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Abstract

The gaze redirection is a task to adjust the gaze of a
given face or eye image toward the desired direction and
aims to learn the gaze direction of a face image through a
neural network-based generator. Considering that the prior
arts have learned coarse gaze directions, learning fine gaze
directions is very challenging. In addition, explicit discrim-
inative learning of high-dimensional gaze features has not
been reported yet. This paper presents solutions to over-
come the above limitations. First, we propose the feature-
level transformation which provides gaze features corre-
sponding to various gaze directions in the latent feature
space. Second, we propose a novel loss function for discrim-
inative learning of gaze features. Specifically, features with
insignificant or irrelevant effects on gaze (e.g., head pose
and appearance) are set as negative pairs, and important
gaze features are set as positive pairs, and then pair-wise
similarity learning is performed. As a result, the proposed
method showed a redirection error of only 2° for the Gaze-
Capture dataset. This is a 10% better performance than
a state-of-the-art method, i.e., STED. Additionally, the ra-
tionale for why latent features of various attributes should
be discriminated is presented through activation visual-
ization. Code is available at https://github.com/
san9569/Gaze-Redir-Learning

1. Introduction

Gaze is a representative non-verbal cue that is detected first
when a person concentrates on a specific object. Recently,
gaze information has been used for assistant robots [30],
driver’s intention detection systems for avoiding safety-
critical situations [36], gaze tracking in VR systems [21],
and so on.

Classical approaches for gaze representation extracted
hand-crafted descriptors from face (or eye) images and used
them as gaze features [33, 23]. However, the simplistic na-
ture of hand-crafted descriptors has been an obstacle to per-
formance generalization. With the rapid development of the
feature extraction capability of neural network(s), the re-
cent methods were able to extract more powerful gaze fea-

Figure 1: Conceptual illustration of our problem defini-
tion. The proposed method can learn various gaze directions
compared to previous works [26, 45].

tures [40, 27, 26, 45]. In particular, generator-based meth-
ods [26, 45] showed the effect of gaze representation learn-
ing by directly manipulating the gaze direction of the eye or
face images.

This paper argues that the following two issues should be
resolved for learning a more robust representation of gaze.
First, the gaze directions that cannot be represented by in-
put images must be properly reflected on the (latent) fea-
ture space. As in Figure 1, prior arts [26, 45] used only the
limited gaze directions of the input images, i.e., the source
and target images, as supervision during training, so it was
difficult to learn the representation of unseen gaze direc-
tions. Second, gaze is tightly coupled with several human
factors, such as head pose and appearance, which have lit-
tle or no relevance to gaze [34, 19]. So, if gaze, head pose,
appearance, etc. are entangled in the feature space, it will
be very difficult to learn a feature that can fully represent
the gaze [22]. The discriminative learning of gaze features
and inessential features such as head pose features, that is,
learning of inter-feature relationship has not yet been at-
tempted.

This paper provides a novel concept of gaze understand-
ing that tackles both of the above-mentioned issues. First,
we propose so-called Gaze Hardness-aware Transformation
(GHT) to generate various gaze features from a pair of
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source and target images. GHT is defined by linear inter-
polation of the source and target gaze features, i.e., zgs and
zgt (cf. T in Fig. 2). Transformed feature(s) zgtr serves as
a kind of additional supervision that increases the number
of gaze directions that cannot be represented by source and
target alone and is also input to the proposed gaze consis-
tency loss function (cf. Sec. 3.2). Additionally, since GHT
is designed to increase the learning difficulty of gaze rep-
resentation, it prevents trivial solutions and alleviates the
overfitting problem at the later stage of training (cf. Sec.
4.4). Second, this paper proposes a so-called structured gaze
(SG) loss function for discriminative learning of gaze fea-
tures and inessential features. We define gaze and inessen-
tial features as a negative pair, and different gaze features as
a positive pair to form triplet tuples. The SG loss function
based on the triplet tuple calculates structured feature sim-
ilarity through various combinations between positive and
negative pairs in a mini-batch. Here, to alleviate the inherent
overfitting problem of metric learning, the hard negatives
and positives of Zhu et al. [46] are additionally utilized.
Therefore, the SG loss function learns the inter-feature rela-
tionship based on the so-called ‘push and pull’ strategy (cf.
Sec. 3.3).

