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Abstract

Extracting adequate contextual information is an impor-
tant aspect of any image inpainting method. To achieve
this, ample image inpainting methods are available that
aim to focus on large receptive fields. Recent advance-
ments in the deep learning field with the introduction of
transformers for image inpainting paved the way toward
plausible results. Stacking multiple transformer blocks in
a single layer causes the architecture to become compu-
tationally complex. In this context, we propose a novel
lightweight architecture with a nested deformable attention-
based transformer layer for feature fusion. The nested
attention helps the network to focus on long-term depen-
dencies from encoder and decoder features. Also, multi-
head attention consisting of a deformable convolution is
proposed to delve into the diverse receptive fields. With
the advantage of nested and deformable attention, we pro-
pose a lightweight architecture for facial image inpaint-
ing. The results comparison on Celeb_HQ [25] dataset us-
ing known (NVIDIA) and unknown (QD-IMD) masks and
Places2 [57] dataset with NVIDIA masks along with ex-
tensive ablation study prove the superiority of the proposed
approach for image inpainting tasks. The code is available
at: https://github.com/shrutiphutke/NDMA
Facial_ Inpainting.

1. Introduction

Image inpainting is a perennial task of filling the holes
with the most probable contents which generate a plausible
outcome. The wide variety of applications such as 3D im-
age generation, photo restoration, object removal, portrait
editing, etc. has made image inpainting a popular computer
vision task. The conventional inpainting methods [5, 12, 14]
made use of textural or patch-based statistical information
to inpaint images. These methods lack in generating high-
level semantics and structurally plausible results.

With the advancement in convolutional neural networks
(CNNs) and generative adversarial networks (GANSs), vari-
ous methods are proposed for image inpainting which gen-
erate faithful results [47, 46, 49, 41, 30, 31, 32]. The main
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Figure 1. Comparison of the proposed method (ours) with exist-
ing methods (SN [45], GConv [48], EC [27], RFR [19], HR [38],
CTSDG [9], MAT [20]) in terms of number of trainable parame-
ters (x-axis), number of operations (GMAC) (y-axis) and run time
complexity in seconds per image (bubble size).

aspect of the inpainting task is to extract the relevant con-
textual information from various receptive fields. The pi-
oneer works with deep learning approach achieve the con-
textual information extraction by utilizing various phenom-
ena such as recurrent feature processing [19], hyper-graphs
[38], contextual reconstruction [52], etc. In [36], the au-
thors proposed a Fast Fourier Convolution-based feature en-
coding for global receptive fields. For the image inpainting
task, one can have ample data for training by corrupting the
clean images with different masks. With this advent, numer-
ous methods are proposed and deliver promising inpainting
outcomes. Still, they lack in producing realistic outcomes
due to distorted structures and blurriness. Also, some meth-
ods are proposed with prior knowledge to produce a faithful
outcome.

The evolution of the attention mechanism (Transform-
ers) [37] helps the tasks, where attention plays a key role, to
deal with the non-local modelling. It has turned the image
reconstruction task into a different realm. In this context,
the transformer-based approaches [56, 50] are proposed for
image inpainting. These approaches simply use the com-
monly utilized transformer block (LN—MSA—LN—FFN)
repeatedly in turn increasing the computational cost of the
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overall architecture. Also, the quadratic computational
complexity of the transformers limits these methods to ap-
ply attention to the deep feature maps only with small
scales. So the generated image lacks detailed information.
To overcome this, Li ef al. [20] proposed a vanilla trans-
former block along with the multi-head contextual atten-
tion. This method provides better results as compared to
existing methods but lacks semantic context understanding.
Also, when the transformer block is considered for process-
ing the input with a large size, there may be a chance of in-
formation loss due to the quantization of input to a smaller
size. This phenomenon is taken care of in [24], by consid-
ering a patch-based auto-encoder.

