
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

Grégoire Petit1,2, Adrian Popescu1, Hugo Schindler1, David Picard2, Bertrand Delezoide3

1Université Paris-Saclay, CEA, LIST, F-91120, Palaiseau, France
2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

3Amanda, 34 Avenue Des Champs Elysées, F-75008, Paris, France
{gregoire.petit, adrian.popescu}@cea.fr,hugo-schindler@orange.fr

david.picard@enpc.fr,bertrand.delezoide@amanda.com

Abstract

Exemplar-free class-incremental learning is very chal-
lenging due to the negative effect of catastrophic forget-
ting. A balance between stability and plasticity of the in-
cremental process is needed in order to obtain good accu-
racy for past as well as new classes. Existing exemplar-free
class-incremental methods focus either on successive fine
tuning of the model, thus favoring plasticity, or on using
a feature extractor fixed after the initial incremental state,
thus favoring stability. We introduce a method which com-
bines a fixed feature extractor and a pseudo-features gen-
erator to improve the stability-plasticity balance. The gen-
erator uses a simple yet effective geometric translation of
new class features to create representations of past classes,
made of pseudo-features. The translation of features only
requires the storage of the centroid representations of past
classes to produce their pseudo-features. Actual features
of new classes and pseudo-features of past classes are fed
into a linear classifier which is trained incrementally to dis-
criminate between all classes. The incremental process is
much faster with the proposed method compared to main-
stream ones which update the entire deep model. Experi-
ments are performed with three challenging datasets, and
different incremental settings. A comparison with ten exist-
ing methods shows that our method outperforms the oth-
ers in most cases. FeTrIL code is available at https:
//github.com/GregoirePetit/FeTrIL.

1. Introduction

Deep learning [8] has dramatically improved the qual-
ity of automatic visual recognition, both in terms of ac-
curacy and scale. Current models discriminate between
thousands of classes with an accuracy often close to that
of human recognition, assuming that sufficient training ex-
amples are provided. Unlike humans, algorithms reach

optimal performance only if trained with all data at once
whenever new classes are learned. This is an important
limitation because data often occur in sequences [17] and
their storage is costly. Also, iterative retraining to integrate
new data is computationally costly and difficult in time-
or computation-constrained applications [9, 32]. Incremen-
tal learning [36] was introduced to reduce the memory and
computational costs of machine learning algorithms. The
main problem faced by class-incremental learning (CIL)
methods is catastrophic forgetting [14, 25], the tendency
of neural nets to underfit past classes when ingesting new
data. Many recent solutions [4, 13, 33, 44, 46], based
on deep nets, use replay from a bounded memory of the
past to reduce forgetting. However, replay-based methods
make a strong assumption because past data are often un-
available [41]. Also, the footprint of the image memory
can be problematic for memory-constrained devices [32].
Exemplar-free class-incremental learning (EFCIL) methods
recently gained momentum [45, 38, 47, 48]. Most of them
use distillation [12] to preserve past knowledge, and gener-
ally favor plasticity. New classes are well predicted since
models are learned with all new data and only a representa-
tion of past data [24, 31, 49]. A few EFCIL methods [1, 6]
are inspired by transfer learning [37, 39]. They learn a fea-
ture extractor in the initial state, and use it as such later to
train new classifiers. In this case, stability is favored over
plasticity since the model is frozen [24].

We introduce FeTrIL, a new EFCIL method which com-
bines a frozen feature extractor and a pseudo-feature gen-
erator to improve incremental performance. New classes
are represented by their image features obtained from the
feature extractor. Past classes are represented by pseudo-
features which are derived from features of new classes
by using a geometric translation process. This translation
moves features toward a region of the features space which
is relevant for past classes. The proposed pseudo-feature
generation is adapted for EFCIL since it is simple, fast and
only requires the storage of the centroids for past classes.

3911

Initial state

f(C1) f(C2) f(C3)

(a)

Incremental state 1

f1(C1)
f1(C2)

f1(C3)
f(C4)

(b)

Incremental state 2

f2(C1)
f2(C2)

f2(C3)
f2(C4)

f(C5)

(c)

Actual features

f(C1)
f(C2)

f(C3)
f(C4)

f(C5)

(d)
Figure 1. Illustration of the proposed pseudo-feature generation procedure. This toy example includes an initial state (3 classes) and two IL
states (1 new class per state) in subfigures (a), (b) and (c). Subfigure (d) provides the actual features of all classes that would be available
for a classical learning. The illustration uses a 2D projection of actual features. Pseudo-features of past classes are generated by geometric
translation of features of the new class added in each state with the difference between the centroids of the target past class and of the new
class. While imperfect, the pseudo-feature generator produces a usable representation of past classes. Best viewed in color.

FeTrIL is illustrated with a toy example in Figure 1. We
run experiments with a standard EFCIL setting [13, 47, 48],
which consists of a larger initial state, followed by smaller
states which include the same number of classes. Results
show that the proposed approach has better behavior com-
pared to ten existing methods, including very recent ones.

2. Related Work
CIL algorithms are needed when data arrive sequentially

and/or computational constraints are important [9, 17, 24,
29]. Their objective is to ensure a good balance between
plasticity, i.e. integration of new information, and stability,
i.e. preservation of knowledge about past classes [27]. This
is challenging because the lack of past data leads to catas-
trophic forgetting, i.e. the tendency of neural networks to
focus on newly learned data at the expense of past knowl-
edge [25]. Recent reviews of CIL [2, 24] show that a ma-
jority of methods replay samples of past classes to mitigate
forgetting [4, 13, 33, 46]. One advantage here is that the
network architecture remains constant throughout the incre-
mental process. However, these methods have two major
drawbacks: (1) First, the assumption that past samples are
available is strong since in many cases past data cannot be
stored due, for instance, to privacy restrictions [41] and (2)
the memory footprint of the stored images is high.