The contribution points of this paper are summarized as
follows:

• GHT generates features of diverse gaze directions that
are not limited to a given source and target. To the au-
thors’ knowledge, learning for gaze direction based on
feature-level transformation has not been reported yet.

• Metric learning based on the SG loss function suc-
ceeded in learning the inter-feature relationship be-
tween gaze features and inessential features.

• For the GazeCapture [20] dataset, the proposed
method achieved more than 10% improvement in
quantitative performance compared to the state-of-the-
art (SOTA) gaze redirection methods. In addition, the
disentanglement property of the proposed method was
demonstrated through activation visualization.

2. Related Work
Gaze redirection. Gaze redirection is a computer vision
task that redirects the gaze direction of the face image to-
ward the target gaze direction. Warp-based methods [8]
warped an input eye image to the desired output appearance.
GAN-based methods [11, 38] generated redirected images
using Generative Adversarial Network (GAN) which has
been widely used in the generation task. [1] used an auto-
encoder based on numerical and pictorial guidance, and [16]
used a style-based generator to generate redirected images.

Transforming auto-encoder (TA) [12] that learned an
equivariant mapping between latent features and in-

put/output spaces was applied to the latest gaze redirection
methods [26, 45] and showed reliable performance. They
learned the auto-encoding process that transforms the gaze
direction of the source image into that of the target image.
In [26, 45], the (geometric) transformation that adjusts the
(source) gaze direction was called the redirection process
(R in this paper), and was defined by the rotation operation
(cf. Appendix). STED [45] defines gaze, head pose, and
task-irrelevant attributes in the latent space and additionally
generating pseudo-label-based images. However, existing
methods could not precisely learn the gaze representation
in the wild environment because they only used images with
a limited number of gaze directions. Feature-level transfor-
mation proposed in Sec. 3.2 can be a solution to this.
Feature-level transformations. One of the methods to im-
prove the generalization performance of neural networks is
transformation on the feature space [5, 44, 46]. For exam-
ple, DAML [5] generated hard negative features through
a generator network and used them for similarity learn-
ing. HDML [44] produced synthetic features through fea-
ture interpolation that can adaptively adjust the hardness of
similarity learning. Recently, a data-efficient transformation
that produces features useful for discriminative learning has
been developed to solve the computational and optimization
problems of [5, 44]. Zhu et al. [46] alleviated the overfitting
problem as well as the phenomenon that similarity learning
of positive and negative pairs was stuck at a trivial solu-
tion by employing feature extrapolation and interpolation.
Inspired by [44, 46], we propose a novel feature-level trans-
formation that can adaptively control the hardness of gaze
learning, thereby generating gaze features corresponding to
various gaze directions.
Deep metric learning with multiple pairs. Deep metric
learning uses a distance metric to understand the semantic
relationship between latent features. Contrastive loss [9, 13]
and triplet loss [3, 29] learn that the distance between pairs
of different classes becomes farther within a predetermined
margin and the distance between pairs of the same class be-
comes closer. The pair-based metric loss has been gradually
extended to quadruplet [2, 14] or N-pair loss [32], that is,
the generalized triplet based on N-pair negatives. Song et
al. [25] proposed a lifted structured loss that designs the
relationships between all positive and negative samples in
a mini-batch as a structured formula. We apply the inter-
feature relationship to gaze through metric learning.

3. Method

3.1. Problem Formulation

Our goal is to make the model learn the fine gaze representa-
tion by generating an image x̃t in which the gaze direction
of source images xs is redirected to that of the target im-
age xt. Our base model, i.e., the transforming auto-encoder
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Figure 2: Overview of the proposed method. R is the conventional rotation process (cf. Sec. 3.1). T is gaze hardness-aware
transformation and generates the new gaze feature zgtr (cf. Sec. 3.2). zgtr can be generated as many as the number of mini-
batches and represents various gaze directions. ψ is a pre-trained network for redirection learning and is frozen during
training (cf. Sec. 3.4). After all loss functions are calculated through all phases, the parameters of E and G are updated. In the
inference, phase 1 is performed to generate the redirected image x̃t, and phase 3 is used to calculate the redirection error for
evaluation.

