
they use low-capacity networks is that training insufficient
data samples on complex model will lead to overfitting. To
address these problems, we propose a novel SSFE-Net ar-
chitecture which combines self-supervised learning (SSL)
with knowledge distillation (KD). With this design, we can
take the advantage of a deeper neural network structure
(e.g., ResNet50 [15]) to learn much richer discriminative
features under the data-limited circumstances. Besides, the
features learned from the self-supervised learning module
strengthen the discrimination detection ability of the net-
work from the same sample, which is crucial in ultra-FGVC
datasets. Furthermore, the proposed model makes use of
the nature of small inter-class variance features on ultra-
FGVC datasets by applying a class mean incremental adap-
tation module. To verify the effectiveness of the SSFE-Net,
we conduct experiments on two ultra-FGVC datasets and
three commonly used fine-grained datasets. Since this is the
first time to apply few-shot class incremental learning on
ultra-fine-grained datasets, we create benchmarks on these
datasets using different benchmark methods, which will fa-
cilitate the development of the ultra-FGVC community. The
results indicate that our model has significant improvement
compared with other benchmarks and achieves state-of-the-
art performance.

The contributions of our work can be summarized as fol-
lows:

• A novel self-supervised feature enhancement network
(SSFE-Net) is proposed to enhance the feature extrac-
tion ability of the low-capacity backbone in ultra-fine-
grained FSCIL. An overview of the proposed SSFE-
Net is shown in Figure 2.

• A self-supervised learning (SSL) module is developed
to extract more high-dimensional feature representa-
tions without getting overfitting due to its advantages
of robust self-supervised feature augmentation ability.

Besides, a knowledge distillation module (KD) is con-
structed to transfer high-quality features extracted by
SSL and augment the low-capacity FSCIL network.

• For the first time, a series of FSCIL benchmarks are
created based on two different ultra-FGVC datasets,
which will facilitate the development of the ultra-
FGVC community.

2. Related Works
2.1. Ultra-Fine-Grained Visual Categorization

Ultra-Fine-Grained Visual Categorization (ultra-FGVC)
has gained much attention in recent years [35, 19, 22, 25,
33, 34, 32, 31]. Compared with normal fine-grained visual
categorization (FGVC) tasks, ultra-FGVC is more challeng-
ing due to the far fewer labelled samples in each class since
it is labour-consuming to annotate large-scale datasets. An-
other challenge is that the ultra-FGVC datasets have small
inter-class similarities, even human experts may fail to dis-
tinguish different species. Therefore, studying ultra-FGVC
will have tremendous development foreground and practical
value.

In recent years, many research works are conducted
based on ultra-FGVC tasks and make remarkable progress.
The first ultra-FGVC tasks was proposed by Larese
et.al [19] based on a soy leaf dataset. Their work mainly
focuses on classifying different soy leaves using traditional
machine learning techniques, which demonstrates an effec-
tive way of identifying leaves by discriminative vein re-
gions. However, they only made use of vein details of
the leaf, which cannot effectively extract and make use of
other informative parts of the leaf, e.g., the leaf contour,
colour, etc. Besides, their soy leaf dataset only contains
three cultivars, which reduces the complexity of the task and
model. To better make predictions on ultra-FGVC tasks, Yu
et.al [35] first proposed several ultra-FGVC datasets and
a series of benchmarks for the development of the ultra-
FGVC community. These datasets are related to the preci-
sion agriculture field and have great diversity and complex-
ity. The authors further investigated these datasets and ultra-
FGVC challenges [33], and designed a MaskCOV network
architecture to better address the problems. MaskCOV is
a feature argumentation method that splits the original im-
ages into several equal parts. These patch level covariance
features will be masked or randomly combined to form new
features. With these modified images, the model not only
can focus on general layouts of objects but also can better
capture the discriminative areas to make predictions. Based
on their studies, we know that the common challenges of
ultra-FGVC come from the overfitting problem because of
the limitation of data samples as well as their inferior fea-
ture extraction ability. Therefore, advancing feature en-
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Figure 2: Architecture of SSFE-Net. The SSL model is first trained on the base part of a dataset. The feature representation
in SSL will then be combined with normal FSCIL features via KD to produce detailed information. The incremental learning
will combine the current session classifier with previous classifiers and take the advantage of the robust base model to produce
a better prediction head.

hancement is the most efficient and feasible way to address
the ultra-FGVC tasks.

