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Abstract

Monocular 3D traffic line detection jointly tackles the
detection of lane markings and regression of their 3D lo-
cation. The greatest challenge is the exact estimation of
various line shapes in the world, which highly depends on
the chosen representation. While anchor-based and grid-
based line representations have been proposed, all suffer
from the same limitation, the necessity of discretizing the
3D space. To address this limitation, we present an anchor-
free parametric lane representation, which defines traffic
lines as continuous curves in 3D space. Choosing splines
as our representation, we show their superiority over poly-
nomials of different degrees that were proposed in previous
2D lane detection approaches. Our continuous representa-
tion allows us to model even complex lane shapes at any
position in the 3D space, while implicitly enforcing smooth-
ness constraints. Our model is validated on a synthetic 3D
lane dataset including a variety of scenes in terms of com-
plexity of road shape and illumination. We outperform the
state-of-the-art in nearly all geometric performance metrics
and achieve a great leap in the detection rate. In contrast
to discrete representations, our parametric model requires
no post-processing achieving highest processing speed. Ad-
ditionally, we provide a thorough analysis over different
parametric representations for 3D lane detection. The code
and trained models are available on our project website
https://3d-splinenet.github.io/.

1. Introduction

Traffic line detection is a fundamental part of driver as-
sistance systems and autonomous driving. Such systems
have to estimate the accurate location of lane markings in
the 3D world to realize a safe driving behavior. The task is
often formulated as a monocular detection problem using a
front-facing camera as primary sensor.

One common strategy is to directly detect the lane mark-

ings in the 2D image and afterwards project them into the
3D world. Classical methods [1, 5, 19, 17, 44, 41] apply
hand-crafted filters to extract local features like edges to lo-
calize line segments and cluster them in a post-processing
step. These rule-based algorithms assume a certain ap-
pearance of lanes and, therefore, fail for more complex
examples. Consequently, Convolutional Neural Networks
(CNNs), which are capable of capturing global context,
have been proposed to extract road markings using pixel
representations based on segmentations [24, 34, 12, 15] and
geometrical representations based on straight-line anchors
[25, 43, 42] or grids that model lane geometry in each cell
[18, 22]. While these discrete representations require a sub-
sequent curve fitting step to sufficiently describe complete
line objects, parametric methods [10, 46, 26, 29, 9] directly
model lines as continuous functions in the image and let the
network predict the required parameters. This spares the
necessity of post-processing and allows for more flexible
modeling of lane geometry.

Finally, the transformation of resulting 2D detections
into the 3D world is commonly performed by means of a
homography assuming a flat road plane, due to the lack of
depth information. Since this assumption is frequently vio-
lated, more sophisticated methods for road surface estima-
tion [47] are necessary and, eventually, 2D lane marking de-
tections have been used with the assumption of parallelism
between traffic lines to address this problem [48].

This has led to monocular 3D lane detection methods
[11, 13, 8] that jointly tackle the lane detection and 3D esti-
mation problem while leveraging the commonalities of both
problems. In general, features are extracted from the input
image, projected using inverse perspective mapping (IPM)
into top-view and provided to anchor- [11, 13] or grid-based
[8] detectors to reconstruct lane markings. However, these
methods suffer from the usual drawbacks of discrete repre-
sentations. Anchor-based methods face problems for com-
plex shapes deviating strongly from the underlying assump-
tion and use interpolated ground truth values for training,
which results in additional errors. Grid-based methods, on
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(a) Our Splines (b) Polynomials (c) Anchor-based [13]

Figure 1: Traffic line predictions with 3rd degree Splines, 3rd degree and 5th degree polynomials, anchors resulting from
different representations compared to the ground truth.

the other hand, need a high amount of parameters to achieve
sufficient resolutions and require clustering to reconstruct
full lines from grid cells.

