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Abstract

Deep neural networks perform well in artificially-
balanced datasets, but real-world data often has a long-
tailed distribution. Recent studies have focused on develop-
ing unbiased classifiers to improve tail class performance.
Despite the efforts to learn a fine classifier, we cannot guar-
antee a solid performance if the representations are of poor
quality. However, learning high-quality representations in
a long-tailed setting is difficult because the features of tail
classes easily overfit the training dataset. In this work, we
propose a mutual learning framework that generates high-
quality representations in long-tailed settings by exchang-
ing information between networks. We show that the pro-
posed method can improve representation quality and es-
tablish a new state-of-the-art record on several long-tailed
recognition benchmark datasets, including CIFAR100-LT,
ImageNet-LT, and iNaturalist 2018.

1. Introduction

Deep neural networks show high recognition accuracy
in artificially-balanced datasets, such as ImageNet [8],
COCO [21], and Places [35]. However, it is difficult to
obtain delicately manipulated data rather than long-tail dis-
tributed data in practice [25]. Under the imbalanced circum-
stance, a naively learned neural network is easily dominated
by head classes and performs disastrously in tail classes [1].

The apparent issue is that classifier predictions are entan-
gled with the long-tailed distribution [15]. In this respect,
several recent studies have focused on learning an unbi-
ased classifier by properly calibrating the classifier bound-
ary [17, 15, 33]. For example, instead of instance-balanced
(natural) sampling, class-balanced sampling, which sam-
ples uniformly across classes, has been used. These strate-
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Figure 1: t-SNE visualization of representations trained
with independent learning and mutual learning, respec-
tively, on CIFAR100-LT. To compare the quality of repre-
sentations in tail classes, ten random tail classes are chosen.

gies enhanced overall performance by increasing the per-
formance of the tail classes, but this was often suffered by a
decrease in the performance of the head classes. More im-
portantly, the performance of classifier-focused approaches
is limited by the quality of the learned representations.

It is difficult to learn high-quality representations in a
long-tailed environment because it overfits a limited number
of tail class samples. If samples from different classes are
mixed in the learned representation space, performance will
be limited regardless of how finely we tune the classifier
boundary. For example, Figure 1 (left) shows tail class rep-
resentations learned using cross-entropy loss with instance-
balanced sampling, and we cannot expect satisfactory per-
formance from the tangled representations. To quantify
the quality of learned representations, we freeze the feature
encoder and train a linear classifier using the test dataset.
Then, the accuracy of the linear classifier can be thought of
as the upper bound accuracy, and we define it as feature ac-
curacy. Although instance-balanced sampling learns better
representations than other sampling strategies [17], its fea-
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ture accuracy is 58.3%. In other words, any classifier cannot
get an accuracy better than 58.3% with the learned represen-
tations, regardless of how we finetune it. Accordingly, it is
crucial to learn high-quality representations under a long-
tailed environment to achieve higher performance.

In this study, we propose a framework for improving
the quality of representations under a long-tailed circum-
stance and combining an unbiased classifier. We exploit
decoupled learning of representations and a classifier since
the optimal strategy for representation learning differs from
that for classifier training. For example, instance-balanced
sampling learns better representations than class-balanced
sampling, whereas class-balanced sampling learns a better
classifier than instance-balanced sampling [17]. A simple
method to improve the generalization ability in a conven-
tional classification problem is to ensemble multiple net-
works. Long-tailed recognition, on the other hand, pos-
sesses the aforementioned inherent issues, thus we focus
on facilitating representation learning. To improve general-
ization ability at the feature level, we propose a simple yet
effective framework using mutual learning technique [32],
which trains multiple networks together and penalizes di-
vergence between their outputs.

We are motivated by the property of mutual learning,
which corrects what models have not seen of each other.
The information from peer models can alleviate the model’s
tendency to overfit tail class samples, allowing them to learn
better representations. Using the feature accuracy and other
classifier fine-tuning methods [17], we empirically demon-
strate that mutual learning improves the quality of represen-
tations under the long-tailed condition. For instance, repre-
sentations learned using mutual learning, which is shown in
Figure 1 (right), have a feature accuracy of 61.4% (+3.1%).
In addition, we find that the sampling strategy is important
in collaborative learning that instance-balanced sampling
outperforms class-balanced sampling. Upon the learned
high-quality representations, we can apply any unbiased
classifier. In this paper, we apply a simple classifier, Post-
Compensated softmax (PC softmax) [15], to disentangle the
training data distribution from the model prediction.