(TA) [12, 45, 26], defines gaze zg , head pose zh, and task-
irrelevant features zu in the latent space, respectively, and
then learns the equivariant mapping between the feature
space and the input space (cf. Sec. 2). However, given a test
image with a gaze direction that is difficult to observe from
the source and target images, we cannot accurately repre-
sent the gaze direction (cf. Fig. 1). That is, learning various
gaze directions with a limited number of gaze directions is
quite challenging. Therefore, we attempt to learn the un-
seen gaze direction by generating a feature zgtr representing
a new gaze direction through linear interpolation between a
given source and target gaze features (zgs and zgt ).

Overview. Figure 2 is the overview of the proposed method.
In phase 1, given the source image xs, encoder E pro-
duce the (latent) feature zs on the unit hypersphere: zs =
Nm(E(xs)) where Nm indicates the L2 normalization. zs is
composed of a concatenation form of gaze zgs , head pose zhs ,
and task-irrelevant feature zus : zs = Concat(zgs , z

h
s , z

u
s ).

For redirecting the gaze and head direction, zgs and zhs are
rotated to z̃gt and z̃ht , respectively, by a conventional rota-
tion process R [45]. R rotates the source feature to the tar-
get feature using gaze and head pose ground-truths (GTs)
of source and target (cf. Appendix for more details). Also,
it is used to rotate the new feature of phase 2 to the target
feature. To preserve identity and details, zus is fed directly
to generator G, and G generates a redirected image x̃t us-
ing rotated features (z̃gt and z̃ht ) and zus : x̃t = G(z̃t) where
z̃t = Concat(z̃gt , z̃

h
t , z

u
s ).

In phase 2, the target image xt is encoded in the same
way as xs by E : zt = Nm(E(xt)) = Concat(zgt , z

h
t , z

u
t ).

Then, GHT (denoted by T) generates the new gaze feature

zgtr through the linear interpolation between source and tar-
get gaze feature. To learn the new direction of zgtr, zgtr is
redirected to z̃gtr which represents the target gaze direction
through R. Here, self-labels are used for redirection of zgtr
(cf. Sec. 3.2). Finally, gaze consistency loss Lcns based on
cosine distance between z̃gtr and z̃gt is minimized (cf. Eq. 2).

In phase 3, in order to supervise the gaze and head direc-
tion of x̃t, the redirection loss Lred, which is angular error
between the gaze (or head) directions of x̃t and xt estimated
by the pre-trained networks ψ, is minimized (cf. Sec. 3.4).
ψ was pre-trained with the gaze (and head) estimation task
and was frozen during training.

3.2. Gaze Hardness-aware Learning

This section describes Gaze Hardness-aware Transforma-
tion (GHT) to create a new gaze feature. Generating addi-
tional supervision of gaze directions is the core of GHT.
Specifically, GHT creates views that cannot be expressed
with zgs and zgt alone. Inspired by hardness-aware interpola-
tion [44], we define a transformed feature zgtr through linear
interpolation as follows:

zgtr = αsimzgs + (1− αsim) zgt , (1)

where αsim ∈ (0, 1) is an adaptive coefficient that is initial-
ized to 0.5, and zgtr is generated as many as the number of
mini-batches or more. αsim in Eq. 1 increases as learning
progresses, and the proportion of zgt decreases gradually.
Weakening the influence of zgt including the GT gaze direc-
tion make it harder to learn the gaze direction of zgtr. There-
fore, zgtr serves as an additional supervision of gaze direc-
tions that the source and target cannot see, and contributes
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to learning the gaze consistency between gaze features. To
update αsim and learn the generated gaze feature, we define
a loss function Lcns based on redirected gaze consistency as
follows:

Lcns = 1− αsim s.t. αsim = cos(z̃gtr, z̃
g
t ), (2)

where cos(z̃gtr, z̃
g
t ) =

z̃g
tr·z̃

g
t

∥z̃g
tr∥∥z̃

g
t ∥

and ∥·∥ is L2 norm. z̃gtr
and z̃gt are the gaze features in which zgtr and zgs are redi-
rected toward the gaze direction of the target image using
R, respectively. The self-label of zgtr required to obtain z̃gtr
is calculated by substituting the gaze labels of source and
target images into Eq. 1. Note that zgtr and zgs are redirected
in the gaze direction of the same zgt , so the ideal value of
αsim, i.e. cos(z̃gtr, z̃

g
t ), is 1. In the ideal case, zgtr is gener-

ated only from zgs , which corresponds to the most difficult
level of learning the gaze representation.

By doing this, generated gaze features allow neural net-
works to learn not only the gaze given the data but also var-
ious gaze directions. Actually, it was experimentally con-
firmed that the generalization performance of the proposed
method improves in the cross-dataset setting as the number
of zgtr increases (cf. Sec. 4.4).

3.3. SG Loss Function

We want to make the change of gaze direction in the redirec-
tion process less affected by head pose and task-irrelevant
features. For this disentanglement property, we propose
similarity learning between features through metric loss.

The basic idea of triplet tuple-based similarity learning
is to define the same classes as positive pairs, and define
different classes as negative pairs. Inspired by psychological
studies [34, 19] that gaze is actually associated with gaze-
irrelevant factors such as head pose, we form negative pairs
(zgs ,zhs ), (z

g
s ,zus ) by defining zhs and zus as negative attributes

for zgs , respectively.
However, a positive pair cannot be defined only with zgs

of a single attribute. Inspired by a prior art [6] that the fea-
ture extracted from the eye image can represent fine-grained
gaze, we define the eye feature zes extracted from an encoder
Eeye with the cropped eye image xe

s as input. Eeye is pre-
trained ResNet-18 with gaze estimation task and is frozen
during training. That is, zes = Eeye(x

e
s). As a result, a posi-

tive pair is defined as (zgs , z
e
s). Note that an eye image has a

fine-grained gaze property although zgs and zes are extracted
from the different networks, so the proposed positive pair
can contribute to the similarity learning.

However, comparing with previous studies [10, 17] han-
dling dozens or hundreds of class labels, we have only two
negative attributes (zhs , z

u
s ) to discriminate gaze features.

Inspired by [46], we generate additional negative samples
by linear interpolation of a negative pairs, i.e. (zgs , z

h
s ) and

(zgs , z
u
s ).

Figure 3: Conceptual illustration of the proposed SG loss
function. (a) Interpolated feature z−s is used for additional
negative sample. (b) Extrapolated feature z+s provides a
hard example for learning positive pairs.

z−s = Nm
(
Mh(zhs ) + (zgs −Mh(zhs ))α

−)
s.t. Mh(zhs ) = Nm(ReLU ◦ Linear(zhs )),

(3)

where α− ∼ Beta(2.0, 2.0) has the range of [0,1] and the
fine-grained zes can replace zgs (cf. Sec. 4.4). Note that zus is
also used to generate an additional negative sample instead
of zhs of Eq. 3. Here, Mu is used instead of Mh.

Here, since zhs and zus represent heterogeneous attributes,
z−s (of Eq. 3) generated through naive linear interpolation
can be regarded as easy negative samples. So, we realign
zhs and zus to the surface of the unit hypersphere using two
multi-layer perceptrons (MLPs), i.e., Mh and Mu. Through
this additional alignment process, z−s can not only be lo-
cated on the same level of feature space, but also can be
utilized as useful samples for metric learning. Now, z−s in-
cludes semantic attributes that zhs and zus cannot express,
and is defined as a negative pair by binding to zgs (or zes),
which acts as an anchor (see Fig. 3(a)). Also, since z−s are
uniformly distributed, the bias problem of pair-based simi-
larity learning can be alleviated (cf. Appendix).