Here, we investigate exemplar-free CIL, with focus on
methods which keep the network size constant. This setting
is very challenging since it imposes strong constraints on
both memory and computational costs. A majority of ex-
isting methods use regularization to update the deep model
for each incremental step [24], and adapt distillation [12] to
preserve past knowledge by penalizing variations for past
classes during model updates. Note that, while some of the
distillation-based methods were introduced in an exemplar-
based CIL (EBCIL) setting, many of them are also appli-
cable to EFCIL. This approach to CIL was popularized

by iCaRL [33], itself inspired by learning without forget-
ting (LwF) [19]. Distillation was later refined and comple-
mented with other components to improve the plasticity-
stability compromise. LUCIR [13] applies distillation on
features instead of raw classification scores to preserve the
geometry of past classes, and an inter-class separation to
maximize the distances between past and new classes. The
problem was partially addressed by adding specific class
separability components in [7, 13]. Distillation-based
methods need to store the current and the preceding model
for incremental updates. Their memory footprint is larger
compared to methods which do not use distillation [24].

Another important problem in CIL is the semantic drift
between incremental states. Auxiliary classifiers were intro-
duced in [20] to reduce the effect of forgetting. ABD [38]
uses image inversion to produce pseudo-samples of past
classes. The method is interesting but image inversion is
difficult for complex datasets. Another interesting solution
is proposed in [45], where the features drift between incre-
mental steps is estimated from that of new classes. Recent
EFCIL approaches [47, 48, 49] use past class prototypes in
conjunction with distillation to improve performance. Pro-
totype augmentation is proposed in PASS [48] to improve
the discrimination of classes learned in different incremen-
tal states. Feature generation for past classes is introduced
in IL2A [47] by leveraging information about the class dis-
tribution. This approach is difficult to scale-up because a
covariance matrix needs to be stored for each class. A pro-
totype selection mechanism is introduced in SSRE [49] to
better discriminate past from new classes. FeTrIL shares the
idea of using class prototypes with [45, 47, 48, 49]. An im-
portant difference is that we freeze the model after the initial
state, while the other methods deploy more sophisticated
mechanisms to integrate prototypes in a knowledge distilla-
tion process. Past comparative studies [2, 24] found that,
while appealing in theory, distillation-based methods un-

3912

derperform in EFCIL, particularly for large-scale datasets.
Second, since the representation space is fixed, a simple
geometric translation of actual features of new classes is
sufficient to produce usable pseudo-features. In contrast,
IL2A [47], the work which is closest to ours, needs to store a
covariance matrix per class to obtain optimal performance.
Third, the use of a fixed extractor simplifies the training pro-
cess since only the final linear layer is trained, compared
to a fine tuning of the backbone model required by recent
methods which use prototypes and feature generation.

Another line of work takes inspiration from transfer
learning [28, 37] to tackle EFCIL. A feature extractor is
trained in the initial non-incremental state and fixed after-
wards. Then, an external classification layer is updated in
each incremental state to integrate new classes. The nearest
class mean (NCM) [26] was used in [33], linear SVMs [30]
were used in [1] and extreme value machines [34] were re-
cently tested by [6]. The advantages of transfer-learning
methods are their simplicity, since only the classification
layer is updated, and their lower memory requirement, since
they need a single deep model to function. These meth-
ods give competitive performance compared to distillation-
based ones in EFCIL, particularly at scale [2]. However,
features are not updated, and they are sensitive to large do-
main shifts between incremental tasks [17]. Equally, exist-
ing transfer-learning inspired works do not sufficiently ad-
dress inter-class separability, which is in focus here.

Class prototypes creation was studied in other learning
settings than CIL. A very interesting method focused on
few-shot learning was proposed in [5]. A distance-based
classifier which uses an approximation of the Mahalanobis
distance is proposed. The means and variances of new
classes are predicted using two supplementary neural net-
works. While adapted for few-shot learning, such an ap-
proach is not fully adapted in CIL. First, the supplementary
neural networks require a large number of supplementary
parameters. This is a disadvantage here, since CIL methods
are needed in computationally-constrained environments.
Second, we do not focus on few-shot learning and the means
of past classes are well-placed in the representation space.

3. Proposed Method
The objective of CIL is to learn a total of N classes

which appear sequentially during training. This process
includes an initial state (0) and T incremental ones. New
classes need to be recognized alongside past classes which
were learned in previous states. We focus on the exemplar-
free CIL setting [33, 38, 45, 49], which assumes that no
past images can be stored. This scenario is more challeng-
ing than exemplar-based CIL since catastrophic forgetting
needs to be tackled without resorting to replay [24]. There
is no intersection between the classes learned in different
incremental states. Unlike task IL [40], the boundaries be-

tween different states are not known at test time.
The global functioning of FeTrIL is illustrated in Fig-

ure 2. It uses a feature extractor, a pseudo-feature generator
based on geometric translation, and an external classifica-
tion layer in order to address EFCIL. Inspired by transfer-
learning based CIL [1, 33], the feature extractor F is frozen
after the initial state. This ensures a stable representation
space through the entire CIL process. Given that images
of past classes cannot be stored in EFCIL, a generator G is
used to produce pseudo-features of past classes (f̂ t(Cp)). G
takes features of new classes (f(Cn)) and prototypes of past
and new classes (µ(Cp), µ(Cn)) as inputs. A linear classi-
fier L combines features and pseudo-features to jointly train
classifiers for all seen classes (past and new). The pseudo-
features generation is crucial since it enables class discrim-
ination across all incremental states. The hypotheses made
here are that: (1) while imperfect, the pseudo-features still
produce effective representations of past classes, and (2) us-
ing a frozen extractor in combination with a generator in
EFCIL is preferable to mainstream distillation-based meth-
ods [45, 47, 48, 49]. These hypotheses are tested through
the extensive experiments in Section 4. We present the main
components of FeTrIL in the next subsections.