2.2. Few-Shot Class Incremental Learning (FSCIL)

FSCIL aims to explore the new class incrementation
ability of normal CNNs with very few training samples.
Tao et.al [26] first proposed the FSCIL concept in 2020
and named their framework as TOPIC. They introduced a
neural gas network to maintain the feature representations
space in incremental learning. The most challenging task
in FSCIL is the catastrophic forgetting problem during new
class incremental stages. Zhu et.al [43] introduced a ran-
domly episodic training scheme in which they used random
incremental episodes and a self-promoted prototype refine-
ment mechanism to extend the network and maintain the
dependencies of old classes. Achituve et.al [1] developed
a tree-based model using common Gaussian process classi-
fication methods with deep kernel learning. Zhao [37] fur-
ther addressed the catastrophic forgetting problem by bal-
ancing the model ability of slow forgetting old knowledge
and fast adaptation to novel classes. Mazumder et.al [21]
proposed an FSLL structure that uses self-supervised learn-
ing as an auxiliary loss to train the network. They only
updated a small number of parameters of the base training
network, which can prevent the network from deviating far
away compared with its previous values.

2.3. Self-Supervised Learning (SSL)

It does not require any supervision from human la-
bel annotations when performing SSL, which is benefi-

cial for solving real-world problems where we don’t al-
ways have many labelled samples. Recently, many re-
search works have demonstrated the effectiveness of SSL
on both detection and classification tasks [8, 13, 4, 14, 9],
and also proven that SSL benefits the deep neural network
by learning robust features representations for typical few-
shot tasks [12, 24, 6, 10]. Chen et.al [6] embedded Aug-
mented Multiscale Deep InfoMax (AMDIM) [3] as their
SSL model to few-shot classification tasks. The pre-trained
SSL model can maximise the mutual information from dif-
ferent views of an image and significantly improve classi-
fication performance. Su et.al [24] augmented the unla-
belled images by rotation and jigsaw puzzle. The new im-
age representations combined with labelled images are used
to improve few-shot learning and increase the network ro-
bustness and generalisation ability. Besides the applications
of SSL on normal few-shot learning tasks, recently, some
studies focus on presenting SSL as auxiliary tasks to sup-
port FSCIL problems and achieve great improvement. Par-
ticularly, Mazumder et.al [21] utilized rotation prediction
in SSL to provide auxiliary loss while doing the few-shot
class incremental learning. Zhu et.al [42] proposed a PASS
architecture which also adopted rotational based augmenta-
tion SSL to images.

3. Method
In this section, we first give a brief introduction to

few-shot class incremental learning and then introduce our
method in three parts, including the self-supervised learning
module, knowledge distillation module, and the final incre-
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mental learning.

3.1. Few-shot Class Incremental Learning (FSCIL)
Task Formulation

In FSCIL tasks, the dataset is split into a stream of la-
belled subsets (D1

train, D2
train, ..., Dn

train), where n rep-
resents different training sessions. The data stream has
no overlapping classes with each other and only Dn

train is
available at training session n. On the other hand, for the
test samples Dn

test at session n, all testing samples in previ-
ous seen classes will be used for evaluation. Normally, the
first training session D1

train is a relatively large dataset for
training a base model, all following few-shot training ses-
sions Dn>1

train contain N classes and K training samples per
class denoted as N -way K-shot in FSCIL.

Inspired by [6] which adopted SSL to train a large em-
bedding network for a two-state paradigm, we use SSL to
pre-train the base learning part in the FSCIL task for in-
depth features. The SSL model will be trained using Sim-
Siam architecture with a contrastive learning technique to
extract semantic information for simplicity. The proposed
network has no restriction on SSL methods so other SSL
techniques also work. In the FSCIL base training stage,
the feature maps and feature vectors extracted by ResNet18
will be combined with SSL mutual information via KD to
provide more discriminative features.

In the incremental learning stage, since the main restric-
tion of FSCIL on ultra-FGVC tasks comes from the lack
of ability to obtain in-depth discriminative area on differ-
ent objects at the base training model, improving the model
discriminative feature extraction ability is more important
at this beginning stage. In the following, we will introduce
the proposed self-supervised learning module and few-shot
class incremental learning subsequently.