We make the following observations and contributions.

• We focus on learning better representations and sug-
gest mutual learning to achieve it. We empirically
show that mutual learning can learn more generaliz-
able features than independent learning in a long-tailed
setting.

• Sampling strategy matters: even in mutual learning,
instance-balanced sampling learns more generalizable
representations than class-balanced sampling.

• We propose an effective framework that combines the
proposed feature extraction method with a simple dis-
entangling classifier, PC softmax.

• We extensively evaluate the proposed framework
on various long-tailed benchmark datasets, including
CIFAR100-LT [3] (+0.1∼1.7%), ImageNet-LT [22]
(+2.8∼2.9%), and iNaturalist 2018 [27] (+2.0%), and
achieve state-of-the-art performance.

2. Related Works
2.1. Re-balancing

Classical re-sampling methods include under-sampling
high-frequency instances [9], over-sampling low-frequency
instances [4, 11], and class-balanced sampling [26, 23]. An-
other line of work to compensate for the imbalanced distri-
bution is cost-sensitive learning which gives more weight
to minor classes [20, 3, 7, 29]. However, these approaches
are pruned to overfit minor classes or underfit major classes,
resulting in unsatisfactory overall performance.

2.2. Multi-expert Networks

Recently, multi-experts-based methods have led to sig-
nificant performance improvements in both head and tail
classes by pursuing expertise in each expert. BBN [34]
dynamically combines a conventional learning branch that
employs an instance-balanced sampler and a re-balancing
branch that employs a class-balanced sampler. RIDE [28]
trains multiple experts independently while penalizing
inter-expert correlation to encourage diversity between
them. ACE [2] introduces complementary experts, in which
each expert is assigned a diverse but overlapping class sub-
set. In contrast to these methods, we pursue collabora-
tive learning among experts to learn better representations.
NCL [18] also uses the concept of collaborative learning in
combination with hard category mining to stimulate learn-
ing from a partial perspective. However, because it com-
bines multiple optimization functions, it suffers from hyper-
parameter tuning, and its algorithm design to use indepen-
dent networks as experts necessitates a large amount of
computing power. In this paper, we propose a simple but ef-
fective method that is easily adaptable to other approaches.

2.3. Knowledge Distillation and Mutual Learning

Knowledge distillation [14] from a teacher model to a
student model has been recently introduced to the long-
tailed recognition area. LFME [30] divides the entire long-
tailed dataset into subsets with a smaller imbalance to train
expert models and then distill knowledge into a unified stu-
dent model. RIDE [28] applies knowledge distillation from
a model with more experts to a model with fewer experts
for further advancements. SSD [19] and DIVE [13] exploit
self-supervision and power normalization, respectively, to
obtain a flatter label distribution as teacher signals.

In contrast to one-way knowledge distillation, deep mu-
tual learning [32] proposes collaboratively learning an en-
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semble of students to teach each other throughout the train-
ing process. The secondary class probabilities of experts act
as the salient cue to each other, and the learned model finds
a much wider minimum than an independent model. Simi-
lar to our work, [10] also develops the concept of collabo-
rative learning with instance-balanced sampling and class-
balanced sampling. However, we make an intriguing obser-
vation that sampling strategy is important in mutual learning
as it is in independent training. We empirically show that
using only instance-balanced sampling learns better repre-
sentations and achieves higher classification accuracy.

3. Method
3.1. Overall Framework

Figure 2: Overall framework. In the training phase, we em-
ploy mutual learning loss and classification loss to learn
high-quality representations. In the inference phase, PC
softmax is used to balance the biased predictions.

The overall framework is shown in Figure 2. We use a
shared backbone architecture to reduce the computational
complexity, similar to [28]. To illustrate, fθ is shared
by all experts, and each expert is denoted as gθk , where
k ∈ [1,K], and K is the number of experts. The output
of fθ is fed into each expert, which includes the fully con-
nected layer, and the outputs of experts are subject to clas-
sification loss, LClassify, and mutual learning loss, LMutual.
All the experts use an instance-balanced sampler and are co-
trained throughout the training process. After learning high-
quality representations through mutual training, we employ
PC softmax as a classifier.