Inspired by 2D lane detection methods [10, 46, 26], we
propose a parametric representation describing lines as con-
tinuous curves in 3D space to overcome these limitations.
We show that previous parametric 2D approaches fail to
achieve SOTA performance due to the utilization of too sim-
plistic line models. Thus, we suggest a more sophisticated
representation based on B-Splines, which is capable of suf-
ficiently capturing complex line shapes and at the same time
requires smaller amount of parameters. Performing para-
metric regression in continuous space pays the same atten-
tion to lanes of various geometries appearing at any position
in space and does not depend on the choice of pre-defined
locations. We are able to learn the parameters directly from
the ground truth without any usual pre-processing such as
line fitting or interpolation. Additionally, our ground truth
association ensures optimal matching of line proposals and
considers all lines appearing in the image. Fig. 1 illustrates
the advantages of our splines over polynomials and anchor-
based representations even in simple situations.
Our main contributions can be summarized as follows:

• We propose an end-to-end trainable architecture that
directly predicts parameters describing continuous
traffic lines in 3D from monocular images and present
a way to train it using regression in continuous space.

• We present a better strategy for association of ground
truth markings to 3D line candidates based on the re-
duction of the mean distance.

• We compare different parametric representations in a
thorough analysis.

• Our method achieves state-of-the-art performance on
a synthetic dataset and greatly improves the detection
rate and runtime in comparison to previous methods.

2. Related work
The reliable detection of road markings from video-

based input has been investigated for almost four decades

[7, 20] and was already an essential part of the first au-
tonomous driving projects (e.g. PROMETHEUS [6]). Apart
from classical methods [2, 31], deep neural networks have
gained attention in recent years to address the problem. By
learning global context information, they were able to out-
perform classical methods especially in challenging situa-
tions (e.g. bad visibility, occlusions, etc.) [45].

2.1. Representations in 2D traffic line detection

In the meantime, different representations have been pro-
posed to address 2D traffic line detection with deep neural
networks. Early methods have formulated the problem as
a segmentation task striving for classifying traffic lines on
pixel-level [24, 34, 12, 33, 15, 35, 49]. Other approaches
suggest to reconstruct lines from a coarse grid represen-
tation [22, 18] instead of high-resolution segmentation by
performing regression on local line segments [18] or key-
points [22] per cell. However, both representations require
a subsequent clustering step to distinguish multiple line in-
stances, e.g. using learned embedding vectors.

While these representations barely make assumptions
about line geometry, anchor-based approaches [25, 43, 42],
inspired by famous object detectors [38, 37, 27], describe
traffic lines as straight line anchors with deviations at pre-
defined locations. Thus, they aim for classifying the most
suitable anchor and learning positional offsets by regres-
sion. While Line-CNN [25] uses straight anchors of dif-
ferent orientations, related methods vary in the design of
anchors and introduce attention mechanism [43] or incor-
porate structural information like line parallelism [42].

Typically, all mentioned discrete representations require
a post-processing step to fit a smooth curve to the detected
discrete points or segments. Parametric representations
[10, 46, 26, 29, 9], by contrast, directly model lines as con-
tinuous functions and obtain the function parameters from
the network. While in [10] least-squares fitting was applied
to feature maps to obtain polynomial coefficients, Poly-
LaneNet [46] directly predicts these parameters and [26]
uses a similar approach but employs the powerful trans-
former architecture as a backbone. In concurrent devel-
opment to our work, [9] was presented, which uses Bézier
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curves as a parametric line model, which were utilized in
other applications like scene text detection [28] before. Our
line representation is inspired by [46] and [26] but instead
of describing lines as one-dimensional functions, we pro-
pose to model them as continuous parameterized 3D curves
in a world coordinate system. Observing that polynomials
are limited in their representation capabilities, we do not
constrain our network to one representation and also con-
sider B-Splines [4, 40] that are more capable to model 3D
lane geometry and have been used successfully for classical
road surface estimation [47, 48]. In contrast to polynomials
and Bézier curves, B-Splines benefit from independent ba-
sis functions, which is particularly advantageous for mod-
eling typical road shapes (see Fig. 1).