The attention mechanism in general is an effective ap-
proach for image inpainting task. Since it helps the network
to effectively extract the features from valid locations for
inpainting the holes. Also, to fill the holes of large size, it
is necessary to have a varying receptive field in consider-
ation while extracting the features. The multi-head atten-
tion urges to weigh the feature maps with the valid features.
Considering these points, in this work, we propose a nested
deformable multi-head attention layer (NDMAL) to trans-
fer the encoder features for effective reconstruction while
considering diverse receptive fields. Inspired by the suc-
cess of linear unified nested attention [26] for a sequence
modelling task, we propose a nested deformable multi-head
attention layer for image inpainting task. e Unlike [26],
we consider encoder and decoder features as packed and
unpacked inputs. Though, encoder and decoder features
are inputs to the multi-head attention, our proposed layer
has linear complexity. Since we utilize the channel-wise
attention instead of spatial attention. The proposed ND-
MAL helps the network to effectively extract the features
from the valid region (background) to fill the holes. e Fur-
ther, we propose deformable multi-head attention (DMHA)
for extracting decoder features from diverse fields which
are then merged with the skip features from the encoder.
Also, a gated feed-forward layer is utilized to again pass the
weighted features for reconstruction. Resembling the en-
coder skip features as a query sequence, packed attention
is calculated, called packed context. This packed context
is again processed through DMHA with query sequence as
decoder features and generated an unpacked context. Both
of these packed and unpacked contexts are merged and then
forwarded to the next layer. These packed and unpacked
context features assist in the effective reconstruction of the
inpainted image. The main contributions of our work are:

e Formulating a lightweight architecture consisting of
novel transformer layer for facial image inpainting.

e We propose a nested deformable multi-head attention
transformer layer NDMAL) to effectively fuse the en-
coder and decoder features. The use of NDMAL al-

lows the network to effectively capture long term de-
pendencies and to extract the valid features from max-
imum receptive fields.

e We propose the analysis of inpainting methods on seen
and unseen types of masks.

The ablation study is carried out to verify the efficiency of
the proposed NDMAL. Comparative analysis of the pro-
posed approach on Celeb_HQ dataset corrupted with masks
from two different datasets and Places2 dataset proves its
efficiency for image inpainting task.

2. Related Work

Image inpainting is a sempiternal problem of image
restoration where the image with holes is filled with the
most relevant content. Earlier works used patch [5], exem-
plar [17] and diffusion [1] based approaches to inpaint the
image. These approaches mainly use the textural or struc-
tural statistics of the patches or valid regions to inpaint the
hole region. Jin er al. [14] proposed a patch-sparsity based
method with deduced directional derivatives for image in-
painting. Barnes et al. [2] proposed a patch-based method
where the patch from nearest neighbour match is used for
inpainting the image. Though these conventional methods
reproduce the inpainted image, they lack the structural con-
sistencies in the outputs.

The deep learning approaches for image inpainting come
up with visually plausible results and encounter the tra-
ditional inpainting methods. The adversarial training ap-
proach provides plausible outcomes in the image-to-image
translation task [8, 29, 16]. The very first adversarial
training-based approach was proposed by Pathak er al. [28]
for image inpainting. Later, various methods were proposed
with local-global discrimination approach [12], partial con-
volutions [22], gated convolutions [48], contextual atten-
tions [23, 44, 46, 47] etc. for image inpainting. Also, some
prior information-based methods were proposed for image
inpainting with structurally plausible outcomes [27, 33].
In line to this, the progressive [18] and recurrent [19] ap-
proaches were proposed for image inpainting. The paral-
lel processing of multi-resolution features was performed
in [41] for robust semantic and plausible texture generation.
In [52], the authors proposed a patch-borrowing mechanism
for an attention-free generator network with a supplemen-
tary reconstruction task that performs as training loss for
inpainting. In similar way, the self distillation approach was
proposed by Suin et al. [35] for image inpainting. The sep-
arate generation of textural and structural information for
inpainting an image is carried out with separate networks
in [9]. With the advantage of transforms to synthesize the
features, Yu et al. [49] and Suvorov et al. [36] proposed the
wavelet features and Fast Fourier Convolution based meth-
ods respectively to inpaint the images with large masks.
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Figure 2. Proposed architecture for image inpainting. We propose a nested deformable multi-head attention transformer layer (NDMAL) to
focus on large receptive fields with long term dependencies. The proposed layer consists of single layer in turn reducing the computational

complexity of the network.