3.2. Mutual Learning Loss

Mutual learning loss [32] is proposed to distill knowl-
edge between cohort models. Cohort models’ inter-class

correlation information helps each other avoid falling into
local minima. In the long-tailed recognition problem, an
independent model is especially prone to falling into sharp
minima since the cardinalities of tail classes are limited. We
exploit the mutual learning loss to find more robust minima
under the long-tailed circumstance and acquire better repre-
sentations. When the number of experts is two, the mutual
learning loss is defined as follows [32]:

L1
Mutual = DKL(p2∥p1), (1)

L2
Mutual = DKL(p1∥p2), (2)

where pk = σ(gθk(fθ(x))), and σ(·) represents the soft-
max function.

When there are more than two experts, we can either use
each cohort individually or their ensemble as a teacher. If
we use each cohort as a teacher, the mutual learning loss for
each expert becomes

Lk
Mutual =

1

K − 1

K∑
l=1,l ̸=k

DKL(pl∥pk). (3)

When using the ensemble of cohort models as a teacher,
the mutual learning loss for each expert is defined as

Lk
Mutual = DKL(pavg∥pk), (4)

pavg =
1

K − 1

K∑
l=1,l ̸=k

pl. (5)

We empirically find that there is no significant differ-
ence in performance between using the ensemble signal as a
teacher and using each cohort as a teacher. In experiments,
we apply the ensemble teacher for the mutual learning loss.

Each expert is supervised by cross-entropy loss in addi-
tion to the mutual learning loss, as shown below.

Lk
Classify = − logpk(y). (6)

In summary, the overall objective is formulated as

LTotal =

K∑
k=1

(
Lk
Classify + Lk

Mutual

)
. (7)

Using the above objective, the shared backbone network
and all experts are trained together.

3.3. Post-Compensated Softmax

We utilize mutual learning to obtain more generaliz-
able representations than independent learning. Although
the proposed framework can be applied with any other
classifier-focused approach to train the classifier, we adopt
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the post-compensation (PC) strategy [24, 1, 16, 15] in the
inference phase, which is simple and almost cost-free. Un-
der the long-tailed condition, the label distribution of the
training dataset often does not match that of the test dataset.
As the learned model is strongly entangled with the label
distribution of the training dataset, it performs poorly on
the test dataset. The PC softmax adjusts the model’s output
to match the arbitrary test label distribution as follows [15],

hPC
θ (x)[y] = hθ(x)[y]− log ps(y) + log pt(y), (8)

where hθ(x) = 1
K

∑K
k=1 gθk(fθ(x)), the ensemble of

expert outputs, and ps and pt are the label distribution of
the training dataset and the test dataset, respectively. We
use the ensemble of expert outputs in the inference phase.

3.4. Feature Generalizability

Many long-tailed recognition approaches learn the fea-
tures and the classifier at the same time. As [17] pointed out,
it’s unclear whether the performance is achieved by learning
good representations or by shifting the classifier’s boundary.
Suppose the feature generalizability of a learned model by
one method is better than the other. In that case, we can ex-
pect the former to outperform the latter when the same clas-
sification approach is used. In this regard, we emphasize the
importance of learning better representations, which can be
used in conjunction with other classifier-focused methods.

To quantify the quality of the learned representations, we
measure linear classification accuracy on the frozen features
of the test dataset. To illustrate, after training, we infer the
features on the test dataset and train a single fully-connected
classifier using the inferred test features and test labels.
Then, the accuracy of the classifier learned using the test
dataset serves as the upper bound for classification accu-
racy, which we referred to as feature accuracy. We evaluate
the quality of learned representations using mutual learning
and independent learning by this measure. The feature ac-
curacy of mutual learning is higher than that of independent
learning, demonstrating the effectiveness of mutual learn-
ing in generating high-quality representations. More results
and discussions are presented in Section 4.3.

4. Experiments
4.1. Experimental Setup

4.1.1 Datasets

ImageNet-LT [22] is sampled from ImageNet-2012
dataset [8] using a Pareto distribution [25] with the power
value α = 6. It has 115.8K images from 1000 classes in
total, with a maximum of 1280 images per class and a min-
imum of 5 images per class.