3.2. Self-Supervised Learning (SSL) Module

Many studies have shown that SSL can be a good ini-
tialization of a model [6, 27, 2]. We use SSL to maximize
the mutual information and provide multiple views for sam-
ple images. The SSL model is pre-trained by only using
the base part of a dataset, all data in novel sessions will
not get involved at this stage. The SSL model we used
applies the contrastive learning concept as indicated in the
self-supervised learning module of Figure 2. The network
randomly augments an image xn as two different views xn

1

and xn
2 . The two views will then be further processed by

a feature extraction encoder network E(x) and a prediction
head P(x). E(x) can share weights between two views dur-
ing training and the prediction head P(x) which is responsi-
ble for transferring as well as matching one view feature to
another. The outputs from different views are simplified as
p1 =∆ E(x1) and z2 =∆ P(E(x2)). Then the negative cosine
similarity between two outputs is defined by:

G(p1, z2) = − p1
∥p1∥2

× z2
∥z2∥2

, (1)

in which ∥·∥2 represents l2-norm. Note that a stop-gradient
operation is applied on z2 to prevent dimensional collaps-
ing, which means z2 becomes a constant stopgrad(z). Fi-
nally, the symmetrized loss following [13] is defined as:

L =
1

2
G(p1, stopgrad(z2)) +

1

2
G(p2, stopgrad(z1))

(2)
By studying the images with their own variances, the

SSL module enhances the representation learning ability of
the model and provides more details of discriminative areas
without overfitting problems.

3.3. Knowledge Distillation (KD) Module

The mutual information obtained in the pre-trained SSL
module will be further processed and combined with stan-
dard few-shot incremental training at the knowledge distil-
lation stage in Figure 2. Same as normal FSCIL settings,
the incremental learning in the proposed framework can be
divided into base training and multiple novel class train-
ing sessions. Inspired by [38], the student network will be
trained under the guidance of the teacher network’s feature-
aligned distillation and feature similarity distillation. Since
there is no need to recognize landmark positions on images
as in [38], we propose feature vectors aligned distillation in-
stead of feature maps to determine the distillation loss. The
vectorized distillation loss can be defined by making use of
the Kullback − Leibler (KL) divergence loss.

During the base training stage, the FSCIL backbone
Fbase generates feature vectors Vbase = Fbase(D1

train)
without classification head. At the same time, the
SSL network also processes feature maps and resizes
the embedding to match the FSCIL output Vssl =
Conv(Fssl(D1

train). The model will leverage two feature
embeddings and compare their similarity. The loss is gen-
erated by integrating the cross entropy loss Lce of model
predictions and the KL divergence loss LKL:

Ltotal = Lce(βVbase + γVssl) + αLKL(Vbase,Vssl),
(3)

where the parameters β, γ, and α denote the weight contri-
bution hyper-parameters of Lce and LKL.

3.4. Incremental Learning

In the incremental stage, we use decoupling backbone
with classifier strategy to update the classifier without mod-
ifying the backbone parameters similar to the continually
evolved classifiers [36]. This method uses the mean of each
class feature representation and has great benefits on ultra-
FGVC incremental tasks since the objects are all similar,
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learning the mean of representations can be easily trans-
ferred to novel classes without heavy training. For the indi-
vidual session n, the classifier wn is generated by replacing
the original predicting prototype classifier with the mean of
the feature representations from images of same class via

w j
n =

1

Mj

Mj∑
m=1

F (Dn
j ), (4)

where M is the number of images of class j. The new
incremental classifier wn will be concatenated with clas-
sifiers in the previous sessions to form an evolved classi-
fier Wn = {w1,w2, ...,wn}. When making predictions, the
network computes the cosine similarity between normalized
samples and the classifier by projecting the original repre-
sentations to the new sample space via inner product calcu-
lation:

P = ⟨norm(Dn
j ), norm(Wn)⟩, (5)

where ⟨·, ·⟩ denotes the inner product calculation to find the
similarity. Each novel session, we update the classifier with
the mean of new training sample representations and aggre-
gate it with the original classifier to test over all seen classes.