2.2. 3D traffic line detection

One way to obtain world coordinates from 2D lane de-
tection is to assume a flat road plane and project lines to this
plane using a homography. Many methods directly detect
lanes in a virtual top-view, which can be constructed using
inverse perspective mapping [30]. IPM has been used in
classical traffic line detection [36] and also in deep learning
based 2D methods [33, 14, 29], where the top-view serves
as input to the network detecting traffic lines directly. Since
lines modeled in top-view only hold meaningful informa-
tion under the flat road assumption, methods have been pro-
posed to overcome this limitation. Classical 3D traffic line
detection approaches make hard assumptions about the road
model [3, 1] use stereo vision [32] or multi-sensor data [16]
to solve the problem of depth ambiguity. Eventually, it was
shown that 2D detection methods already provide enough
information for road surface estimation [48] when leverag-
ing the parallelism of traffic lines.

Monocular 3D traffic line detection methods [11, 13, 8]
were thus proposed that learn 3D geometry directly on the
basis of images from 3D ground truth in a supervised man-
ner. While these approaches also use IPM, they learn de-
viations from the hypothetical flat road plane, i.e. reveal-
ing the vertical height component of the 3D traffic line ge-
ometry. In contrast to the front-view, the top-view serves
as a reasonable input for estimating height, since parallel
lines appear diverging in uphill scenes and converging in
downhill scenes. 3D-LaneNet [11] proposes an end-to-end
trainable dual-way architecture, where one pathway extracts
feature maps of different scales and transforms them to the
top-view using IPM. The second pathway processes these
features to predict traffic lines using an anchor-based rep-
resentation formed by straight lines and positional offsets
in lateral direction and height. Gen-LaneNet [13] exploits
anchors similarly, but uses a geometric transformation that
aligns the predictions to the top-view. They also suggest a
two-stage architecture, which consists of a backbone trained
on binary line segmentation and a detection head operating

on the resulting top-view segmentation map. 3D-LaneNet+
[8] is based on a similar architecture as [11] but uses a grid-
representation as output to estimate local 3D line parame-
ters per cell and learn embeddings to cluster cells subse-
quently. Unfortunately, the latter does not provide trained
models, a code base or an evaluation scheme for reproduc-
tion of results and comparison.

Regarding the network architecture, our method is re-
lated to Gen-LaneNet, but we suggest to train the whole
framework end-to-end and feed multi-channel features
through the detection head instead of binary segmentation
maps. More important, we avoid a discrete representation
based on anchors or grids. Instead, we propose a parametric
formulation to model traffic lines as 3D curves, where the
lateral and vertical components are described by B-Splines.
Our representation allows us to model complex line shapes
and learn from real ground truth in continuous space. Be-
sides, our method achieves high speed as it does not require
costly post-processing such as line fitting or clustering.

3. Methodology
The following section describes our 3D traffic line detec-

tion approach. The main focus lies on our novel parametric
3D line representation and our proposed training scheme.
An overview of our method is illustrated in Fig. 2.

3.1. Traffic line representation

Inspired by prior work in 2D traffic line detection [10,
46, 26, 9], our approach uses a parametric representation to
model lines as continuous curves. Contrary to these meth-
ods, where a single function suffices for the 2D geometry in
a plane, we intend to describe 3D geometry. Consequently,
lines are represented as parameterized 3D curves as

l(t) =

x(t)
y(t)
z(t)

 = η ⊙ f l(t) = η ⊙

flx(t)
t

flz (t)

 , (1)

with normalization vector η ∈ R3, continuous vector func-
tion f l : R → R3, curve argument t ∈ [ts, te], where
ts, te ∈ [0, 1], and ⊙ the element-wise product.

As is common practice, the origin and orientation of
the 3D reference frame is defined by the camera pitch an-
gle and height, which we consider given. Hence, the x-y-
plane corresponds to the top-view projection plane of IPM
(see Fig. 2). We introduce f l describing the shape of 3D
curves in a normalized space and the vector of normaliza-
tion constants η = [ηx, ηy, ηz]

T for rescaling each dimen-
sion. Generally, f l can be modeled by any kind of continu-
ous function. A minor simplification is to only use elaborate
functions for x(t) and z(t) to model the lateral and vertical
deflections of the ego-direction y(t). Since lines usually ap-
pear with different ranges, we also need to model the start
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Figure 2: An overview of our proposed 3D traffic line detection framework. 3D-SpLineNet receives a front-view RGB image
I , feeds it through the Backbone and processes top-view feature maps by the Lane Detection Head. The final output contains
a set of parameters for M 3D curve proposals, namely α, β for line shape, ts, te for line range and existence probability p .

and end point of lane markings. We formulate this with a
fixed interval t ∈ [ts, te], where ηy · ts and ηy · te define the
start and end of the lane in y-direction.