With the exceptional ability to model the long-term re-
lationship, the transformers are in high demand for various
vision applications [3, 7, 40]. Recently, Wan et al. [39]
proposed a pluralistic image completion with the help of
bidirectional attention. Further, Yu er al. [50] proposed
auto-regressive transformer based pluralistic image inpaint-
ing. Similarly, Dong er al. [6] proposed an incremen-
tal transformer-based three-stage architecture with structure
and texture restoration by a transformer and FFT CNN re-
spectively. Zhao et al. [54] proposed cross semantic atten-
tion layer for diverse image inpainting. The authors in [20]
proposed a mask-aware transformer in which the attention
module fuses the information from the partial valid tokens.
In this work, we propose a modified attention layer named
nested deformable multi-head attention layer (NDMAL) to
process the encoder and decoder features with nested atten-
tion. This layer helps to extract valid attention from diverse
receptive fields to inpaint the images faithfully. The detailed
exposition of the proposed method is given in Section §3.

3. Proposed Method

In this section we first introduce in general multi-head
attention used in the transformer [37], the linear unified
nested attention [26] and then we put a light on the pro-
posed nested deformable multi-head attention layer (ND-
MAL) used for image inpainting task.

3.1. Transformer with Self Attention

The multi-head attention [37] maps A € R"*P x B €
R™*P — Y € R™*P is generally formulated as:

A¢q(B¢k)T
vy,

where, A and B are the query and context sequences with
length n and m respectively, o is the softmax activation, p

Y = Attn(A, B) = o( )Boé, (1)

is the embedding dimension, ¢4, @1 and ¢, are the trainable
parameters used to project the input into query, key and val-
ues, dj, is dimension of key. In [37] for multi-head attention
A = Bis considered, called as self-attention. The output of
this multi-head attention i.e.,self-attention is fed to position
wise feed-forward layer followed by layer normalization.
The final output of the transformer (Y) is given as:

Y' = n(FFN(Ya) + Ya) @)

where, 1) is LayerNormalization, Y4 = n(Y + A).
These transformer layers are sequentially utilized ! times
in each block. The feed-forward network (FEFN) is inde-
pendently applied on each position and layer normalization
controls the gradient scales [37]. The SA generally has
quadratic complexity. The computational load of the SA
is reduced with applying the SA on small spatial window
size, ws = 8 x 8 [21, 43] instead of global attention.

3.2. Linear Unified Nested Attention

The linear unified nested attention [26] (LUNA) deals
with the quadratic memory and computational complexity
of transformers (O(mn)) (§3.1) by introducing an extra in-
put sequence of fixed length by generating two outputs.
This in turn gives linear complexity to the transformer layer.
The pack (Yp) and unpack (Y7;) attentions are introduced
as:

Yp = Atin(C,B); Yy = Attn(A,Yp) 3)
where, C € R!P is an extra input sequence with fixed
length [. The packed and unpacked attentions have the
complexity of O(lm) and O(In). So, the LUNA takes
three inputs in general (A, B and C) and produces a
packed and unpacked attention as output. The LUNA lay-
ers take these attentions to further process via FFN and
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LayerNormalization as:

Yp, Yy = LunaAttn(A, C, B)
Ya,Ca=n(Yp+ A),n(Yy +C) “)
Y/, C' = U(FFN(YA) + YA), Ca

where, Y/ and C’ are the outputs of the LUNA Layer.

3.3. Proposed Nested Deformable Multi-head
Attention

In combination to both of the multi-head attention (§3.1)
and LUNA attention (§3.2), we propose a nested deformable
multi-head attention for the task of image inpainting (Fig-
ure 2). The LUNA attention provides an extra input with
actual inputs to have linear complexity. Applying the self-
attention to the image inpainting task may provide relative
contextual information either from the encoded features or
from decoder features. Whereas, in our proposed approach,
we provide the decoder (De) and skip connection features
from the encoder (En) as input. Considering both the fea-
tures from the encoder and decoder may allow delving into
the valid feature space efficiently. Also, in order to extract
maximum receptive field from the decoder processed fea-
tures, we leverage the deformable convolution layer [4] un-
like [37] and [26]. Here, we consider the encoder features
to be the context information provided to the decoder for ef-
fective reconstruction. So, the proposed deformable multi-
head attention (DMHA) is formulated as:

Y = DMHA(D@N,I, Enl) =

o (Em%(DeN_mif )T) Dey 16 ©
where, qﬁdf shows the deformable convolution ap-
plied to the decoder features to delve into the maximum re-
ceptive fields, I € (1,4) is the number of layers and N = 5
(see DMHA in Figure 2). In deformable convolution, the
normal grid O = {(-1,-1),(-1,0),...,(0,1),(1,1)} is
augmented with the offsets {Ap,|ln = 1,...... ,P}, P =
|O|. So, for each location py in the output feature map gzﬁdf s