4. Experiments
To verify the effectiveness of the proposed method, we

carry out experiments on two public ultra-fine-grained and
three normal fine-grained datasets. Some example images
from each dataset are shown in Figure 3. The proposed
algorithm is tested and compared with three recently pub-
lished approaches. Besides, ablation studies are done under
different experimental settings to further verify the effec-
tiveness of the proposed method.

4.1. Datasets

CottonCultivar [35]. The CottonCultivar dataset was first
proposed in [35] for ultra-FGVC tasks based on different
cultivars of cotton leaves. There are 80 classes in total, 40
for base training, and the remaining 40 classes are split into
8 incremental sessions with 5 images for training and 1 for
testing per class at the FSCIL stage. The images are resized
to 512×512 and cropped to 448×448 at the training stage.
SoyCultivarLocal [35]. SoyCultivarLocal is a larger ultra-
FGVC leaf dataset that focuses on cultivars of soybeans.
It has 200 classes with 6 images per class. We use the
same training and testing split as CottonCultivar and the
same base novel splits as CUB200. Each image is resized
to 512×512 and then cropped to 448×448 during training.
PlantVillage [17]. PlantVillage is a public dataset designed
for plant disease detection systems initially. It consists of
38 different classes of leaf diseases and species. Since the
image number is imbalanced among different classes, we

randomly choose 100 images, resize them to 256 × 256,
and crop them to 224 × 224 from each class for training.
There are 23 classes in the base training session and the rest
15 classes are further equally split into 3 novel sessions.
Caltech-UCSD Birds-200-2011 (CUB200) [29]. CUB200
consists of 11788 images from 200 different bird categories.
Each image is resized to 256 × 256 and then cropped to
224 × 224 in the training stage. We use 100 categories for
base training and the rest 100 for incremental training fol-
lowing the setting in [26]
Mini-ImageNet [28]. It’s a subset of the ImageNet-1k
dataset which contains 100 categories with 600 samples of
84 × 84 color images per class. Same as [26], the first 60
classes are used for base training and the rest is split equally
into 8 sessions.

Table 1: Benchmark results on SoyCultivarLocal dataset us-
ing 10-way-5-shot setting.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9 10 11

SPPR [43] 6.00 7.27 4.62 5.00 4.67 5.00 4.12 4.12 3.33 2.11 3.00

PASS [42] 8.00 11.81 10.00 6.92 5.71 5.33 4.38 4.12 2.78 3.16 2.50

CEC [36] 26.00 24.56 23.33 36.33 19.66 20.42 19.14 20.85 21.91 20.20 18.07

SSFE-Net 28.73 27.27 27.50 26.15 25.71 24.00 23.75 21.76 22.22 21.05 20.00

Table 2: Benchmark results on CottonCultivar dataset using
5-way-5-shot setting.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9

SPPR [43] 12.50 6.98 6.52 6.12 5.77 5.45 5.17 4.92 4.69

PASS [42] 10.00 11.11 12.00 3.64 6,67 7.69 7.14 8.00 5.00

CEC [36] 17.50 15.55 14.00 12.73 8.33 4.69 13.02 9.23 7.81

SSFE-Net 25.00 17.78 18.00 14.55 15.00 13.85 15.71 14.67 13.75

Table 3: Benchmark results on PlantVillage dataset using 5-
way-5-shot setting. The FSCIL parameter shows different
methods’ trainable parameter amounts at the FSCIL stage.

Methods FSCIL Param Sessions (%)
1 2 3 4

SPPR [43] 12.31M 91.13 71.16 57.71 46.62
PASS [42] 11.35M 86.85 75.75 64.30 53.79
CEC [36] 12.33M 95.81 88.01 78.90 71.24
SSFE-Net 11.46M 97.31 89.28 79.04 72.90

4.2. Implementation Details

All experiments are conducted under the PyTorch frame-
work. As indicated in Eq.3, there are three trade-off hyper-
parameters β, γ, and α when calculating the loss, they are
set to 8e−1, 2e−1, and 9e−1 respectively. ResNet50 is
adopted at the SSL pre-training stage to extract more de-
tailed features, the learning rate is decayed by 0.1 every
20 epochs. We use a common 5-way-5-shot setting for
CUB200, Mini-ImageNet, and PlantVillage following the
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CottonCultivar SoyCultivarLocalCUB200 Mini-ImageNet PlantVillage

Figure 3: Sample images from five datasets that are used in our study. Each image represents an isolated class of the object.