3.1. Generation of pseudo-features

The pseudo-feature generator, illustrated in Figure 1,
produces effective representations of past classes. Exist-
ing approaches which generate past data rely on methods
such as generative adversarial networks [10], image inver-
sion [38], or covariance-based past class models [47]. We
propose a much simpler alternative which is defined as:

f̂ t(cp) = f(cn) + µ(Cp)− µ(Cn) (1)

with: Cp - target past class for which pseudo-features are
needed; Cn - new class for which images b are available;
f(cn) - features of a sample cn of class Cn extracted with
F ; µ(Cp), µ(Cn) - mean features of classes Cp and Cn ex-
tracted with F ; f̂ t(cp) - pseudo-feature vector of a pseudo-
sample cp of class Cp produced in the tth incremental state.

Eq. 1 translates the value of each dimension with the dif-
ference between the values of the corresponding dimension
of µ(Cp) and µ(Cn). It creates a pseudo-feature vector sit-
uated in the region of the representation space associated
to target class Cp based on actual features of a new class
f(Cn). The computational cost of generation is very small
since it only involves additions and subtractions. µ(Cp) is
needed to drive the geometric translation toward a region of
the representation space which is relevant for Cp. Centroids
are computed when classes occur for the first time and then
stored. Their reuse is possible because F is fixed after the
initial step and its associated features do not evolve.

3913

Figure 2. FeTrIL overview for a toy example with an initial state (3 classes) and two incremental states (1 class per state). The feature
extractor F is trained in the initial state, using sets of data X1, X2, X3, and then frozen afterwards. The generator G uses features f(Cn)
of the new class extracted with F and prototypes of past classes µ(Cp) to generate pseudo-features of past classes f̂ t(Cp) in the tth state.
Prototypes (µ(Ci)) are the centroids of all classes (past and new). They are learned when classes are first seen and then stored throughout
the IL process. A linear classifier L is used to learn classification weights w(Ci) for all seen classes (past and new).

3.2. Selection of pseudo-features

Eq. 1 translates the features for a single sample. If each
class is represented by s samples, the generation process
needs to be repeated s times. The overview of FeTrIL (Fig-
ure 2) and of the pseudo-feature generation (Figure 1) use
a minimal example which adds a single class per IL state.
When CIL states include several classes Cn, the s pseudo-
features of each class Cp can be obtained using different
strategies, depending on how features of new classes are
used. We deploy the following strategies:

• FeTrILk: s features are transferred from the kth similar
new class of each past class Cp. Similarities between the
target Cp and the Cn available in the current state is com-
puted using the cosine similarity between the centroids of
each pair of classes. Experiments are run with different
values of k to assess if a variable class similarity has a sig-
nificant effect on EFCIL performance. Since translation
is based on a single new class, the distribution of pseudo-
features will be similar to that of features of Cn, but in
the region of the representation space around µ(Cp).

• FeTrILrand: s features are randomly selected from all
new classes. This strategy assesses whether a more di-
versified source of features from different Cn produces
an effective representation of class Cp.

• FeTrILherd: s features are selected from any new class
based on a herding algorithm [43]. It assumes that sam-
pling should include features which produce a good ap-
proximation of the past class. Herding was introduced
in exemplar-based CIL in order to obtain an accurate
approximation of each class by using only a few sam-
ples [33] and its usefulness was later confirmed [2, 13,
44]. It is adapted here to obtain a good approximation of
the sample distribution of Cp with s pseudo-features.

The comparison of these different strategies will allow us
to determine whether the geometric translation of features
is prevalent, or if a particular configuration of the features

around the centroid of the target past class is needed.

3.3. Linear classification layer training

We assume that the CIL process is in the tth CIL state,
which includes P past classes and N new classes. The com-
bination of the feature generator (Subsection 3.1) and se-
lection (Subsection 3.2) provides a set f̂ t(Cp) of s pseudo-
features for each class Cp. The objective is to train a linear
classifier for all P + N seen classes which takes pseudo
features of past classes and actual features of new classes as
inputs. This linear layer is defined as:

Wt = {wt(C1), ..., w
t(CP), w

t(CP+1), ..., w
t(CP+N)} (2)

with: wt - the weight of known classes in the tth CIL state.
Wt can be implemented using different classifiers, and

we instantiate two versions in Section 4: (1) FeTrIL using
LinearSVCs [30] as external classifiers, and (2) FeTrILfc

using a fully-connected layer to enable end-to-end training.

4. Evaluation
We evaluate FeTrIL by using a comprehensive EFCIL

evaluation scenario [47, 48, 49]. This setting includes four
datasets and CIL states of different size.

Datasets. We use four public datasets: (1) CIFAR-
100 [16] - 100 classes, 32x32 pixels images, 500 and 100
images/class for training and test; (2) TinyImageNet [18] -
200 leaf clases from ImageNet, 64x64 pixels images, 500
and 50 for training and test; (3) ImageNet-Subset - 100
classes subset of ImageNet LSVRC dataset [35], 1300 and
50 for training and test; (4) ILSVRC - full dataset from [35].