(bdf(pO) = Z w(pn)~x(p0 + pn + Apn) (6)

pn€O0

Further, we introduce the nested deformable attention
mechanism to increase the required receptive field and to
focus on long-term dependencies. Also, nesting of DMHA
makes sense that, it can capture sufficient contextual infor-
mation. The packed (Yp) and unpacked (Yy7) outcomes of
the nested deformable attention are given as:

Yp = DMHA(D@N,I, Enl)

7
YU = DMHA(YP,DGN,I) ( )

Since we consider the encoder layer features with the in-
put sequence, it will be able to pack the global context

of the input efficiently. The packed and unpacked outputs
are then forwarded to layer normalization and gated feed-
forward layer (GFFL). The output (Y”) of proposed ND-
MAL is given as:

Ye,Yp = 77(Yp + ETLZ), T](YU + DeN_l)

8
Y =< U(GFFL(YD) =+ YD),YE > ®)

where, < . > indicates concatenation operation. The GFFL
is the gated feed forward layer which is used to suppress
any undesired features if present. The GFFL is represented
as:

GFFL(fin) = (b(fm) + G(¢(fzn)) ©)

where, G is GELU activation function, ¢ and v are learn-
able parameters.

3.4. Overall Architecture

The overall architecture of the proposed approach is vi-
sualized in Figure 2. We follow a coarse-to-fine architec-
ture. The purpose behind the coarse-to-fine architecture is
to forward the coarse output features through the proposed
NDMAL as a query to provide sufficient contextual infor-
mation. So that the network will be able to capture long-
term dependencies effectively. The proposed NDMAL is
utilized in the fine stage which takes input from the en-
coder layer and considers it as a query to the respective de-
coder feature key and values. Also, the packed attention
in the NDMAL is calculated with respect to the encoder
skip inputs which is then concatenated with the processed
unpacked attention. The concatenation of both allows to
preserve the valid content efficiently.

The encoder and decoder layers of both the coarse and
fine stages are designed with the gated convolution
layer followed by a LeakyReLu activation. The successive
encoder layers at the bottleneck of the coarse stage allow fo-
cusing on the different receptive fields which produce an ap-
proximate output. This coarse output is then fed to the fine
stage which includes the proposed NDMAL. The overall ar-
chitecture with effective usage of NDMAL generates faith-
ful inpainted results. As we are considering the deformable
multi-head attention, it may help the network to extract in-
formation from maximum receptive fields. Also, the nested
multi-head attention applied to the encoded and decoded
features may help to capture the long-term dependencies.
So, unlike existing transformer architectures, our proposed
NDMAL consists of only one block with ws = 8 x 8. This
helps to reduce the computational cost of our proposed in-
painting network. Though the two inputs to the proposed
NDMAL are having the length of n,m, it preserves the
linear complexity. This is because we apply the attention
channel-wise instead of spatially [S1]. So, the attention
will effectively encode the global context by computing the
cross-covariance across the channels. This also reduces the
necessity of an extra input with constant length (/) like [26].
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Figure 3. Analysis on different configurations of proposed method
(Note: + indicates inclusion and - indicates exclusion of particular
block, SA is self-attention).

4. Training of the Proposed Network

The proposed architecture is trained with the corrupted
image and its mask as input and generates an inpainted im-
age as output. The discriminator network is the same as that
of [13]. While training, the image values are linearly scaled
between the range [0 : 1]. Weight parameters of the network
are updated on NVIDIA DGX station having Tesla V100
1x 16 GB GPU with the batch size of 1 for 200 epochs (38
GPU Hours). The ADAM optimizer [15] with the learning
rate of 2 x 1074, 81 = 0.5 and B = 0.99 is used.

4.1. Loss Functions

Given the corrupted image with holes (I¢) and the mask
(Iar) with ones at holes and zeros at the non-hole region,
it is required to generate the inpainted image (/7) similar
to the target image (/7). The L; loss is used to optimize
the network for better reconstruction. For the generation of
the globally and locally consistent realistic image, the ad-
versarial loss plays an important role [8], [13]. The adver-
sarial loss is the min-max problem between generator and
discriminator, respectively and given as:

Lean = maz min Ellog(D(Ic, IT))]
+E[log(1 — D(Ic,G(Ic)))]

where, D is the discriminator and G is the generator. To
guide the network for textural and structural information,
the perceptual loss is calculated between the deep feature
maps of the ground-truth and inpainted images by passing
them through the pre-trained VGG19 model [34] as:

S

Lp =Y (lls(Ir) = ¢s(I1)]l;) (11

s=1

where, ¢ are the feature maps (s € (1,5)) of the VGG19
model. The edge loss is also considered to focus on the
edge enhancement while training. The edge loss with sobel
operator S is formulated as:

Le = |IS(Ir) — S(I1)l; (12)

(10)

So, the overall loss for training the network is given as:

Lrotat = M L1+ AganLean +AeLe +ApLp  (13)

Configuration (Parameters) \PSNR SSIM L1 LPIPS FID

SA on En Feat (3.61M) 24.25 0.842 4.259 0.162 9.482
SA on De Feat (3.61M) 24.98 0.857 4.008 0.151 9.106
+Nested -Deformable (3.62M)|27.68 0.915 3.007 0.104 7.864
-Nested +Deformable (3.85M)|26.28 0.897 3.856 0.122 8.567
Proposed Network (4.12M) |28.19 0.931 2.575 0.082 6.844

Table 1. Quantitative comparison for different configurations of
the proposed network for image inpainting on 0.01 — 0.6 mask
ratio on CelebA-HQ dataset (Note: + indicates inclusion and - in-
dicates exclusion of particular block, SA is self-attention, En Feat
and De Feat are encoder and decoder features respectively).

here, \;,ss are the weights assigned for the respective loss
functions. The values (determined experimentally) of each
of the weights are \y = 10, A\, =2, Ap = 3,and Agan =
0.1 (analysis of effect of each loss function is provided in
supplementary material).

5. Experiments

Here, we provide details of datasets and metrics used
to compare proposed approach with baselines, the ablation
study on different configurations of proposed architecture,
comparative and computational complexity analysis.

5.1. Datasets, Metrics and Baselines

This work focuses on the facial image inpainting. For
this purpose, we use a publicly available celebrity faces
dataset named CelebA-HQ [25]. This dataset consists of
28k images for training and 2k images for testing. A nat-
ural image dataset i.e., Places2 [57] which contains im-
ages from 365 different places is also used. To corrupt
the face images, we used two different types of the mask
datasets. The NVIDIA mask dataset [22] and quick draw
irregular mask dataset (QD-IMD) [10]. The natural im-
ages are corrupted using NVIDIA masks. The testing set of
NVIDIA mask dataset covers different hole-to-image area
i.e., mask ratios in the range (0.01,0.6]. In total, there are
12k masks available which are divided into six sets with
(0.01,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.4], (0.4,0.5], and
(0.5,0.6] mask ratio. Also, a mask dataset with strokes
drawn by human hand called as quick draw irregular mask
dataset (QD-IMD) [10] is used for the evaluation of the
proposed architecture. The two mask datasets differ from
each other where, the NVIDIA mask dataset is based on
occlusion/dis-occlusion mask estimation between two con-
secutive frames which has sharp edges due of rough crops
near to borders and the QD-IMD consists of irregularly
drawn strokes without sharp edges. The sample masks of
both the datasets are given in supplementary material.

For quantitative evaluation, we consider five evaluation
measures: (i) peak-signal-to-noise ratio (PSNR), (ii) struc-
tural similarity index (SSIM), (iii) L; norm, (iv) Perceptual
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Mask|y . | SN[45] GMCNN [42] PIC[S5] Geonv[48] EC[27] RFR[19] HR([38] CTSDG [9] MAT [20] .
Ratio ECCV-18 NIPS-18 CVPR-19 ICCV-19 CVPRW-19 CVPR-20 WACV-21 ICCV-21 CVPR-22
PSNRT| 30.84 30.54 32.08 32.06 32.04 3345  33.28 33.57 3356 33.99
o [SSIMT | 0.961 0.957 0.967 0.960 0.973 0973 0976 0.979 0.977  0.982
S |l 2.827 2.867 2.689 2.681 3.108 1.824  1.925 1.329 1.147  1.017
S |LPIPS|| 0.060 0.057 0.043 0.039 0.038 0.045  0.041 0.029 0.027  0.022
FID, | 4.134 7.537 4.042 4.309 4.042 2516 2.257 2.105 2032 1.775
PSNRT| 25.77 24.49 25.30 25.48 26.30 2644  26.76 27.02 27.13 2743
< |SSIM? | 0.896 0.894 0.891 0.904 0.901 0917  0.935 0.936 0.931  0.948
S L1l 4246 4.120 3.691 4.147 3.194 3.022 3213 2.466 2466 2382
S |LPIPS)| 0.2091 0.1711 0.1772  0.1668 0.1630  0.1414  0.1341  0.1020  0.0944 0.0740
FID, | 10.643 28.170 14376  11.010 7.338 11.767  10.330 7516 6.620  5.862
PSNRT| 18.65 18.74 19.01 19.70 21.33 2123 22.04 2224 2255  23.14
o [SSIM?T | 0.657 0.744 0.679 0.840 0.809 0.755  0.831 0.845 0.847  0.858
S (L) 8.852 6.7465 7.0105  5.6945 5.828 6.354  5.3445 4.451 44015 4326
< |LPIPS)| 0.3690 0.4060 03451 03017 02755 02551 02429  0.1910  0.1811 0.1479
FID, | 61.160 50.981 49.120  34.940 33.011  30.650 28.498 14371  13.121 12.897