CIFAR100-LT [3] is a long-tailed version of CIFAR-
100 with fewer training samples per class. The imbalance

ratio is defined as the ratio between the maximum and min-
imum size of the classes. In CIFAR100-LT, the rest size of
the classes decays exponentially. We experiment on three
imbalance ratios, 10, 50, and 100.

iNaturalist 2018 [27] is a large scale real-world dataset
for a species classification. It has 437.5K images from 8142
classes in total and has a high imbalance ratio of 500.

4.1.2 Implementation Details

We use ResNet-32 [12] for CIFAR100-LT, ResNet-50 and
ResNeXt-50 [31] for ImageNet-LT, and ResNet-50 for iNat-
uralist 2018 as our backbone. Following [28], the first two
stages of the network serve as a shared backbone, while the
later stages serve as the experts’ architecture. The number
of filters in each expert is reduced by 1

4 to reduce the compu-
tational cost, which is the same as the setting of [28]. For all
experiments, we employ a three-experts model whose com-
putational cost is comparable to that of the baseline model.

We use a cosine classifier and SGD optimizer with a mo-
mentum of 0.9 for all datasets. For CIFAR100-LT, we pri-
marily follow the experimental settings of [3]. The training
epoch is 200, and the multistep learning rate schedule is em-
ployed, which reduces the learning rate by 0.1 at the 160th

and 180th epochs. For ImageNet-LT and iNaturalist 2018,
we mainly follow the protocol of [33]. The training epochs
for ImageNet-LT and iNaturalist 2018 are 180 and 200, re-
spectively, and the cosine learning rate scheduler is used.

To assess the linear classification accuracy on the test
dataset, we first infer all the test samples with the learned
model and create a test features dataset. Then we initialize
a single-layer fully connected network, which takes features
as input, and train it with cross-entropy loss. We use SGD
with a momentum of 0.9 for 200 epochs. Initial learning
rate is 0.1 and it is decayed by 0.1 at 160th and 180th epochs.
The top-1 accuracy of the learned classifier is reported.

4.1.3 Competing Methods

We compare the proposed method with recent state-of-the-
art approaches: two-stage based method (MiSLAS [33]),
logit-adjusted training (LADE [15]), knowledge distilla-
tion (LFME [30], SSD [19], DIVE [13]), and multi-experts
(BBN [34], RIDE [28], ACE [2], NCL [18]). For multi-
experts-based methods, except BBN, the results of their
three-experts model are borrowed for a fair comparison.

4.1.4 Evaluation Metric

We evaluate the trained models on the corresponding test
datasets and report the top-1 accuracy across all classes. To
investigate the accuracy of each class and analyze how the
model performs as the cardinality of class differs, we also
report the average accuracy on three subsets of the entire
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Method Res-50 ResX-50 ResX-50 GFlops

Cross Entropy 47.9 49.0 4.29 (1.0x)
PC Softmax 52.7 53.5 4.29 (1.0x)
LADE [15] - 53.0 4.29 (1.0x)
MiSLAS [33] 52.7 - 4.29 (1.0x)
SSD [19] - 56.0 -
DIVE [13] - 53.1 -
RIDE [28] 54.9 56.4 4.69 (1.1x)
ACE [2] 54.7 56.6 6.03 (1.4x)

Ours 57.7 59.5 6.12 (1.4x)

PaCo∗ [6] 57.0 58.2 -
NCL∗ [18] 59.5 60.5 12.86 (3.0x)

Ours∗ 59.4 60.8 6.12 (1.4x)

Table 1: Top-1 accuracy on ImageNet-LT with ResNet-50
and ResNeXt-50. ∗ denotes models trained with RandAug-
ment [5] for 400 epochs. GFlops are mainly based on [28]

Method Many Med. Few

Cross Entropy 68.9 43.2 12.6
PC Softmax 64.8 50.6 31.9
LADE [15] 65.1 48.9 33.4
SSD [19] 66.8 53.1 35.4
DIVE [13] 64.1 50.4 31.5
RIDE [28] 67.6 53.5 35.9

Ours 70.2 56.7 39.1

Table 2: Class-wise top-1 accuracy comparison with state-
of-the-arts on ImageNet-LT with ResNeXt-50.

classes following [22]: Many-shot (contains over 100 sam-
ples), Medium-shot (contains 20 to 100 samples), and Few-
shot (contains under 20 samples) classes. The average ac-
curacy over three independent runs is reported.