Incremental setting. We use a classical EFCIL protocol
from [47, 48, 49]. The number of classes in the initial state
is larger, and the rest of the classes are evenly distributed
between incremental states. CIFAR-100 and ImageNet-
Subset are tested with: (1) 50 initial classes and 5 IL states
of 10 classes, (2) 50 initial classes and 10 IL states of 5

3914

classes, (3) 40 initial classes and 20 states of 3 classes, and
(4) 40 initial classes and 60 states of 1 class. Compared
to [47, 48, 49], configurations (1) and (3) for ImageNet-
Subset are added for more consistent evaluation. TinyIma-
geNet is tested with 100 initial classes and the other classes
distributed as follows: (1) 5 states of 20 classes, (2) 10
states of 10 classes, (3) 20 states of 5 classes, and (4) 100
states of 1 class. Configuration (4) is interesting since it en-
ables one class increments. It cannot be deployed for any
of the compared EFCIL methods since they require at least
two classes per increment to update models. ILSVRC is
tested with 500 initial classes, and the other 500 split evenly
among T ∈ {5, 10, 20} states. This enables a comprehen-
sive comparison of the methods in varied EFCIL configura-
tions. Naturally, task IDs are not available at test time.

Compared methods. We use the following EF-
CIL methods in evaluation: EWC [15], LwF-MC [33],
DeeSIL [1], LUCIR [13], MUC [20], SDC [45], PASS [48],
ABD [38], IL2A [47], SSRE [49]. As we discussed in Sec-
tion 2, these methods cover a large variety of EFCIL ap-
proaches. The inclusion of recent works [47, 48, 49] is im-
portant to situate our contribution with respect to current
EFCIL trends. While focus is on EFCIL, we follow [49]
and include a comparisonwith EBCIL methods. We test
our method against the recent AANets approach [21], and
against the EBCIL methods to which AANETS was added
(LUCIR [13], Mnemonics [22], PODNet [7]). Whenever
available, results of compared methods marked with ∗ are
reproduced either from their initial paper or from [49] for
EFCIL or from [21] for EBCIL. The other results are re-
computed using the original configurations of the methods.

Implementation details. Following [33, 47, 48, 49], we
use ResNet-18 [11] in all experiments. FeTrIL initial train-
ing is done uniquely with images of initial classes to ensure
comparability with existing methods. The feature extractor
is trained in the initial state and then frozen for the reminder
of the IL process. We implement a supervised training with
cross-entropy loss, SGD optimization, a batch size of 128,
for a total of 160 epochs. The initial learning rate is 0.1, and
it is decayed by 0.1 after every 50 epochs. To ensure com-
parability, classes are assigned to IL states using the same
random seed as in the compared methods [13, 48, 47, 49].

We provide implementation details for the final layer
(Eq. 2) introduced in Subsection 3.3. The hyperparameters
of the classification layers were optimized on a pool of 50
classes selected randomly from ImageNet, but disjoint from
ILSVRC or ImageNet-Subset. L2-normalization is applied
before the linear layer. The LinearSVC layer included in
FeTrIL1 uses 1.0 and 0.0001 for regularization and the tol-
erance parameters. The number of samples is higher than
the dimensionality of the features, and we solve the pri-
mal rather than the dual optimization problem. The clas-
sifiers are then trained using a standard one against the rest

procedure. In Subsection 4.2, we also test a one-vs-many
strategy to accelerate incremental updates. The second vari-
ant, FeTrIL1

fc, using a fully-connected layer as final layer,
and implements an end-to-end training strategy. FeTrIL1

fcis
trained for 50 epochs with an initial learning rate of 0.1, 0.1
decay, and 10 epochs patience.

Evaluation metric. The average incremental accuracy,
widely used in CIL [24, 33], is the main evaluation mea-
sure. For comparability with [47, 48, 49], it is computed
as the average accuracy of all states, including the initial
one. We equally provide per-state accuracy curves to have
a more detailed view of the accuracy evolution during the
CIL process. Following [49], we run each configuration of
FeTrIL three times and report the averaged results.

4.1. Results

Comparison to existing EFCIL methods. The re-
sults from Table 1 show that FeTrIL1 outperforms all com-
pared methods in 11 tested configurations out of 12. It
is also close to the best in the remaining one. The sec-
ond best results are obtained with the very recent SSRE
method [49]. FeTrIL1 and SSRE accuracies are close to
each other for CIFAR-100, with relative differences be-
tween 0.4 and -0.2. The performance gain brought by
FeTrIL is of over 4 and 3 top-1 accuracy points for TinyIm-
ageNet and ImageNet-Subset, respectively. PASS [48] and
IL2A [47], two other recent EFCIL methods, have lower av-
erage performance. We note that EFCIL performance boost
was recently reported, with methods such as PASS, IL2A,
SSRE. These methods combine knowledge distillation and
sophisticated mechanisms for dealing with the stability-
plasticity dilemma. In contrast, our method uses a fixed fea-
ture extractor and a lightweight pseudo-feature generator.
FeTrIL only optimizes a linear classification layer, while
compared recent methods use backpropagation of the en-
tire model, and need much more computational resources
and time to perform the IL process. A more in-depth dis-
cussion of complexity is proposed in Subsection 4.2. Per-
formance of the ILSVRC dataset is also very interesting.
Direct comparison to PASS or SSRE is impossible since
these methods were not tested at scale. However, we can
safely assume that FeTrIL1 is better given PASS and SSRE
accuracy for the simpler ImageNet-Subset. ILSVRC results
show that the simple method proposed here is effective for a
high range of classes. Interestingly, ILSVRC performance
is stabler compared to smaller datasets since the pool of new
classes available for pseudo-features generation is larger.