Table 2. Quantitative comparison of the proposed method (Ours) with the state-of-the-art methods on NVIDIA [22] masks for image
inpainting on CelebA-HQ dataset (1- Higher is better, |- Lower is better). The best and second best results are in red and blue.

Ground-truth GMCNN [42]
Figure 4. Qualitative comparison of the proposed method (Ours) with existing methods on CelebA_HQ dataset for NVIDIA [22] mask.

SN [45] PIC [55]

Image Patch Similarity (LPIPS) [53] to analyse the percep-
tual similarity between inpainted and ground-truth images,
and (v) Fréchet inception distance (FID) [11] to quantify
the distance between distributions of inpainted and ground-
truth images.

To examine the efficiency, we consider the compar-
ison of our proposed method with existing state-of-the-
art methods for image inpainting : Shift-net (SN) [45],
GMCNN:NIPS-18 [42], pluristic-image completion (PIC)
[55], gated-convolutions (Gconv) [48], edge-connect (EC)
[27], recurrent feature reasoning (RFR) [19], hypergrphs
(HR) [38], contextual texture-structure dual generation
(CTSDG) [9], and mask aware transformers (MAT) [20].

5.2. Ablation Study

In order to come up with an optimum architecture for
image inpainting task, we carried out meticulous experi-
ments with different combinations of our network. These
experiments include, (a) considering the self attention (§3.4)
applied on the encoder features and merged with decoder

GConv [48]

EC[27]  RFR[19] HR([38] CTSDG[9] MAT [20] Ours

features (SA on encoder features) , (b) self attention (§3.4)
applied on the decoder features and merged with encoder
features (SA on decoder features), (c) applying the nested
attention without deformable layer (similar to LUNA §3.2)
(+Nested -Deformable), (d) applying the deformable multi-
head attention without nested attention layers (-Nested
+Deformable), (e) finally, applying the nested deformable
multi-head attention layer (+Nested +Deformable i.e., Pro-
posed Network) (see Table 1). The architectural differences
of blocks used for ablation experiments are given in supple-
mentary material.

Purpose of this study is to compare quantitative and qual-
itative differences between different configurations of the
proposed network. We examine whether the self attention
applied on either encoder or decoder features works bet-
ter. The existing self attention tries to extract the long term
dependencies from the input feature maps. Applying it on
the encoder or decoder features affects differently while re-
constructing the image. Row 2 and 3 in Table 1 show the re-
sults for the configuration where the self attention is applied
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Ground-truth EC [27]

QD-IMD [10].
Mask

Ratio Method |PSNRT SSIMt L, | LPIPS| FID|
EC [27] 33.19 0972 1.340 0.0404 2.929

~ |RFR[19] 3345 0973 1.824 0.0291 2.516
< |HR[38] 3328 0.974 1.143 0.0259 2.051
= |CTSDGI[9]| 34.55 0.981 0.984 0.0186 1.913
S |MAT [20] | 34.66 0.982 0.945 0.0201 1.627
Ours 35.05 0.989 0.818 0.0172 1.567

EC [27] 25.85 0933 2.719 0.1319 7.561

RFR [19] 26.92 0939 2.513 0.1182 7.267

; HR [38] 27.68 0948 2.443 0.1082 6.652
a | CTSDGI[9]| 28.48 0.956 2.089 0.0540 6.262
S |MAT[20] | 28.62 0.957 1.930 0.0535 6.016
Ours 28.94 0961 1.807 0.0533 5.181