4.2. Comparison with State-of-the-arts

4.2.1 Results on ImageNet-LT

Table 1 shows that the proposed method outperforms state-
of-the-art methods that do not use additional augmentation
by a large margin on ImageNet-LT with various backbone
networks, ResNet-50 and ResNeXt-50. RIDE, in particu-
lar, penalizes inter-expert correlation, whereas our method
encourages collaborative learning among experts and out-
performs the current best method on ResNet-50, RIDE,
by 2.8%. Moreover, the performance improvement over
the state-of-the-art method on ResNeXt-50, ACE, is 2.9%.
When RandAugment [5] is used and trained with longer
epochs, the proposed method performs as well as or better
than NCL which uses three independent networks as experts
and thus requires far more GFlops than our method.

Imbalance Ratio 10 50 100

Cross Entropy † 59.0 45.5 41.0
PC Softmax † 61.2 49.5 45.3
BBN [34] 59.1 47.0 42.6
LADE [15] 61.7 50.5 45.4
MiSLAS [33] 63.2 52.3 47.0
SSD [19] 62.3 50.5 46.0
DIVE [13] 62.0 51.1 45.4
RIDE ‡ [28] 58.0 51.9 48.0
ACE [2] - 50.7 49.4

Ours 63.3 54.0 49.6

Table 3: Top-1 accuracy on CIFAR100-LT with an imbal-
ance ratio of 10, 50, and 100. Rows with † denote results
directly borrowed from [15]. ‡ denotes our reproduced re-
sults with the released code.

Method Top-1 accuracy

Cross Entropy † 65.0
PC Softmax † 69.3
BBN [34] 69.6
LADE [15] 70.0
MiSLAS [33] 71.6
SSD [19] 71.5
DIVE [13] 71.7
ACE [2] 72.9

Ours 74.9

Table 4: Top-1 accuracy on iNaturalist 2018. Rows with †
denote results directly borrowed from [15].

To further evaluate the proposed method, we also report
the average accuracy of each category subset in Table 2.
Introducing PC softmax to the model learned with cross-
entropy loss improves the overall accuracy as in Table 1,
but it sacrifices the performance of the many-shot classes as
in Table 2. In comparison to using only PC softmax, our
method with mutual learning technique even improves the
performance of the many-shot subset and surpasses all other
methods on all category subsets.

4.2.2 Results on CIFAR100-LT

Extensive experiments are carried out on CIFAR100-LT
with imbalance ratios of 10, 50, and 100, and the results
are provided in Table 3. In contrast to previous methods
that show the best accuracy on specific imbalance ratio cir-
cumstances, the proposed method yields new state-of-the-
art results for all imbalance ratio settings. It is worth noting
that our method outperforms state-of-the-art methods that
use mixup augmentation, such as MiSLAS and ACE.
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Method
Independent Mutual

Many Med. Few All Many Med. Few All

Joint 67.5 38.5 7.9 39.5 70.3 40.2 7.2 40.9 (+1.4)
cRT [17] 61.0 43.5 19.9 42.6 63.2 46.9 22.4 45.2 (+2.6)
NCM [17] 58.2 44.7 23.4 43.1 59.1 46.6 25.4 44.6 (+1.5)
τ -norm [17] 64.0 42.2 17.9 42.5 67.7 43.9 15.9 43.8 (+1.3)
LWS [17] 61.0 43.9 21.5 43.2 63.2 46.9 24.0 45.7 (+2.5)
PC Softmax 60.7 44.6 23.6 43.9 63.1 48.1 25.3 46.5 (+2.6)

Feature 65.7 57.5 50.6 58.3 68.3 60.9 53.9 61.4 (+3.1)

Table 5: Comparison with independently learning a network. Top-1 accuracy on CIFAR100-LT with an imbalance ratio of
100 is reported. The mutual learning model is trained on a network of two experts, and the performance of each individual
model is evaluated. “Feature” denotes the feature accuracy on the test features.

4.2.3 Results on iNaturalist 2018

To evaluate the effectiveness of the proposed method on
real-world long-tailed circumstances, we conduct experi-
ments on iNaturalist 2018. Results are presented in Table 4.
Our method outperforms other methods with a large mar-
gin, demonstrating its effectiveness on fine-grained datasets
with high imbalance ratios. To illustrate, we can observe
a 2.0% performance improvement over ACE on iNaturalist
2018, which has an imbalance ratio of 500.