Comparison to a transfer-learning baseline.
DeeSIL [1] is a simple application of transfer learn-
ing to EFCIL. It has no class separability mechanism across
different incremental states since classifiers are learned
within each state. The need for global separability, included
in FeTrIL, is shown by the comparison of short and long

3915

CIL Method CIFAR-100 TinyImageNet ImageNet-Subset ImageNet

T=5 T=10 T=20 T=60 T=5 T=10 T=20 T=100 T=5 T=10 T=20 T=60 T=5 T=10 T=20

EWC∗ [15] (PNAS’17) 24.5 21.2 15.9 x 18.8 15.8 12.4 x - 20.4 - x - - -
LwF-MC∗ [33] (CVPR’17) 45.9 27.4 20.1 x 29.1 23.1 17.4 x - 31.2 - x - - -
DeeSIL [1] (ECCVW’18) 60.0 50.6 38.1 x 49.8 43.9 34.1 x 67.9 60.1 50.5 x 61.9 54.6 45.8
LUCIR (CVPR’19) 51.2 41.1 25.2 x 41.7 28.1 18.9 x 56.8 41.4 28.5 x 47.4 37.2 26.6
MUC∗ [20] (ECCV’20) 49.4 30.2 21.3 x 32.6 26.6 21.9 x - 35.1 - x - - -
SDC∗ [45] (CVPR’20) 56.8 57.0 58.9 x - - - x - 61.2 - x - - -
ABD∗ [38] (ICCV’21) 63.8 62.5 57.4 x - - - x - - - x - - -
PASS∗ [48] (CVPR’21) 63.5 61.8 58.1 x 49.6 47.3 42.1 x 64.4 61.8 51.3 x - - -
IL2A∗ [47] (NeurIPS’21) 66.0 60.3 57.9 x 47.3 44.7 40.0 x - - - x - - -
SSRE∗ [49] (CVPR’22) 65.9 65.0 61.7 x 50.4 48.9 48.2 x - 67.7 - x - - -
FeTrIL1

fc 64.7 63.4 57.4 50.8 52.9 51.7 49.7 41.9 69.6 68.9 62.5 58.9 65.6 64.4 63.4
FeTrIL1 66.3 65.2 61.5 59.8 54.8 53.1 52.2 50.2 72.2 71.2 67.1 65.4 66.1 65.0 63.8

Table 1. Average top-1 incremental accuracy in EFCIL with different numbers of incremental steps. FeTrIL1 results are reported with
pseudo-features translated from the most similar new class. ”-” cells indicate that results were not available (see supp. material for details).
”x” cells indicate that the configuration is impossible for that method. Best results - in bold, second best - underlined.

CIL processes. DeeSIL [1] performance is good for T = 5
because each class is trained against enough other classes,
but drops significantly for T = 20, when there are few
new classes. The important performance gain brought by
FeTrIL highlights the importance of class separability.

Behavior for minimal incremental updates. Com-
pared EFCIL methods can only be updated with a minimum
of two classes per CIL state since they use discriminative
classifiers, which require both positive and negative sam-
ples. In practice, it is interesting to enable updates once
each new class is available. This is possible with FeTrIL
because pseudo-features can all originate from a single new
class. Results in the right columns of CIFAR-100, Tiny-
ImageNet and ImageNet-Subset from Table 1 show that the
accuracy obtained in with one class increments is close to
that observed for T = 20. This highlights the robustness of
FeTrIL with respect to frequent updates.

Influence of the final classification layer.
FeTrIL1 compares favorably with FeTrIL1

fc. LinearSVC
gives better performance than a fully-connected layer,
particularly for a large number of incremental steps.
However, FeTrIL1

fc is also competitive, and outperforms
existing methods in a majority of configurations.

Detailed view of accuracy. We illustrate the evolution
of accuracy across incremental states in Figure 3 to com-
plement the averaged results from Table 1. These detailed
results confirm the good behavior of the proposed method.
The evolution of accuracy for FeTrIL and SSRE is very sim-
ilar for CIFAR-100, FeTrIL method is better throughout the
process for TinyImageNet, and also better than SSRE for
the first incremental states for ImageNet-Subset. The per-
formance gain with respect to the other compared methods
is much larger for all incremental states.

Comparison to exemplar-based CIL methods. This
comparison is interesting because EFCIL is a much more
challenging task than EBCIL [2, 24], and an important per-
formance gap between the two was observed. This is intu-
itive since the storage of images of past classes in EBCIL

CIL Method CIFAR-100 ImageNet-Subset

T = 5 T = 10 T = 5 T = 10

LUCIR [13] (CVPR’19) 63.2 61.1 70.8 68.3
+AAnets (CVPR’21) 66.7 65.3 72.6 69.2
Mnemonics [23] (CVPR’20) 63.3 62.3 72.6 71.4
+AAnets (CVPR’21) 67.6 65.7 72.9 71.9
PODNet [7] (ECCV’20) 64.8 63.2 75.5 74.3
+AAnets (CVPR’21) 66.3 64.3 77.0 75.6
FeTrIL1 66.3 65.2 71.9 70.8

Table 2. Comparison of FeTrIL with the recent AANets
method [21], applied on top of EBCIL baselines which store 20
exemplars of past classes to mitigate catastrophic forgetting.

mitigates catastrophic forgetting. Following [13, 21], a
memory of 20 images per class is allowed for all EBCIL
methods tested here. FeTrIL is better than all three base
methods to which AANets is applied for CIFAR-100. For
ImageNet-Subset, FeTrIL accuracy is better than LUCIR’s,
slightly behind that of Mnemonics [22] and approximately
3.5 points lower than that of PODNet [7]. The performance
of FeTrIL remains close that of EBCIL methods in a ma-
jority of cases even after the introduction of AANets. The
results from Table 2 indicate that, while still present, the gap
between EFCIL and EBCIL methods is narrowing.