EC [27] 2243 0.856 5.007 0.2136 19.543
RFR [19] 2293 0.868 4.754 0.1801 18.650

g HR [38] 23.37 0.871 4.039 0.1734 17.685
< |CTSDGI[9]| 23.80 0.880 3.707 0.1308 16.111
S |MAT[20] | 24.03 0.887 3.637 0.1229 15.921
Ours 2456 0.895 3.508 0.1186 15.493

Table 3. Quantitative comparison of the proposed method (Ours)
with state-of-the-art methods on QD-IMD [10] masks for image
inpainting on CelebA-HQ dataset.

on encoder and decoder features respectively. From Table 1
and Figure 3, it is clear that, the self attention when applied
with encoder (row 2 of Table 1) or decoder (row 3 of Table
1) feature map as input fails to produce efficient outcome in
terms numeric and visual results. Inspired with the LUNA
attention, we ought to include the LUNA layer in the in-
apinting architecture to verify its ability to delve into the
valid features. Contrary to self attention, the results are
improved quantitatively and also generate better structural
information visually (see row 4 in Table 1 and column 5 in
Figure 3). The reason behind this might be, here we con-
sider both the information from encoder features and de-
coder features in order to get better contextual information
as compared to considering either of them. Further, we pon-
dered that, if we try to consider maximum receptive field, it
will further help the network towards better outcome. A
study is carried out to determine whether addition of
deformable convolution works well to extract maximum
receptive field. In light of that, we considered a deformable
multi-head attention (row 5 of Table 1) for extracting the

‘ RFR [19]

MAT [20]
Figure 5. Qualitative comparison of the proposed method (Ours) with existing methods on CelebA_HQ dataset for unknown mask dataset

HR [38] CTSDG[9]

contextual information from the input feature maps which
resulted into better convergence of structural information.
So, in combination to +Nested and +Deformable (see Pro-
posed Network in Table 1 and Figure 3), we come up with
our proposed network, nested deformable multi-head atten-
tion layer (NDMAL) for image inpainting. This proposed
NDMAL gives inpainted output akin to ground-truth.

5.3. Comparative Analysis

We train our network on CelebA-HQ image dataset
corrupted with NVIDIA mask training dataset similar to
baselines (§5.1). For comparative analysis, we consid-
ered two types of masks as mentioned in §5.1. For both
mask datasets, we considered 0.01 — 0.2, 0.2 — 0.4 and
0.4 — 0.6 mask ratios. Quantitative comparison of the pro-
posed method with existing baselines in terms of PSNR,
SSIM, L; norm, LPIPS and FID is given in Table 2. From
Table 2, we can clearly mention that the proposed method
effectively outperforms all the baselines for all mask ratios
and ultimately on average of all the mask ratios. Along with
the numeric superiority, we assess visual comparison of pro-
posed method with existing baselines. Visual comparison
is depicted in Figure 4. With the comparison, we come up
with some observations: our proposed method does not gen-
erate ghosting outcomes, it does not create stitching effects,
it does not produce over sharp results, etc. Furthermore, our
outputs are more accurate when compared with baselines
because their resemblance to ground truth is greater.

Along with this comparison on NVIDIA dataset masks,
we urge to verify reliability of our method with other mask
datasets. For this experiment, we consider the CelebA-HQ
images corrupted with QD-IMD dataset. Similar to exist-
ing baselines, our model is also not trained for these type
of masks. It means, we are comparing all the methods (in-
cluding ours) with unknown types of masks. In order to
make it simple, we compare our method with only best five
baselines. The quantitative and qualitative results’ compar-
ison is provided in Table 3 and Figure 5 respectively. Our
proposed approach gives quantitatively improved results as
compared with the existing baselines. In Figure 5 we can
see that, comparing our results with existing best methods,
we find that ours go more in the direction of plausible gener-
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Mask Ratio | Metric | SN [45] GMCNN [42] PIC [55] Geonv [48] EC [27] RFR [19] HR [38] CTSDG [9] MAT [20] Ours