Table 4: Experimental results on CUB200 dataset using different methods.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9 10 11

iCaRL [23] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16

EEIL [5] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11

NCM [16] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87

TOPIC [26] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28

SPPR [43] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33

SDC [30] 72.29 68.22 61.94 61.32 59.83 57.30 55.48 54.20 49.99 48.85 42.58

GP-Tree [1] 72.84 67.00 62.98 58.19 54.84 51.77 49.40 47.57 45.47 44.05 42.72

DC [28] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31

FSLL+SS [21] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82
CEC [36] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28

SSFE-Net 76.38 72.11 68.82 64.77 63.59 60.56 59.84 58.93 57.33 56.23 54.28

work in [2]. Due to the limitation of training samples per
class in CottonCultivar and SoyCultivarLocal datasets, the
5-way-3-shot training setting is applied to all the involved
comparison methods. In the FSCIL stage, a commonly used
ResNet18 structure is adopted as the backbone. We use
the 10-way 5-shot setting for the Mini-ImageNet as well
as SoyCultivarLocal datasets while the 5-way 5-shot for the
remaining datasets, which is similar to the settings in work
[26]. For fair comparisons, all experiments we performed
on ultra-FGVC datasets do not use the backbone with the
ImageNet pre-trained ResNet18. We also conduct abla-
tion studies with the ImageNet pre-trained backbone using
the proposed model and CEC benchmark. More details of
the hyper-parameter settings and the tuning process can be
found in the supplementary materials Section A.

4.3. Compare with the State-Of-The-Art Methods

To verify the effectiveness of our proposed method, we
compare our model with other competitive state-of-the-art
methods. For the SoyCultivarLocal, CottonCultivar, and
PlantVillage datasets, Tables 1 - 3 present the performances
of different methods on these benchmark datasets, the best

accuracy is highlighted in bold. Since only a small num-
ber of the existing models fully release their source code,
we only use SPPR [43], PASS [42], as well as CEC [36]
for ultra-FGVC benchmark comparison. We apply optimal
fine-tuning settings for all benchmark models under the new
dataset splittings, which are far better than they claimed
in their corresponding papers. The experimental results in
these tables consistently verify that the proposed method
has superior performance on all ultra-FGVC datasets. Since
the SSL model will not get updated at the FSCIL stage, the
SSFE-Net has a similar amount of trainable parameters to
other benchmarks as presented in Table 3 during the FSCIL
stage.

We also conduct experiments on the commonly used
fine-grained datasets CUB200 and Mini-ImageNet of tra-
ditional FSCIL tasks to further validate the generalisation
ability of the proposed SSFE-Net. The comparison meth-
ods include iCaRL [23], EEIL [5], NCM [16], TOPIC
[26], SPPR [43], SDC [30], GP-Tree [1], Decoupled-Cosine
(DC) [28], FSLL+SS [21], and CEC [36]. Tables 4 and
5 show the testing performances on CUB200 and Mini-
ImageNet. It’s clear that the SSFE-Net can still achieve
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competitive performance on normal FSCIL datasets.

Table 5: Experimental results on Mini-ImageNet dataset us-
ing different methods.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9

iCaRL [23] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21

EEIL [5] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58

NCM [16] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17

TOPIC [26] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42

SPPR [43] 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92

SDC [30] 64.62 59.63 55.39 50.92 48.30 45.28 42.97 42.51 41.24

GP-Tree [1] 62.32 57.10 52.90 49.36 46.28 43.55 41.13 38.97 37.02

DC [28] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63

FSLL+SS [21] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92

CEC [36] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63

SSFE-Net 72.06 66.17 62.25 59.74 56.36 53.85 51.96 49.55 47.73

5. Ablation Studies
The first ablation study focuses on comparing the con-

tributions of SSL models and KD to the improvement
of the FSCIL tasks. We adopt different SSL backbones
with/without the presence of KD and ImageNet pre-trained
backbone to analyse the effectiveness of different compo-
nents in the SSFE-Net. On the other hand, we test the
ultra-FGVC datasets with other commonly used incremen-
tal class split proportions and verify that the dataset splitting
does not have a large influence on the model performance.