4.2. Method analysis
We present an analysis of: (1) the selection strategies, (2)

the memory footprint of the methods, (3) the complexity of
model updates, and (4) the stability-plasticity balance.

Pseudo-feature selection comparison. FeTrIL can use
any past-new classes combination for translation. In Ta-
ble 3, we compare the selection strategies from Subsec-
tion 3.2. Accuracy varies in a relatively small range for all
strategies, indicating that FeTrIL is robust to the way fea-
tures of new classes are selected, and it can be successfully
implemented with any of the strategies. FeTrIL1 is better
than the other selection methods and this motivates its use
in the main experiments. Class similarity matters, but re-
sults with FeTrIL10 remain interesting. FeTrILherd also has
interesting accuracy, but is slightly behind that of FeTrIL1.

3916

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% CIFAR-100, T = 10
PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

IL2A
FeTrIL

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% TinyImageNet, T = 10
PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

IL2A
FeTrIL

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% ImageNet-Subset, T = 10

PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

FeTrIL

Figure 3. Evolution of top-1 accuracy for an incremental process with T = 10 IL states. Best viewed in color.

CIFAR-100 TinyImageNet ImageNet-Subset

T = 5

FeTrIL1 66.3 54.8 72.2
FeTrIL5 65.7 53.8 72.2
FeTrIL10 65.1 53.8 71.6
FeTrILherd 66.2 53.8 72.1
FeTrILrand 65.1 51.5 70.3

Table 3. Average top-1 CIL accuracy obtained with the variants
of pseudo-feature selection from Subsection 3.2 for T = 5. We
set k = {1, 5, 10} for the similarity rank between the past and
new classes to test the effect of class similarities. There are 10
(CIFAR-100 and ImageNet-Subset) and 20 (TinyImageNet) new
classes per state from which to select features translation.

The results from Table 3 motivate the use of FeTrIL1 in
the main experiments. Overall, the geometric translation to-
ward the centroid of the past class is by far more important
than the new classes features sampling policy. This finding
is also supported by the results obtained with a single new
class per CIL state (Table 1).

Memory footprint. A low memory footprint is a de-
sirable property of incremental learning algorithms be-
cause they are most useful in memory-constrained appli-
cations [24, 32, 33], and recommended for embedded de-
vices [9]. All EFCIL methods need to store a representa-
tion of past classes to counter catastrophic forgetting. Nat-
urally, this representation should be as compact as possible.
Mainstream methods (such as LwF-MC [19], PASS [48],
IL2A [48], and SSRE [49]) need to the previous and current
deep models during CIL updates for distillation. ResNet-
18 [11], the most frequent CIL backbone, has approxi-
mately 11.4M parameters. Consequently, distillation-based
methods require around 22.8M parameters. Transfer-based
methods, such as DeeSIL [1] and FeTrIL, use only the deep
model learned in the initial state and frozen afterwards, and
only need 11.4M parameters for the model. DeeSIL does
not need supplementary parameters during incremental up-
dates. However, this comes at the cost of poor global dis-
crimination of classes, which is reflected in the final per-
formance. FeTrIL stores the class centroids of past classes
in order to perform feature translation. Each class needs
512 parameters, which leads to a supplementary 51.2K

0 1 2 3 4 5 6 7 8 9 10
Incremental state

20%
40%
60%
80%

100% ImageNet-Subset, T = 10

ova - 71.2
r = 25 - 70.8

r = 10 - 70.0
r = 1 - 67.3

ova - 71.2
r = 25 - 70.8

r = 10 - 70.0
r = 1 - 67.3

Figure 4. Top-1 incremental accuracy of FeTrIL1 for approximate
training of the classification layer with different ratios for negative
sampling. ova denotes a classical one-vs-all training procedure
which is used to report the main results from Table 1 and Figure 3.

and 102.4 memory need for 100 and 200 classes, respec-
tively. The class similarities needed for pseudo-feature se-
lection (Subsection 3.2) can be computed sequentially and
the added memory cost of this step is negligible. PASS [48],
IL2A [47] and SSRE [49] also require the storage of a proto-
type (mean representation) for each past class and their foot-
print is equivalent to that of FeTrIL. IL2A [47] addition-
ally stores a covariance matrix per past class (512x512 for
ResNet-18) for optimal functioning, which is prohibitive.

Complexity of incremental updates. CIL is useful in
resource-constrained environments, and the integration of
new classes should be fast [9, 32]. Distillation-based meth-
ods retrain the full backbone model at each update. This is
is costly because backpropagation complexity depends on
the network architecture, the number of samples and the
number of epochs [8]. Updates of transfer-based methods
are simpler because they update only the final layer. DeeSIL
trains linear classifiers using a one-vs-all procedure within
each CIL state. The complexity of one training epoch for
all classifiers in a CIL state is O((nT)

2sd) [3], with n - to-
tal number of classes in the dataset, d - dimensionality of
features and s - samples per class. FeTrIL retrains all lin-
ear classifiers, past and new, in each CIL state to improve
global separability. Its complexity is O(n2sd) in the last
incremental state, which includes all classes. However, the
one-versus-all training can be replaced with a one-versus-
many training with negligible loss of accuracy. A sampling
of negative features is performed to respect a predefined
ratio r between negatives and positives used to train each