PSNR | 27.88 28.22 29.52 29.50 29.69  30.64  30.12 30.61 31.68 3251
a SSIM | 0.876 0.894 0917 0.921 0915 0928 0.936 0.953 0954  0.968
i’ L1 3.371 3.637 2.796 2.698 2.585 1.181 1.661 1.490 1.121  1.104
g LPIPS | 0.134 0.113 0.136 0.127 0.132  0.102  0.098 0.066 0.044  0.062
FID 10.763 10.543 8.447 7.718 7.499  6.104  6.148 4.459 3.696  3.639
PSNR | 22.67 22.82 23.46 22.80 23770 2422 2418 25.10 2573 26.22
< SSIM | 0.816 0.858 0.842 0.872 0.877  0.850  0.856 0.877 0.884  0.893
< L1 5.173 5.532 4.410 4.393 4.081 3.828  3.638 3.327 3.067 2.661
g LPIPS | 0.239 0.223 0.218 0.205 0203  0.193  0.184 0.183 0.166  0.174
FID |29.126 27.398 25.799  22.007 21.018 20.218 19326  18.427 14.839 14.254
PSNR | 18.19 18.19 18.82 19.48 1952 20.76  20.83 21.03 21.18  21.89
© SSIM | 0.621 0.660 0.692 0.724 0.719  0.726  0.745 0.770 0.726  0.776
j L1 9.33 7.4985 7.111 6.6565 6.361 6486  5.999 5.7625 5.333  5.037
S LPIPS | 0.447 0.400 0.371 0.357 0360 0343 0.335 0.329 0.248 0312
FID | 74.150 73.696 73.408  68.005 54.341 49.204 55.461  40.266 35.810 37.887

Table 4. Quantitative comparison of the proposed method (Ours) with the state-of-the-art methods on NVIDIA [22] masks for image

inpainting on Places2 dataset.

PIC [55]

N & i N
Ground-truth GMCNN [42] SN [45]

Inpu£
Figure 6. Qualitative comparison of the proposed method (Ours) with existing methods on Places2 dataset for NVIDIA [22] mask.

ation. We, give this credit of faithful image inpainting to out
proposed nested deformable multi-head attention. Since, it
is able to easily extract the contextual information from both
the encoded features and decoded features.

To show the generalizability of our proposed method, we
have considered a Places2 natural images dataset [57]. The
quantitative and qualitative comparison on Places2 dataset
is given in Table 4 and Figure 6 respectively. This compar-
ison shows that our proposed method performs well for the

non-face/natural image inpainting. Though our proposed

method has very less number of parameters (4.1M) i.e., %th
of the baseline [20] (60M), it performs well for face and

non-face image inpainting task.

5.4. Complexity Analysis

We claim that, our propose method has low complexity
with good results as compared to existing baselines. Our
proposed nested deformable multi-head attention has lin-
ear complexity, since we apply the attention across channels
similar to [51]. Also, the existing self attention based meth-
ods utilize number of blocks with different window sizes to
capture long term dependencies in turn increasing the com-
putational cost. Here, in this approach we come up with a
single block in our NDMAL as it already consider two dif-
ferent feature maps to find the relative contextual informa-
tion. Further, the nested attention helps the layer to extract
valid content more extensively. Also, the deformable addi-
tively provide it with the larger receptive field. These points

d o = W
GConv [48] EC [27]

= e S ‘L.a 2 ‘.; o ‘ni;; RO
RFR [19] HR [38] CTSDG [9] MAT Ours

altogether allow a single block NDMAL with a ws = 8 to
extract relevant features for image inpainting.

The computational complexity analysis in terms of num-
ber of trainable parameters, number of operations i.e., Giga
multiply-accumulate operations (GMAC) and average run
time in terms of seconds/image is visualized in Figure 1.
From Figure 1 and Tables 2, 3 and 4, it is clear that, with
lower computational complexity, our method has good per-
formance as compared to existing baselines (the detailed
quantitative values of Figure 1 are provided in supplemen-
tary material).

6. Conclusion

This work aimed to propose a lightweight architecture
with a novel transformer layer for facial image inpainting.
To do this, we proposed a nested deformable multi-head
attention layer with a capacity of extracting valid features
from maximum receptive fields and capturing long term de-
pendencies effectively. The proposed method is compared
quantitatively and qualitatively with existing state-of-the-art
methods for image inpainting on CelebA_HQ and Places2
dataset corrupted using NVIDIA mask dataset. To verify
the reliability, we compared the proposed method with ex-
isting methods on CelebA_HQ corrupted using unknown
masks from QD-IMD dataset. The experiments show the
effectiveness of proposed method for facial and non-facial
image inpainting.
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