As discussed in Section 2.1, polynomial functions have
already been used in 2D approaches [10, 46, 26, 29]. How-
ever, high degrees are necessary to accurately describe even
simple courses of lane markings as illustrated in Fig. 1b. In
contrast, B-Splines [4, 40] are piecewise polynomial func-
tions that can also represent complex courses of lane mark-
ings due to their piecewise definition and the independence
among basis functions. Consequently, compared to poly-
nomials, lower degrees are sufficient to model typical road
shapes as shown in Fig. 1.

Thus, we use B-Splines to model the lateral and vertical
components with additional offsets, such that we obtain

f l(t) =

∑KB

k=1 αk ·Bk,d(t) + α0

t∑KB

k=1 βk ·Bk,d(t) + β0

 , (2)

where each of KB basis functions Bk,d(t) represents a
piecewise polynomial of degree d and covers a certain
domain defined by a set of knots {t1, t2, . . . , tKB+1−d}.
{αk, βk}KB

k=1 is the set of control points specifying the im-
pact of each basis function, i.e. controlling the shape of the
curve f l(t). α0, β0 are offsets to model mean shifts.

Since the proposed algorithm processes images captured
by a single forward-facing camera, observable lines usu-
ally progress monotonously in driving direction. Hence,
for the detection of relevant lanes it is sufficient to use a
curve model that parameterizes the driving direction y(t) as
a scaling of the curve argument t. This model only shows
limitations in cases of horizontal lanes and special scenar-
ios like U-turns or roundabouts, but is still capable of repre-
senting almost horizontal lines, junctions and steep curves.

In future, when focusing on applications in urban environ-
ments, a conceivable extension is to additionally parameter-
ize y(t) with splines. More details on our representation and
possible lane geometries are provided in the supplementary.

3.2. Network architecture

Inspired by Gen-LaneNet [13], we also use a seman-
tic segmentation backbone to extract information from the
front-view and a lane detection head, but make meaningful
modifications. Gen-LaneNet [13] addressed the problem of
limited 3D data using a fixed pre-trained backbone provid-
ing binary lane masks to the detection head in order to de-
couple the 2D segmentation from the 3D geometry estima-
tion task. Since our emphasis does not lie on such cases, we
propose to directly use the features of the backbone instead
and train the whole architecture end-to-end. For this, we re-
place the last layer such that we obtain a multi-channel fea-
ture map, project it to the top-view and feed it through the
lane detection head. For the top-view transformation we ap-
ply IPM [30] as proposed in [11, 13, 8]. Training backbone
and lane detection head end-to-end allows the backbone to
learn richer feature maps for the 3D estimation task and our
detection head can leverage the full backbone capacity.

The final layer of our detection head is of size M ×
(Kα + Kβ + 3). It consists of M proposals, where each
includes Kα and Kβ parameters α and β as control points
and offsets for the x- and z-component, two parameters for
start and end and one probability p that a line exists for the
proposal. Note that using the proposed B-Spline represen-
tation from Eq. (2) yields Kα = Kβ = KB + 1 shape
parameters. Finally, the overall network output is given as{
α(i), β(i), t

(i)
s , t

(i)
e , p(i)

}M

i=1
. Fig. 2 shows an overview

of our end-to-end trainable network architecture and our
parametric representation.
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3.3. Training

Initialization. In 3D space, traffic lines can occur with
various geometries (e.g. left or right curves, up- and down-
hill, different lengths). Hence, covering the huge variety of
lane appearance with adequate initializations would lead to
a high amount of proposals. Assuming the majority of lanes
contain straight segments progressing in driving direction,
we restrict the number of proposals to a feasible amount and
use straight line initializations uniformly distributed along
normalized x-direction in the range of [−0.5, 0.5].