5.1. The Contributions of SSL Embeddings and KD

To verify whether the SSL feature enhancement net-
work and KD embedding fusion have great improvement
on FSCIL tasks, we conduct extensive experiments to anal-
yse the contribution of different SSL backbone components
and KD on CUB200, SoyCultivarLocal, and PlantVillage
datasets. The performance comparisons under different
component combinations in the base training session (ses-
sion 1) are shown in Table 6, which clearly shows that
the self-feature enhancement module (SSL) and KD have
great improvements on FSCIL tasks. The SSL module with
ResNet50 backbone has the greatest improvement among
other backbones since it can generate higher dimensional
features compared with ResNet34 and is less prone to over-
fitting than ResNet101. Besides the SSL training with 5-
way 5-shot/3-shot settings, ablation experiments under the
5-way 1-shot (5w1s) SSL setting are also conducted to fur-
ther investigate the model performance. The results consis-
tently verify that the performance with the 5w1s setting still
benefits from the SSL module, and the KD component is
capable of properly fusing the SSL features into FSCIL.

The running time of the model is evaluated by running
experiments on an NVIDIA A5000 GPU for 150 epochs.
Furthermore, we visualise the differences between the nor-

mal FSCIL method and the SSFE-Net via class activation
maps (CAM) [41]. Please refer to supplementary materi-
als for comparisons. It’s clear that the SSFE-Net can better
focus on the most discriminative areas of the objects.

5.2. ImageNet Pre-trained FSCIL

The experiments on ultra-FGVC datasets are conducted
by training the ResNet18 of FSCIL from scratch. To fur-
ther explore the potential of the model, we adopt Ima-
geNet pre-trained parameters to SSFE-Net as well as the
best benchmark model CEC. The rest of the settings remain
the same. The comparison results are shown in Tables 7 and
8 from which we can see that the overall performances of
both methods under the above settings are significantly en-
hanced, and the proposed SSFE-Net still maintains its supe-
riority over CEC.

5.3. Dataset Split Proportion in FSCIL

Since there’s no benchmark on the few-shot incremen-
tal learning with ultra-FGVC datasets in the literatures, we
mainly follow the split proportion for the CUB200 dataset
in [26] where half of the data classes are used as base learn-
ing. The proposed method is further tested under other com-
monly used data split settings on PlantVillage and Cotton-
Cultivar datasets. For PlantVillage, 20 classes are used for
base training and the remaining 18 classes are further sep-
arated into 6 sessions for incremental learning following a
3-way-5-shot setting. For CottonCultivar, 60 classes are se-
lected for base training, and the remaining 20 classes are
split into 4 incremental sessions following a 5-way-5-shot
setting. The performance of CEC and SSFE-Net with dif-
ferent splits on PlantVillage and CottonCultivar are reported
in Tables 9 and 10 from which we can see that the proposed
method still achieves state-of-the-art performance.

6. Discussions
The experimental results in Sections 4-5 clearly show

that the proposed SSFE-Net has superior performance on
the ultra-fine-grained few-shot incremental learning tasks.
From the CAM graph visual analysis of samples (see sup-
plementary materials for details), we can see that the pro-
posed model has a better ability to locate and focus on
the discriminative areas of the images compared with other
methods. The experiments on the CottonCultivar dataset
further demonstrate its strong feature enhancement ability.
The second best method CEC experiences a dramatic drop
in classification performance in Table 2 and 10 because it
has no mechanism for processing ultra Fine-grained data.
The leaf samples from the same class are coming from dif-
ferent parts of the cotton plant so they look very different.
CEC lacks detail capture ability and fails to identify differ-
ent species when new classes come in. With the considera-
tion of the small inter-class similarity and large intra-class
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Table 6: Base model training ablation studies on the presenting of different SSL backbones and KD on CUB200, SoyCulti-
varLocal, and PlantVillage datasets.