3917

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

25%

50%

75%

100%

To
p-

1
ac

cu
ra

cy

Past
New

Avg

SSRE

Past
New

Avg

0 1 2 3 4 5 6 7 8 9 10
Incremental state

FeTrIL
TinyImageNet, T = 10

Figure 5. Top-1 incremental accuracy per state for past and new
classes for TinyImageNet, with T = 10 incremental states for
FeTrIL1 and SSRE, the best compared method. An ideal method
would provide high accuracy, but also similar performance for past
and new classes. The accuracy of past and new classes is globally
closer for FeTrIL1 , which indicates that our method provides a
better stability-plasticity balance than SSRE. Overall accuracy is
better for FeTrIL1 in Figure 3 because the contribution of new
classes in each state diminishes during the CIL process.

classifier. This approximation has O(rnsd) complexity. It
is interesting since r < n, and is more and more useful as n
grows during the IL process since r remains constant.

In Figure 4, we present results with different r values for
ImageNet-Subset, T = 10. Accuracy drops when negative
sampling is performed, but it is close to that of one-vs-all
training when r = 25 and r = 10. Performance drops
more significantly for r = 1, when each linear classifier is
learned with an aggressive sampling of negatives. Similar
results for CIFAR-100 and TinyImageNet are provided in
the suppl. material. Globally, Figure 4 indicates that FeTrIL
increments can be accelerated with little accuracy loss.

We measure the time needed for incremental training of
ImageNet-Subset, T = 10. The training of the initial model
is similar for all models and is thus discarded. FeTrIL train-
ing is done on a single thread of an Intel E5-2620v4 CPU,
and only takes 1 hour, 4 minutes and 16 seconds. If FeTrIL
is run with r = 10 ratio between positives and negatives,
training time is only 15 minutes and 3 seconds. In com-
parison, PASS [48] needs 11 hours, 8 minutes and 19 sec-
onds on an NVIDIA V100 GPU, with 4 workers for data
loading. While clearly favorable to FeTrIL, the comparison
is biased in favor of PASS since this method uses an en-
tire GPU, in comparison to a single CPU thread for FeTrIL.
Further speed gains are possible for our method by using a
GPU implementation of the linear layer. Our method would
run much faster with a GPU implementation of the linear
layer. Note that the running time of the other methods, such
as LUCIR [13] and SSRE [49], which perform backpropa-
gation is similar to that of PASS [48].

Stability-plasticity balance. CIL should ideally ensure
a similar accuracy level for past and new classes [24, 49].
Figure 5 shows that the two methods have complementary
behavior, which results from the way deep backbones are
used. SSRE is biased toward new classes since the model
is fine tuned in each incremental state. FeTrIL favors past

classes because the deep model is learned with the initial
classes (a subset of past classes) and then frozen. The accu-
racy gap between past and new classes is smaller for FeTrIL
compared to SSRE, except for state 4. There, low perfor-
mance on new classes is probably explained by a strong do-
main shift compared to the initial state. Globally, the pro-
posed method improves the stability-plasticity balance.

5. Conclusion

We introduce FeTrIL, a new method which addresses
exemplar-free class-incremental learning. The proposed
combination of a frozen feature extractor and of a pseudo-
feature generator improves results compared to recent EF-
CIL methods. The generation of pseudo-features is sim-
ple, since it consists in a geometric translation, yet effec-
tive. Our proposal is advantageous from memory and speed
perspectives compared to mainstream methods [13, 33, 38,
42, 45, 47, 48, 49]. This is particularly important for edge
devices [9, 32], whose storage and computation capacities
are limited. FeTrIL performance is also close to that of
exemplar-based methods, which need to store samples of
past classes to mitigate catastrophic forgetting. While a gap
between exemplar-based and exemplar-free setting subsists,
it becomes significantly narrower. The results reported here
resonate with past works which show that simple methods
can be highly effective in CIL [2, 24, 31]. They question the
usefulness of the knowledge distillation component, used
by a majority of existing methods. The FeTrIL code will be
made public to enable reproducibility.

The main limitations of the proposed method motivate
our future work. First, FeTrIL uses a frozen feature ex-
tractor learned on the initial state and tends to favor past
classes over new ones. We will investigate ways to combine
the pseudo-feature generation mechanism and fine-tuning to
further improve global performance, as well as the stability-
plasticity balance. Second, FeTrIL produces usable pseudo-
features, but past class representations would be better if the
pseudo-features would be more similar to the original fea-
tures of past classes. We will study methods that generate
more refined features, for instance by using the distribution
of the initial features. Last but not least, the tested selection
strategies are all effective. However, they could be further
improved by filtering out outliers based on the localization
of pseudo-features in the representation space.

Acknowledgements. This work was supported by the Eu-
ropean Commission under European Horizon 2020 Pro-
gramme, grant number 951911 - AI4Media. It was made
possible by the use of the FactoryIA supercomputer, finan-
cially supported by the Ile-de-France Regional Council.

3918

References
[1] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow

incremental learning. TaskCV Workshop @ ECCV 2018.,
2018.

[2] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos.
A comprehensive study of class incremental learning algo-
rithms for visual tasks. Neural Networks, 135:38–54, 2021.

[3] Léon Bottou and Olivier Bousquet. The tradeoffs of large
scale learning. Advances in neural information processing
systems, 20, 2007.

[4] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. End-to-end in-
cremental learning. In Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XII, pages 241–257, 2018.

[5] Debasmit Das and CS George Lee. A two-stage approach to
few-shot learning for image recognition. IEEE Transactions
on Image Processing, 29:3336–3350, 2019.