Association to ground truth. Contrary to 3D-LaneNet
[11] and Gen-LaneNet [13], which use a fixed reference
point, we suggest to consider the mean lateral distance from
the ground truth lines to the line proposals as a matching
criterion. This allows us to associate all lane markings, also
those not passing a specific y-position. However, in typ-
ical road scenes the first segment of most traffic lines is
very close to our straight line initialization. Thus, instead
of considering the mean lateral distance over an entire line,
we suggest to only consider a specific ratio of the ground
truth. In this way, the network can benefit from appropriate
initializations, which we investigate in Section 4.2. Even
with such an association strategy a unique assignment of
the ground truth to candidates cannot be ensured, e.g. in
case of multi-markings. We resolve this problem using the
Hungarian matching [23] for the association. Fig. 3 shows
(highlighted in red) the main differences between our and
previous assignment strategies.

Supervised detection loss. Our objective to train the
network on the detection task includes a classification loss
Lc to learn line presence, a shape loss Ls to minimize the
distance of each line instance to the ground truth, and a
range loss Lr to learn the start and end of the line range.
For the classification loss the common binary cross-entropy
is used, such that we obtain

Lc = −
M∑
i=1

p̂(i) log p(i) + (1− p̂(i)) log(1− p(i)) , (3)

with binary labels p̂ indicating the presence (association) of
ground truth lines.

To learn line shapes, we propose a parametric regres-
sion formulation that minimizes the L1-distance between
two 3D curves. For a predicted line instance l(t) and its
corresponding ground truth l̂(t) we obtain

Ls =

∫ t̂e

t̂s

∥∥∥w(t)⊙
(
f l(t)− η−1 ⊙ l̂(t)

)∥∥∥
1
dt (4)

=

∫ t̂e

t̂s

(
wx(t) ·

∣∣∣flx(t)− 1

ηx
x̂(t)

∣∣∣+ (5)

wz(t) ·
∣∣∣flz (t)− 1

ηz
ẑ(t)

∣∣∣) dt , (6)
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Figure 3: Comparison of anchor-based and our parametric
approach. Red: Our association considers all lines while
the reference point matching misses lines not passing yref .
Green: Our method performs regression over the entire line
using real ground truth. Anchor-based methods only learn
deviations at pre-defined locations requiring interpolation.

where t̂s, t̂e are the start and end of the ground truth lane.
w(t) is a weighting function, which considers the standard
deviations of lane geometry. Thus, it enables us to treat
near- and far-range errors well-balanced in the regression
loss. More details on w(t) are provided in the supplemen-
tary. In practice, the integral is approximated numerically
by choosing an appropriate amount of annotated ground
truth points uniformly distributed along the line and com-
puting the point-wise distance to the associated predictions.
The predicted values for x and z are obtained by recover-
ing t-values from the ground truth ( ŷ

ηy
) and evaluating the

function components of flx(t) and flz (t).
For learning the line range, we use a simple regression

of the start and end point t̂s, t̂e of the ground truth lane

Lr =
∣∣ts − t̂s

∣∣+ ∣∣te − t̂e
∣∣ (7)

in a similar way as previously suggested by parametric 2D
lane detection approaches [46, 26]. Finally, the overall loss
function is composed of a weighted sum of classification,
shape and range loss as

L = λc · Lc +

M∑
i=1

p̂(i) ·
(
λs · L(i)

s + λr · L(i)
r

)
, (8)

where L(i)
s and L(i)

r denote the shape and range loss for the
ith line. Despite the fact that the shape loss is computed
as a discrete sum of point-wise distances, the parametric
formulation reveals important differences to anchor-based
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methods, which we want to elaborate here and illustrate in
Fig. 3. While anchor-based approaches compute the regres-
sion loss at fixed positions independent of the underlying
line geometry (green dashed lines), our method flexibly se-
lects the positions, where the loss is evaluated based on the
exact location of the ground truth line (green dots in right
image). Consequently, for the regression each line instance
is represented by the same number of points, i.e. the para-
metric regression treats each line of arbitrary shape equally.
Anchor-based methods, in contrast, pay less attention to
sharp curves and short lines only crossing a small subset
of anchor positions. Moreover, computing the loss at pre-
defined anchor positions entails systematic errors since the
ground truth values x̂ and ẑ are recovered by interpolation,
whereas our continuous formulation allows the direct eval-
uation of the loss with actual ground truth.