On the other hand, similarity learning of positive pairs
(zgs , z

e
s) with relatively less constraints than negative pairs is

tempted to have a trivial solution. To prevent this problem,
we generate a hard positive (proxy) vector z+s through the
feature extrapolation [46] as follows:

z+s = Nm
(
zgs + (zes − zgs)α

+
)
, (4)

where α+ = α−+1 sampled in the range of [1,2] represents
the extrapolation coefficient. A proxy vector z+s located in
the vicinity of a pair of positive relationships (zgs , z

e
s) pro-

vides an additional constraint so that (zgs , z
e
s) does not have

a trivial solution (see Fig. 3(b)).
Finally, the SG loss function Lsg is defined based on the

basic triplets (zgs , z
e
s, z

h
s or zus ) and the additional vectors

defined above.
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Lsg =
1

2 |P|
∑

(i,j)∈P

max (0, Ji,j)
2

Ji,j =S

(
Di,j

τ

)
+

∑
(i,k)∈N

S

(
δ −Di,k

τ

)

+
∑

(j,l)∈N

S

(
δ −Dj,l

τ

)
,

(5)

where P and N represent the sets of all positive and nega-
tive pairs in a mini-batch, respectively. Di,j = ∥zi − zj∥2
stands for the Euclidean distance between vectors. S(·)(=
ln(1+exp(·))) indicates the softplus function. δ is the mar-
gin for negative samples and was set to 1.3. τ is the tem-
perature hyper-parameter and was set to 0.89. Note that in-
dices i and j of Eq. 5 correspond to zgs and zes (or z+s ), re-
spectively, and the similarity of positive pair is calculated
through Di,j . Indices k, l correspond to zhs (or zus ) and z−s
having negative relationship with elements of positive pair,
respectively. Therefore, the SG loss function follows a so-
called structured formula in which all combinations of pos-
itive and negative pairs are considered for similarity learn-
ing. Refer to Appendix for further analysis of the SG loss
function and generalized contrastive loss.

3.4. Total Loss Function

The total loss function of the proposed method is defined as
follows:

L =
1

N

N∑
n=1

(λredLn
red + λcnsLn

cns + Ln
other) + λsgLsg,

(6)
where λred, λcns, and λsg are set to 5.0, 2.0 and 10.0, re-
spectively. N is the size of the mini-batch. The first term
Lred is a loss function calculated through the mean angu-
lar error (MAE) metric between x̃t and xt. That is, Lred =
MAE(ψ(x̃t), ψ(xt)), where MAE(a,b) = cos−1 a·b

∥a∥∥b∥
and ψ is ResNet-18 pre-trained with gaze or head direction
estimation task [45]. The second term Lcns is a loss func-
tion for consistency learning between two redirected gaze
features (see Eq. 2). The third term Lsg is a loss function
for discriminative learning of gaze features (see Eq. 5). The
last term Lother consists of pixel-wise reconstruction and
perceptual loss functions between x̃t and xt for further fea-
ture regularization [45] (cf. Appendix). The loss functions
except for Lsg are calculated with N samples, and Lsg is
computed as much as the sizes of the positive and negative
transformed features, i.e., |P| and |N |.

4. Experiments
Configurations. We implemented the neural networks us-
ing the PyTorch library [28] and the following experiments
were performed in the environment of AMD 7742 CPU and

NVIDIA A100 GPU. Each experiment was repeated three
times. This is more reliable compared to STED of only one-
time experiment. In Fig. 2, an encoder E and a generator G
are based on DenseNet-based architecture [45], and an in-
put image is resized to 128 × 128. Eye features extraction
network Eeye is the pre-trained ResNet-18 [6] with man-
ually cropped eye images as input. As with other methods
[31], we use the data normalization procedure [42] that pre-
processes the gaze dataset to exclude the roll component of
head orientation.

The learning parameters of the designed neural network
are updated by repeating the forward and backward pro-
cesses about 140K times. The initial learning rate (LR) of E
and G was set to 10−3, and a step LR scheme that decreases
LR by 0.8 times every 25K iterations was used. The weight
decay coefficient was 10−4, and Adam optimizer [18] was
employed. The mini-batch size was set to 32.