[6] Akshay Raj Dhamija, Touqeer Ahmad, Jonathan Schwan,
Mohsen Jafarzadeh, Chunchun Li, and Terrance E Boult.
Self-supervised features improve open-world learning. arXiv
preprint arXiv:2102.07848, 2021.

[7] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs dis-
tillation for small-tasks incremental learning. In Com-
puter vision-ECCV 2020-16th European conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part XX, volume
12365, pages 86–102. Springer, 2020.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

[9] Tyler L Hayes and Christopher Kanan. Online con-
tinual learning for embedded devices. arXiv preprint
arXiv:2203.10681, 2022.

[10] Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen.
Exemplar-supported generative reproduction for class in-
cremental learning. In British Machine Vision Conference
2018, BMVC 2018, Northumbria University, Newcastle, UK,
September 3-6, 2018, page 98, 2018.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Conference
on Computer Vision and Pattern Recognition, CVPR, 2016.

[12] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[13] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via re-
balancing. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 831–839, 2019.

[14] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
Hayes, and Christopher Kanan. Measuring catastrophic for-
getting in neural networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017.

[16] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

[17] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory G. Slabaugh, and
Tinne Tuytelaars. Continual learning: A comparative study
on how to defy forgetting in classification tasks. CoRR,
abs/1909.08383, 2019.

[18] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015.

[19] Zhizhong Li and Derek Hoiem. Learning without forgetting.
In European Conference on Computer Vision, ECCV, 2016.

[20] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales
Leonardis, and Tinne Tuytelaars. More classifiers, less for-
getting: A generic multi-classifier paradigm for incremen-
tal learning. In European Conference on Computer Vision,
pages 699–716. Springer, 2020.

[21] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggre-
gation networks for class-incremental learning. In Confer-
ence on Computer Vision and Pattern Recognition, CVPR,
2021.

[22] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 12242–12251.
IEEE, 2020.

[23] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremen-
tal learning without forgetting. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 06 2020.

[24] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
Menta, Andrew D. Bagdanov, and Joost van de Weijer.
Class-incremental learning: survey and performance evalu-
ation on image classification, 2021.

[25] Michael Mccloskey and Neil J. Cohen. Catastrophic in-
terference in connectionist networks: The sequential learn-
ing problem. The Psychology of Learning and Motivation,
24:104–169, 1989.

[26] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and
Gabriela Csurka. Distance-based image classification: Gen-
eralizing to new classes at near-zero cost. IEEE transactions
on pattern analysis and machine intelligence, 35(11):2624–
2637, 2013.

[27] M Mermillod, A Bugaiska, and P Bonin. The stability-
plasticity dilemma: investigating the continuum from catas-
trophic forgetting to age-limited learning effects. Frontiers
in Psychology, 4:504–504, 2013.

[28] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? arXiv preprint
arXiv:2008.11687, 2020.

[29] German Ignacio Parisi, Ronald Kemker, Jose L. Part,
Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks,
113, 2019.

3919

[30] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duches-
nay. Scikit-learn: Machine learning in python. CoRR,
abs/1201.0490, 2012.

[31] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In European Conference on Computer
Vision, pages 524–540. Springer, 2020.

[32] Leonardo Ravaglia, Manuele Rusci, Davide Nadalini,
Alessandro Capotondi, Francesco Conti, and Luca Benini. A
tinyml platform for on-device continual learning with quan-
tized latent replays. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 11(4):789–802, 2021.

[33] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. icarl: Incremental classi-
fier and representation learning. In Conference on Computer
Vision and Pattern Recognition, CVPR, 2017.

[34] Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Ter-
rance E Boult. The extreme value machine. IEEE
transactions on pattern analysis and machine intelligence,
40(3):762–768, 2017.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael S. Bernstein, Alexander C.
Berg, and Fei-Fei Li. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[36] Jeffrey C Schlimmer and Douglas Fisher. A case study of
incremental concept induction. In AAAI, volume 86, pages
496–501, 1986.

[37] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. Cnn features off-the-shelf: an astound-
ing baseline for recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition work-
shops, pages 806–813, 2014.

[38] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen,
Hongxia Jin, and Zsolt Kira. Always be dreaming: A new
approach for data-free class-incremental learning. arXiv
preprint arXiv:2106.09701, 2021.

[39] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,
Chao Yang, and Chunfang Liu. A survey on deep transfer
learning. In International conference on artificial neural net-
works, pages 270–279. Springer, 2018.

[40] Gido M Van de Ven and Andreas S Tolias. Three scenar-
ios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

[41] Ragav Venkatesan, Hemanth Venkateswara, Sethuraman
Panchanathan, and Baoxin Li. A strategy for an
uncompromising incremental learner. arXiv preprint
arXiv:1705.00744, 2017.

[42] Vinay Kumar Verma, Kevin J. Liang, Nikhil Mehta, Piyush
Rai, and Lawrence Carin. Efficient feature transformations
for discriminative and generative continual learning. CoRR,
abs/2103.13558, 2021.

[43] Max Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009, pages 1121–1128, 2009.

[44] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 374–382, 2019.

[45] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 6980–6989. IEEE, 2020.

[46] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao
Xia. Maintaining discrimination and fairness in class incre-
mental learning. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 13205–13214. IEEE,
2020.

[47] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu.
Class-incremental learning via dual augmentation. Advances
in Neural Information Processing Systems, 34, 2021.

[48] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
Lin Liu. Prototype augmentation and self-supervision for
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5871–5880, 2021.

[49] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-
Jun Zha. Self-sustaining representation expansion for non-
exemplar class-incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9296–9305, 2022.

3920