4. Experiments
In this section, we describe our experimental setup, fol-

lowed by a thorough analysis, in which we investigate our
contributions and demonstrate the superior performance of
our method compared to two SOTA baselines.

4.1. Experimental setup

Dataset. We evaluate our approach on a synthetic dataset
published in the context of Gen-LaneNet [13]. It consists
of 10,500 images of highway, urban and rural scenes with
3D ground truth for traffic- and center-lines as well as cam-
era extrinsics, lane visibility information and depth maps.
The data is split into three subsets, (1) Standard contain-
ing simple scenarios from balanced scenes, (2) Rare Scenes
with more complex road shapes and scenes of (3) Visual
Variations. The first two share the same training data and
only differ in the test set. The third subset yields a training
set with well-lighted scenes only, whereas its test set solely
holds weakly illuminated scenes.

Evaluation metrics. For the quantitative evaluation, we
adhere to the scheme suggested for the utilized dataset [13].
It evaluates the euclidean distance at uniformly distributed
points in the range of 0-100m along the y-direction and
counts lanes as matched if the mean distance is below a
threshold of 1.5m. Based on the mean distance, Average
Precision (AP) and F-Score are computed, as well as the
mean x- and z-errors in near- (0-40m) and far-range (40-
100m) to evaluate geometric accuracy.

Implementation details. Similar to [13], we use
ERFNet [39] as a backbone with weights pre-trained on
the line segmentation task as initialization. The network
receives images of size 360×480. We modify the last trans-
posed convolutional layer to obtain an output of 16 feature
maps in the same resolution as the image. Regarding the
detection head, the number of proposals M should surpass
the expected maximum of appearing line instances. In our

Ref. 20m First 20% First 40 % 100%

F 90.7% 92.1% 92.9 % 91.2%
AP 92.5% 94.1% 94.8 % 93.4%

Table 1: Comparison of detection scores for different
ground truth association references on Rare Scenes test set.

experiments we found M = 16 as an appropriate value.
Our best representation uses B-Splines of degree 3 with 15
knots, which makes 18 parameters for Kα and Kβ. With
additional range (2) and line presence (1) parameters the
final network output has size 16 × 39. The vector of nor-
malization constants η is set to [20., 110., 1.]T , with ηy re-
stricting the maximum range to 110 m. The regression loss
is computed by evaluating the distance for 20 ground truth
points equidistantly sampled along the line range. If less
points are provided, we interpolate the points. We train our
network for 300 epochs on the Standard train set and 200
epochs on the smaller Visual Variations train set and use
Adam [21] as optimizer with a learning rate of 1 ·10−4. The
loss weights are set to {λc, λs, λr} = {1.0, 0.5, 0.06}.

4.2. Ablation study

In this section, we would like to investigate the impact
and benefits of our different contributions. For this, we con-
duct experiments on different ways of ground truth associa-
tion and compare several continuous representations on the
challenging Rare Scenes test set.

Investigation of ground truth association. To analyze
the effect of our proposed ground truth association we train
models using the same representation with the same hy-
perparameters and only vary the association reference. We
compare a fixed reference point matching commonly used
in anchor-based approaches [11, 13] with our association
method, which uses the mean distance of a line segment
and Hungarian matching to solve the assignment problem.
As shown in Table 1 using a fixed point at 20m results in
the lowest F-Score and AP. In contrast, our proposed match-
ing strategy achieves higher scores for all considered ratios
using our representation. One main advantage leading to
these results is that all lanes regardless of their range and
shape are taken into consideration (see discussion in Sec-
tion 3.3). Furthermore, the Hungarian matching ensures
that we obtain an optimal association of the ground truth to
our initializations even in challenging situations. However,
Table 1 further shows decreasing detection scores when the
association ratio is too high. The most likely cause for
this is our straight line initialization, which leads to strong
overall deviations in curved road situations. More sophisti-
cated initialization strategies should be considered in future
that would lead to smaller deviations and, eventually, even
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Rep. d N F x-error z-error
near far near far

Poly.
2 − 88.0 14.0 83.1 2.4 58.1
3 − 90.4 13.6 75.4 2.6 57.3
5 − 91.6 9.6 74.8 2.4 58.2

B-Sp.