4.1. Dataset and Evaluation Metrics

We adopted open datasets that could be used for research
purposes, and informed consent was obtained in the case of
EYEDIAP [7]. We used a total of four gaze datasets: Gaze-
Capture [20], MPIIGaze [43], Columbia Gaze [31], and
EYEDIAP [7]. The datasets include annotated head pose and
gaze direction information. GazeCapture consists of 2M
images acquired from 1,474 subjects in an unconstrained
setting. MPIIGaze consists of 213,569 images of 15 sub-
jects acquired in daily life. Columbia Gaze contains 6,000
images from 56 subjects. EYEDIAP is a gaze dataset de-
rived from 16 subjects. Our model was trained on the train
split of the GazeCapture dataset, and the generalization per-
formance was verified through cross-dataset evaluation for
three different gaze datasets.

A total of four evaluation metrics were used to evalu-
ate the proposed method. First, errg represents the MAE
between GT and the prediction of gaze direction, which
were estimated from xt and x̃t by ψ pre-trained on gaze
(or head pose) estimation task [45], respectively. So does
errh. Disentanglement error is a metric for measuring the
mutual influence of factors such as gaze and inessential fea-
tures. For example, the disentanglement error of gaze to
head (g → h) is the MAE between the head pose GT and
the redirected image from zs including the perturbed gaze
feature ẑgs . Here, the perturbed gaze feature ẑgs is the result
of adding uniform distribution-based random perturbation
ε ∼ U(−0.1π, 0.1π) to zgs : ẑgs = zgs + ε. In addition,
various combinations of features and GTs were utilized for
disentanglement errors: h→ g, the effect of change in head
pose factor on gaze direction, and u → g(/h), the effect
of changes in task-irrelevant factors on gaze (head pose) di-
rection. Finally, LPIPS [15] is a metric that measures the
perceptual similarity between xt and x̃t, and quantifies the
visual quality of redirected image [11, 45].
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Table 1: Quantitative results of within-dataset evaluation protocol. “†” denotes our reproduced result. (a) Comparision with
the state-of-the-art methods on the GazeCapture dataset. The results of FAZE and STED were borrowed from [26] and [45].
Here, in the case of FAZE, u→ g(/h) metric was excluded because it does not have a task-irrelevant feature. The percentage
indicates the degree of improvement of the proposed method compared to STED. (b) Comparision with the STED on the
MPIIGaze, Columbia and EYEDIAP datasets.

Method errg u→ g h→ g errh u→ h g → h LPIPS

StarGAN [4] 4.602 - - 3.989 - - 0.257
He et al. [11] 4.617 - - 1.392 - - 0.223

GazeFlow† [37] 5.314 - - 4.122 - - 0.255
FAZE [26] 7.114 - 4.882 2.470 - 0.542 0.279
STED [45] 2.195 0.507 2.072 0.816 0.211 0.388 0.205

Ours 1.884
▼14.2%

0.372
▼26.7%

1.902
▼6.7%

0.72
▼11.7%

0.184
▼12.8%

0.342
▼11.9%

0.199
▼2.9%

(a) GazeCapture [20]

Dataset Method errg u→ g h→ g errh u→ h g → h LPIPS

MPIIGaze STED† 2.133 0.605 2.312 0.724 0.314 0.442 0.204
Ours 1.814 0.512 1.994 0.684 0.211 0.339 0.202

Columbia STED† 3.134 0.902 3.307 0.886 0.334 1.002 0.233
Ours 2.872 0.782 2.902 0.902 0.314 0.987 0.212

EYEDIAP STED† 13.094 6.413 12.796 0.817 0.662 1.674 0.224
Ours 11.094 5.498 9.438 0.802 0.403 0.904 0.232

(b) MPIIGaze [43], Columbia [31] and EYEDIAP[7]

Table 2: Quantitative results of cross-dataset evaluation protocol. All methods are trained on GazeCapture dataset. “†” denotes
our reproduced result.