4.3. Effectiveness of Mutual Learning

We further evaluate the effectiveness of mutual learning
in obtaining high-quality representations under long-tailed
circumstances. To investigate it, we train a model indepen-
dently as well as a model with the mutual learning loss for
comparison. After training the models, we consider the fol-
lowing classifiers to probe the quality of the learned repre-
sentations: the classifier learned jointly with the represen-
tations (Joint), Classifier Re-training (cRT), Nearest Class
Mean classifier (NCM), τ -normalized classifier (τ -norm),
Learnable weight scaling (LWS) [17], PC softmax, and the
classifier trained on the test dataset. The results are pro-
vided in Table 5. We can observe that the representations
learned with mutual learning achieve higher accuracy than
those learned independently on all kinds of classifiers. In
particular, the performance improvement in test dataset lin-
ear classification is 3.1%. These results indicate that mu-
tual learning has a positive impact on the learning of high-
quality representations in long-tailed recognition.

Improving the quality of representations through mutual
learning is easily adaptable to other methods. To demon-
strate, we applied the two-experts mutual learning model
to baseline methods, Focal loss [20], LDAM [3], and MiS-
LAS [33]. As shown in Table 6, all of the methods’ accura-
cies have improved by a significant margin (2.1%∼3.6%).

To better understand the role of mutual learning in long-
tailed conditions, we demonstrate how the difference in pre-

Method Many Med. Few All

Focal [20] 65.0 35.1 8.0 37.4
Focal+ML 69.4 38.5 6.3 39.6 (+2.2)

LDAM [3] 61.4 43.4 19.6 42.6
LDAM+ML 66.6 46.4 22.2 46.2 (+3.6)

MiSLAS [33] 63.3 46.7 22.7 46.8
MiSLAS+ML 63.3 49.4 26.5 48.9 (+2.1)

Table 6: Effectiveness of applying mutual learning to other
approaches. Top-1 accuracy on CIFAR100-LT with an im-
balance ratio of 100 is reported. “ML” denotes mutual
learning.

diction between two experts, training and test classification
loss change as training progresses for many-shot, medium-
shot, and few-shot class subsets. Figure 3a shows that few-
shot classes exhibit higher prediction differences than the
many-shot classes throughout the training process of inde-
pendent learning. This suggests that the training result for
tail class samples is highly stochastic and that it is easy
to converge to a less generalizable solution. In Figure 3b
and 3c, we can observe that independent learning converges
to a lower training classification loss but a higher test classi-
fication loss than mutual learning. This implies that mutual
learning has a regularization effect, which leads to better
generalization. Furthermore, the difference in training clas-
sification loss between independent and mutual learning, as
well as the test classification loss, are significantly greater
in tail classes than in head classes. This demonstrates that
the regularization effect of mutual learning is stronger in tail
class samples than head class samples. We conjecture that
mutual learning allows experts to exchange secondary class
probability, making them less likely to fall in sharp minima
even for tail class samples. Experts receive the same super-
vision signal, but because their initial states differ, they take
different learning paths, allowing them to transfer correla-
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(a) Prediction difference between experts. (b) Training classification loss (c) Test classification loss

Figure 3: The prediction difference and classification loss trajectory of independent and mutual learning of the two-experts
model on CIFAR100-LT. The average loss of each class subset is reported.

Figure 4: Feature accuracy and PC softmax accuracy of different sampling strategies for each subset on CIFAR100-LT. “I”
and “C” refer to instance-balanced sampling and class-balanced sampling, respectively. For example, “I+C” trains a two-
experts model with mutual learning, where each expert utilizes instance-balanced sampling and class-balanced sampling.

tions between classes that they have not seen before.
In Figure 1, we generate t-SNE embeddings of tail

classes to show how features learned with mutual learning
differ from those learned with independent learning. We can
see that the features learned with mutual learning are more
linearly separable than the other in few-shot circumstances.

4.4. Importance of Sampling Strategy

In independent training, it has been shown that using
instance-balanced sampling produces better representations
than using class-balanced sampling [17]. We discover that
it also holds for the collaborative learning framework. To
illustrate, we experiment three variations of sampling strat-
egy for the collaborative learning of the two-experts model:
instance-balanced sampling + instance-balance sampling
(our setting, I+I), instance-balanced sampling + class-
balanced sampling (I+C) [10], and class-balanced sam-
pling + class-balanced sampling (C+C). In Figure 4, we
measure the feature accuracy to determine how well they
learned representations. We can observe that the sam-
pling strategy which only used instance-balanced sampling
achieves higher overall feature accuracy than those used
class-balanced sampling. Using only class-balanced sam-
plers, in particular, yields significantly poorer results than

other sampling strategies. The PC softmax accuracy results
show a similar trend. These findings suggest that instance-
balanced sampling outperforms class-balanced sampling
when learning linearly separable representations even un-
der the collaborative learning scheme.