1 3 81.3 26.3 102.3 3.0 58.1
3 3 90.8 9.9 69.7 2.4 56.4
3 5 92.5 8.2 68.3 2.2 56.
1 10 91.5 9.1 71.3 2.2 56.3
3 10 92.1 8.3 70.8 1.8 56.3
1 15 91.6 9.1 69.1 1.9 54.9
3 15 92.9 7.7 69.9 2.1 56.2

Table 2: Comparison of different representations (Polyno-
mials and B-Splines) on the Rare Scenes test set. d denotes
the degree and N the number of knots of the B-Splines.
Distance metrics are provided in cm, F-Score in %.

simpler regression problems also in curved road situations.
Finally, we choose the association reference achieving the
highest detection scores of the first 40% of line range for
the following experiments.

Analysis of representations. For the analysis of para-
metric representations we train several models with differ-
ent parameterizations for the x- and z-components of the
line shape and keep the hyperparameters fixed. More pre-
cisely, we consider polynomials, which were previously
used in parametric 2D lane detection [46, 26, 29], as well
as our main representation based on B-Splines and vary the
numbers of knots and degrees.

Table 2 shows an overview of the investigated represen-
tations. Obviously, polynomials of degree 2−3 are not suffi-
cient to model lane geometry, whereas 3rd degree B-Splines
show smaller errors even for a low number of 3 knots. Us-
ing higher order polynomials indeed yield a better estimate,
but also suffer from the dependency between near- and far-
range estimations. More specifically, estimating strong de-
viations, which typically appear in the far-range, induce
higher frequencies than necessary to approximate straight
parts. This has a negative impact on the near-range approxi-
mation, where the road geometry is typically more balanced
(see Fig. 1b). Spline models, in contrast, decouple the near-
and far-range approximation due to the piecewise formu-
lation. Therefore, splines of lower degrees are already ca-
pable to model the entire lane range appropriately, given a
sufficient number of knots. We deduce that these circum-
stances formed the bottleneck in terms of geometrical accu-
racy of earlier approaches using solely polynomials as para-
metric representations for 2D lane detection.

Noteworthy is also the influence of the degree on splines.
Particularly for compact representations with a low num-

Method F AP x-error z-error
near far near far

3D-L. 86.4 89.3 6.8 47.7 1.5 20.2
Gen-L. 88.1 90.1 6.1 49.6 1.2 21.4
Ours 96.3 98.1 3.7 32.4 0.9 21.3

(a) Standard
3D-L. 72.0 74.6 16.6 85.5 3.9 52.1
Gen-L. 78.0 79.0 13.9 90.3 3.0 53.9
Ours 92.9 94.8 7.7 69.9 2.1 56.2

(b) Rare Scenes
3D-L. 72.5 74.9 11.5 60.1 3.2 23.0
Gen-L. 85.3 87.2 7.4 53.8 1.5 23.2

Ours f.b. 91.3 93.1 6.9 46.8 1.3 24.8

(c) Visual Variations

Table 3: Comparison of 3D-SpLineNet to state-of-the-art
methods on all datasets. Ours uses the best representation
and ground truth association, i.e. B-Splines with 15 knots
of degree 3 and 40% mean matching. Distance metrics are
provided in cm, F-Score and AP in %.

ber of knots, using 3rd degree B-Splines enhances signifi-
cant improvements of the quantitative metrics and provides
smooth curves. In contrast, for 1st degree B-Splines, which
correspond to discrete poly-lines and hence resemble the
anchor-based representation of Gen-LaneNet [13], a higher
amount of knots is necessary to provide a sufficient resolu-
tion of 3D lane geometry. Table 2 further shows a tendency
that with a higher number of knots the benefits in perfor-
mance become less significant. We deduce that choosing
too many knots complicates the learning process, and thus,
we do not consider representations of higher capacity.

Following our ablation study, we choose the represen-
tation achieving the highest F-Score, i.e. B-Splines of 3rd

degree with 15 knots. Still, we want to highlight the com-
parable performance of lower capacity representations (e.g.
5 knots, 3rd degree) providing a good compromise between
number of parameters, degree and geometric accuracy.