Model Components CUB200 SoyCultivarLocal PlantVillage

SSL Backbone KD FSCIL Session 1
Acc. (%)

Training
Time (s)

Session 1
Acc. (%)

Training
Time (s)

Session 1
Acc. (%)

Training
Time (s)

✗ ✗ ✓ 73.88 1145 19.88 818 95.38 1839
ResNet34 ✗ ✓ 73.13 1264 20.92 1053 96.13 2012
ResNet50 ✗ ✓ 73.43 1382 22.26 1271 96.24 2178
ResNet101 ✗ ✓ 73.67 2055 23.83 1485 95.39 2342
ResNet34 ✓ ✓ 74.92 1279 26.48 1055 96.81 2018
ResNet101 ✓ ✓ 74.18 2079 25.66 1476 95.57 2367
ResNet50 (5w1s) ✓ ✓ 76.05 1385 27.98 1206 97.27 2190
ResNet50 ✓ ✓ 76.58 1379 28.73 1219 97.31 2197

Table 7: Benchmark results on SoyCultivarLocal dataset
with ImageNet pre-trained FSCIL model.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9 10 11

CEC [36] 31.00 27.27 28.33 13.67 13.67 19.71 20.31 20.83 22.11 21.37 19.44

SSFE-Net 37.24 29.27 29.10 23.85 22.86 21.67 21.00 21.17 20.33 20.37 20.00

Table 8: Benchmark results on CottonCultivar dataset with
ImageNet pre-trained FSCIL model.

Methods
Sessions (%)

1 2 3 4 5 6 7 8 9

CEC [36] 52.50 42.22 36.00 32.77 28.33 30.77 28.57 28.00 27.50

SSFE-Net 60.00 53.33 46.00 40.00 36.67 36.92 35.71 30.67 28.74

Table 9: Experimental results from different methods on
PlantVillage dataset with different data splittings under the
3-way-5-shot setting.

Methods Sessions (%)
1 2 3 4 5 6 7

CEC [36] 95.26 90.96 81.96 78.50 73.24 66.86 63.23
SSFE-Net 96.45 92.27 81.77 78.95 72.56 68.13 63.98

Table 10: Experimental results from different methods on
the CottonCultivar dataset with 5-way 5-shot setting and 60
classes for the base session.

Methods
Sessions (%)

1 2 3 4 5

CEC [36] 18.33 13.33 10.00 9.33 6.25

SSFE-Net 27.50 18.46 20.00 17.33 16.25

variance properties of the ultra-FGVC datasets, SSFE-Net
makes use of the strong SSL feature embeddings and can
better locate the discriminative areas, which is beneficial
for slowing down performance drop in the novel sessions.
The detailed capture ability of the proposed method can be
verified by the CAM graph in the supplementary materi-
als. Besides, the SSL model helps the model easily transfer
the similar feature distribution and knowledge learned from

one class to another, which also improves the generalisation
ability of the model and benefits the novel session training.

However, compared with prior art FSCIL methods, the
SSFE-Net requires a pre-trained SSL model and slightly
more time to extract the detailed information from the im-
ages since it needs to generate two sets of feature embed-
dings for the same image. Besides, due to the fact that the
SSL model only enhances the features during the base ses-
sion, the novel incremental prototypes may suffer from in-
sufficient details and a lack of recognizability with differ-
ent class prototypes. For example, the proposed SSFE-Net
method accuracy is slightly lower than the CEC method in
sessions 3 and 5, as shown in Table 9. More detailed failure
examples are presented in the supplementary materials Sec-
tion C. Future works will focus on enhancing the discrimi-
native representations of feature prototypes in the novel ses-
sions and adapting them with the base feature space to fur-
ther reduce the catastrophic forgetting problem.

7. Conclusion
In this paper, a novel SSFE-Net architecture is proposed

to improve the feature extraction ability of the low-capacity
network backbone in ultra-fine-grained few-shot incremen-
tal learning. Specifically, a self-supervised feature enhance-
ment mechanism is developed to extract fine-grained details
from the image and achieve great performance on FSCIL
tasks. The network utilizes a deep self-supervised learn-
ing network to obtain more features from samples and over-
comes the bottleneck problem brought by the low capacity
network of normal FSCIL. The high-dimensional features
from SSL are then used to augment the FSCIL network via
knowledge distillation. In addition, the SSFE-Net makes
use of the high similarity attribute of different objects in
ultra-FGVC tasks and transfers the learning feature from
old classes to new classes, which reduces forgetting prob-
lems during incremental learning. On top of the proposed
model, a series of FSCIL benchmarks are carried out for
the first time based on two different ultra-FGVC datasets to
facilitate the development of the ultra-FGVC community.
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