Test
dataset MPIIGaze Columbia EYEDIAP

Method errg h→ g LPIPS errg h→ g LPIPS errg h→ g LPIPS

StarGAN 4.488 2.783 0.260 6.522 3.359 0.255 14.906 4.025 0.248
He et al. 5.092 3.411 0.241 7.345 3.831 0.227 13.548 3.831 0.218

GazeFlow† 6.024 4.917 0.244 8.933 4.120 0.234 18.344 4.953 0.231
FAZE† 6.894 4.114 0.221 9.233 4.324 0.247 19.563 5.122 0.24
STED 2.233 1.849 0.203 3.333 2.136 0.242 11.290 2.670 0.213

Ours 1.998
▼10.5%

1.714
▼7.3%

0.194
▼4.4%

3.002
▼9.9%

1.974
▼7.5%

0.221
▼8.6%

10.231
▼9.3%

2.134
▼20.0%

0.204
▼4.2%

4.2. Quantitative results

Within-Dataset Evaluation. Table 1 shows the perfor-
mance of the proposed method according to the so-called
within-dataset evaluation protocol. Table 1a compares the
proposed method with other methods for the GazeCap-
ture dataset. The proposed method outperformed the other
SOTA methods in all metrics. For example, the proposed
method achieved errg of 1.884°, which was improved by
14.2% compared to STED. Also, the proposed method

showed h → g of 1.902°, which is 6.7% better than STED.
This shows that the consistency and disentanglement prop-
erties of latent features are important for learning auto-
encoding of TA. Meanwhile, Table 1b shows the within-
dataset evaluation results for the MPIIGaze, Columbia,
and EYEDIAP datasets, respectively. Here, STED, which
achieved the highest performance among existing meth-
ods, was compared with the proposed method. Compari-
son results with the other existing methods are reported
in the Appendix. Note that the proposed method outper-
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Figure 4: Performance of few-shot gaze estimation for the
MPIIGaze dataset. We expressed the standard deviation of
MAE as a shade overlaid on each curve. The curve of
STED [45] was calculated by applying the learned repre-
sentation of STED to the gaze estimator. For the results of
[39, 26] were borrowed from the papers.

formed STED in most metrics. This means that the pro-
posed method consistently contributes to the performance
improvement regardless of the dataset.
Cross-Dataset Evaluation. Table 2 shows the strength of
the proposed method through a cross-dataset evaluation
protocol with different training and evaluation datasets.
Similar to the within-dataset protocol in Table 1, the pro-
posed method showed performance superiority over the
baseline methods in the cross-dataset protocol. In particular,
note that the proposed method achieved average 9.9% lower
errg than STED for the three datasets. Also, the proposed
method generated redirected images of visually higher qual-
ity and showed slightly better performance even in terms of
LPIPS metric. This is verified in the user study of Sec. 4.3.
Evaluation of learned representation. We evaluated the
learned representation through a few-shot gaze estimation
task. We trained the gaze estimator using only a few cali-
bration samples. The gaze estimator is designed with a two-
layer MLP, and it outputs a three-dimensional gaze direction
vector by receiving the learned gaze representation. During
the training of the gaze estimator, the encoder E is frozen. In
the MPIIGaze dataset, 500 images per subject were used for
evaluation. k calibration samples were randomly selected
from the remaining samples and used as training data for
the gaze estimator. Each experiment was repeated 10 times
to calculate the mean and standard deviation. Fig. 4 shows
the few-shot gaze estimation performance of several meth-
ods [39, 26, 45] in the MPIIGaze dataset. In most cases (for
k > 5), the proposed method outperformed the previous
works. This proves the superiority of the gaze representa-
tion learned by our model.

4.3. Qualitative Results

We used ContraCAM [24], an up-to-date visualization tech-
nique, to prove the effectiveness of the proposed discrimi-

Figure 5: ContraCAM [24] visualization on the test split of
GazeCapture dataset.

Figure 6: Experiments of latent space traversal on GazeCap-
ture dataset. A sequence of facial images (a) with randomly
selected four gaze directions and (b) with the same gaze di-
rection while changing inessential features.

native learning. ContraCAM, which can utilize a continuous
type of GT for calculating activation maps, is more suitable
for the proposed method with continuous gaze or head pose
as GT than a class probability score (cf. Appendix for im-
plementation details).

Figure 5 visualizes the feature maps of STED and the
proposed method. The gaze features of STED pay attention
to the non-eye regions that are little related to gaze. On the
other hand, the gaze features of the proposed method focus
only on the eye region, and the inessential features point to
regions independent of gaze features.