4.5. Larger Expert Number

Figure 5 shows how the proposed method scales with
more experts. We can observe that as the number of experts
increases, the advantage of mutual learning over a mere
ensemble prediction of experts grows more in medium-
shot and few-shot classes than in many-shot classes. This
demonstrates that poor generalization on tail classes under
long-tailed circumstances can be enhanced further with mu-
tual learning with a large number of experts.

We can also observe that utilizing an ensemble teacher
for mutual learning produces similar results as using each
individual cohort as a teacher. It is in contrast with when
mutual learning is applied to uniformly distributed datasets;
using individual cohort teachers yields better performance
than using an ensemble teacher [32]. Our reasoning is that
predictions on few-shot classes are more likely to be inac-
curate, so the ensemble teacher is a better source of infor-
mation in the long-tailed setting than in the uniform setting.
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Figure 5: Top-1 accuracy of different numbers of experts on ImageNet-LT with ResNeXt-50. “Ensemble” denotes the
ensemble accuracy of the multi-experts network learned with a standard cross-entropy loss. Individual teacher and ensemble
teacher represent the two variations of mutual learning loss described in Section 3.2.

Number of Experts LClassify LMutual PC Softmax Many Med. Few All

1 ✓ 68.9 43.2 12.6 49.0
1 ✓ ✓ 64.8 50.6 31.9 53.5
2 ✓ ✓ ✓ 69.1 55.1 37.3 58.1
3 ✓ ✓ 73.9 47.8 18.4 53.8
3 ✓ ✓ 70.0 54.8 37.2 58.2
3 ✓ ✓ ✓ 70.2 56.7 39.1 59.5

Table 7: Ablation study on the efficacy of each component. Top-1 accuracy on ImageNet-LT with ResNeXt-50 is reported.

4.6. Ablation study

We provide the results of ablated models to investi-
gate the contribution of each component of the proposed
framework in Table 7. Table 7 shows that PC softmax in-
creases the accuracy of the baseline model by 4.5%. Em-
ploying three experts with the reduced dimension advances
the performance by 4.7%, and it is comparable to that of
other competing multi-experts-based methods. By applying
LMutual, we can improve the model’s performance even fur-
ther with 1.3% of advancement. These results demonstrate
that the proposed framework has an advantage over merely
ensembling a group of experts.

Although PC softmax has a noticeable effect on model
performance in this framework, applying it to other existing
methods may be ineffective because they already use bal-
anced classifiers. Table 8 shows the results of applying PC
softmax to baseline approaches. Because the other methods
already employ their own balancing techniques, applying
PC softmax to them overcompensates the tail classes while
penalizing the head classes, resulting in lower performance.

5. Conclusion
In this paper, we revisit the mutual learning strategy to

foster better representations in long-tailed recognition. We

Method Many Med. Few All

Cross Entropy 68.7 41.8 10.3 47.9
Cross Entropy+PC 64.1 50.3 29.0 52.7 (+4.8)

MiSLAS [33] 61.7 51.3 35.8 52.7
MiSLAS+PC 43.3 45.9 52.3 45.8 (−6.9)

RIDE [28] 66.2 51.7 34.9 54.9
RIDE+PC 59.7 51.7 45.3 53.9 (−1.0)

Table 8: Applying PC softmax to other approaches. Top-
1 accuracy on ImageNet-LT with ResNet-50 is reported.
“PC” denotes PC softmax.

empirically show that mutual learning can help us learn
more generalizable features than independent learning. Fur-
thermore, we highlight the significance of sampling strategy
in mutual learning by demonstrating that instance-balanced
sampling performs best. We extensively evaluate the effi-
cacy of mutual learning on several long-tailed recognition
benchmarks, including CIFAR100-LT, ImageNet-LT, and
iNaturalist 2018, and achieve state-of-the-art performance.
Last but not least, the mutual learning framework is simple
and easily adaptable to other cutting-edge approaches.
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