4.3. Comparison to state-of-the-art methods

We compare our method to two approaches, which pre-
viously achieved state-of-the-art performance, namely 3D-
LaneNet [11] and Gen-LaneNet [13]. For the comparison,
we used the models optimized for the synthetic dataset pro-
vided by the authors of [13].

Table 3 shows a comparison on the three datasets. While
we can observe great improvements on all three datasets in
terms of F-Score and AP, our approach shows its full poten-
tial on Rare Scenes test set with an improvement of 14%
in F-Score. As discussed in Section 4.2, one reason for the
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Method 3D-L. Gen-L. Ours
Runtime 41.9 fps 36.3 fps 74.3 fps

Table 4: Comparison of runtime in frames per second (fps).

strong detection performance is our proposed association
scheme, which results in more correct matches, as shown
in Fig. 4a and 4b for the rightmost lane marking. From the
lower geometric errors, we further conclude that our para-
metric representation allows us to better learn line shapes
that deviate considerably from the expectations implied by
the straight anchor design used by the baselines. This claim
is supported by the substantial advantage of estimating x-
displacement in the far-range, where anchors match poorly.
Fig. 4a and 4d show how our continuous spline represen-
tation better captures the straight part followed by a steep
curve and Fig. 4b demonstrates its capability to even predict
strong height deviations. Our representation also provides
smoother transitions than discrete anchor-points as visible
in Fig. 4a (top-view) and Fig. 4b (front-view). Besides,
Fig. 4c and 4d demonstrate successful handling of challeng-
ing occlusions caused by other traffic participants. More
qualitative results are provided in the supplementary.

The Visual Variations dataset was utilized in [13] to
demonstrate the ability of Gen-LaneNet’s two-stage frame-
work to handle domain adaptation and lack of 3D ground
truth. Due to the different domains of train and test set with
respect to illumination, we follow the setup of Gen-LaneNet
and use a fixed backbone (f.b.) pre-trained on the Standard
train set. Even though we do not address the domain adap-
tation topic in this work, our representation dominates in
terms of detection performance, while achieving compara-
ble geometric errors compared to Gen-LaneNet. Thus, we
see great potential in our representation to tackle the domain
adaptation problem for 3D lane estimation in future.

In Table 4, we also provide a runtime evaluation. We
ensured the same test conditions for each method providing
the same input, expecting the same output and running it on
the same device (NVIDIA GeForce Titan X). The results in-
dicate highest processing speed of our method, which does
not require expensive interpolation in contrast to the others.

5. Conclusions and future work

We presented 3D-SpLineNet, a method to detect traf-
fic lines in 3D space using a new parametric continuous
curve representation. Our sophisticated ground truth as-
sociation strategy improves detection rate by considering
all lines of arbitrary shape in contrast to previous methods.
We investigated different representations, among which B-
Splines serve as best model to capture even complex line
shapes. With this representation, our method achieves state-

(a)

(b)

(c)

(d)

Figure 4: Comparison of 3D-SpLineNet and Gen-LaneNet
[13] predictions and ground truth on the Rare Scenes test
set illustrated in front-view, top-view and 3D space.

of-the-art performance on all test datasets regarding detec-
tion score and nearly all geometric errors, where the greatest
advantage can be observed on challenging Rare Scenes with
an improvement of 14% in F-Score. Not requiring costly
post-processing, our method also achieves highest process-
ing speed. The qualitative results visually confirm our find-
ings showing significant achievements in the 3D estimation
of challenging line shapes, even in cases of occlusions.

As mentioned in the experimental section we expect
that more sophisticated initialization strategies would en-
able lower regression errors. With the first real 3D lane
datasets recently getting accessible to the community, we
also plan to investigate the performance of our approach in
more complex real traffic scenarios soon. In addition, our
parametric curve representation provides potential for fur-
ther improvement since valuable prior knowledge about 3D
lane geometry is simply integrable. This is due to the con-
tinuous and parametric nature of the line model that simpli-
fies the analytical formulation of geometry enhancing priors
such as line parallelism. First experiments show promising
results and we plan to elaborate on this subject in future.
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