Figure 6 analyzes the effect of gaze feature discrimina-
tion on gaze redirection through a qualitative comparison
of the proposed method and STED. In Fig. 6(a), the pro-
posed method tracks the direction change of GT well and
shows a significantly lower MAE than STED. In addition,
Euclidean distance (D) quantitatively measures how much
the gaze features and the inessential features are disentan-
gled from each other. In Fig. 6(b), the same tendency was
observed even when the characteristics of the inessential

3470



Table 3: Voting results of user study comparing STED with
our method. Each column sums up to 100%. The degree
indicates the projection of the gaze direction (pitch, yaw,
roll) onto the image plane and increases clockwise. 0° is the
left side from the center of the face.

Method [0°,120°) [120°,240°) [240°,360°) Mean

STED 14.6% 29% 20.2% 21.3%
Ours 85.4% 71% 79.8% 78.7%

Figure 7: (a) Learning procedure of errg and αsim. (b)
Some samples of generated images according to αsim.

features were changed while the direction of the gaze fea-
ture was fixed.

In addition, we conducted a user study to evaluate the
proposed method. We randomly chose 50 pairs of images
generated by the proposed method and STED, with the
same input image and gaze direction. For each image, 13
subjects were asked to select the redirected image that looks
more similar with the GT. As in Table 3, the proposed
method outperformed STED by up to 57%.

4.4. Ablation Study

This section regards an ablation study analyzing the effects
of key components of the proposed method. First, Fig. 7(a)
shows the transition of αsim and errg during training. We
can observe that errg decreases every 20K iterations thanks
to zgtr, which can alleviate the overfitting problem of the
network at the later stage of learning. Fig. 7(b) shows the
phenomenon that the subject’s gaze moves from the direc-
tion of the source to that of the target according to αsim,
which adjusts the ratio of the target’s gaze direction.

Next, we analyzed the proportion of the proposed Lcns

and Lsg in performance improvement. As shown in Table
4, the contribution of Lcns to the performance improvement
was slightly greater than that of Lsg . Case (d) shows the ef-
fect of SG loss without using z−s and z+s (cf. Section 3.3),
i.e., Lwo−ft

sg on performance. Compared to case (c) which
showed only marginal improvement, case (d) showed a sig-
nificant performance increase in all metrics. This proves the
effect of feature transformation to generate hard negative
and positive samples for SG loss.

Table 4: Effect of gaze consistency loss (Lcns), SG loss
without feature transformation (Lwo−ft

sg ) and full SG loss
(Lsg) on the entire performance. GazeCapture dataset was
used for this experiment.

Case Lcns Lwo−ft
sg Lsg errg h→ g LPIPS

(a) 2.334 2.414 0.237
(b) ✓ 2.100 2.339 0.211
(c) ✓ 2.221 2.329 0.233
(d) ✓ 2.134 2.018 0.219
(e) ✓ ✓ 1.884 1.902 0.199

Table 5: Performance of the proposed method according to
the number of zgtr on Columbia dataset.

# of zgtr 1N 10N 20N 50N
errg 2.872 2.714 2.364 2.112

Also, case (e) shows that the two loss functions cause a
synergistic effect with each other. Finally, Table 5 shows the
performance of the proposed method according to the num-
ber of zgtr. As the number of zgtr increases, errg becomes
lower because our model can learn fine-grained gaze direc-
tions between source and target. We reported the additional
results of the ablation study in Appendix. They include the
influence of Mh (or Mu), zes and batch-size. Finally, the re-
sult when the other metric loss (margin loss [35] and signal-
to-noise (SNR) loss [41]) is reported as well.

5. Conclusion

We succeeded in augmenting and manipulating gaze fea-
tures including various gaze directions through GHT. The
generated gaze features serve as additional supervision, im-
proving the generalization performance of gaze redirection.
In the future, GHT will be used for various purposes in gaze
representation learning requiring heavy annotation costs.
Also, the SG loss function for discriminative learning of
features can be extended to other computer vision tasks such
as recognition of facial emotions or gestures.
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