Fast Differentiable Transient Rendering for Non-Line-of-Sight Reconstruction

Markus Plack Clara Callenberg Monika Schneider Matthias B. Hullin
University of Bonn
Bonn, Germany
{mplack,callenbe,hullin}@cs.uni-bonn.de, moschn@uni-bonn.de

Abstract

Research into non-line-of-sight imaging problems has gained momentum in recent years motivated by intriguing prospective applications in e.g., medicine and autonomous driving. While transient image formation is well understood and there exist various reconstruction approaches for non-line-of-sight scenes that combine efficient forward renderers with optimization schemes, those approaches suffer from runtimes in the order of hours even for moderately sized scenes. Furthermore, the ill-posedness of the inverse problem often leads to instabilities in the optimization.

Inspired by the latest advances in direct-line-of-sight inverse rendering that have led to stunning results for reconstructing scene geometry and appearance, we present a fast differentiable transient renderer that accelerates the inverse rendering runtime to minutes on consumer hardware, making it possible to apply inverse transient imaging on a wider range of tasks and in more time-critical scenarios. We demonstrate its effectiveness on a series of applications using various datasets and show that it can be used for self-supervised learning.

1. Introduction

Extending the vision beyond what is in the direct line of sight of an observer is a challenging problem with possible applications ranging from autonomous driving and robotic vision to safety and medical scenarios. Researchers have approached this non-line-of-sight (NLoS) imaging problem by pointing an ultrafast laser source at a wall which is in view of the observer as well as the hidden target scene [35]. Using sensors that are able to resolve the travel time of the laser’s light to observe reflections on the same wall, recording transient images, objects “around a corner” can be identified and further analyzed.

Many recent methods that use transient images for NLoS reconstruction represent the hidden scene as a volumetric albedo distribution [35, 9, 27]. While they are relatively fast and often yield convincing results, most of those approaches do not take important physical effects such as visibility/occlusion and surface normals into account. On the other hand, it has been proposed to reconstruct the hidden shape as a mesh using an analysis-by-synthesis approach, i.e., by making repeated forward simulations of light transport. Such methods are typically slow and need hours for the reconstruction [33, 11].

This work is inspired by the recent trend to solve inverse problems using task-specific differentiable renderers. The proposed differentiable renderer is specifically targeted to NLoS reconstruction. It extends the forward rendering ap-
Table 1. Comparison of relevant NLoS reconstruction approaches in terms of scene representation (Volume/Surface), usage of a physically-based image formation model (included ✔, somewhat included (✔), not part of the model ✖), their reconstruction time scales ranging from the order of milliseconds (ms) to hours (h) and their capability to generalize and adapt to new measurement geometries and higher resolutions, ranging from high (+) to intermediate (○) and to low/very low (−/−−) flexibility.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Albedo reconstruction</td>
<td>✔ ✔ ✔ ✔ ✖ ✖ ✖ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward/Inverse Consistency</td>
<td>✖ ✖ (✔) ✖ ✔ ✔ ✖ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals, Occlusion</td>
<td>✖ ✖ s h s h h ms min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruction time</td>
<td>s s h s h h ms min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalizability/adaptability</td>
<td>+ − + − + + −− +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>+ + − + ○ − − +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We consider the following to be the main contributions of this work:

• We introduce a fast differentiable transient renderer for NLoS light transport. It extends an existing image formation model [11] by spatially varying albedo that is optimized jointly with the scene geometry in a simplified global optimization scheme.

• We demonstrate the effectiveness of the renderer for reconstructing NLoS scenes represented as radial basis functions and depth maps on simulated and real data. We further show that the framework generalizes to very high input resolution and object tracking tasks, thanks to its adaptability to irregular samplings and the use of stochastic optimization algorithms.

• We provide a complete PyTorch implementation of our renderer, along with the implementation of other NLoS reconstruction algorithms and various useful tools.1

Our framework runs on a consumer-grade GPU, and has proven to accept a wide range of input configurations. It can therefore serve as a portable and flexible development and test environment for future NLoS reconstruction approaches. We demonstrate this on the example application of a self-supervised network training that is based on our differentiable renderer.

2. Related Work

Transient/NLoS Imaging. Transient imaging allows to capture a scene’s light response in space and time. Proposed originally by Abramson as early as 1978 using holographic techniques [1], it has become an increasingly relevant imaging modality with the development and growing accessibility of ultrafast photodetecting devices like streak cameras, single-photon avalanche diodes (SPADs) and photonic mixer devices (PMDs). A comprehensive overview of transient imaging advances can be found in [14].

In NLoS imaging, the light response of a scene is observed not directly, but via its reflection on a relay wall, while the target scene itself is outside the camera’s view. Key tasks in this sensing mode are the reconstruction of position, shape and albedo of objects that are hidden both from direct illumination and observation. The reconstruction of NLoS scenes using transient data has been studied intensively using different types of measurement hardware, and different approaches exist in the literature [35, 39, 21, 3, 15, 9, 19, 26, 37, 36]. We compare the most important representatives by their different aspects and features in Table 1. Backprojection-based methods [35, 2] represent the hidden scene as a voxel grid and calculate a heat map of possible locations contributing to the measured space-time data, followed by a filtering step. Furthermore, Shen et al. [30] have proposed to optimize a neural transient field to reconstruct the hidden volume with arbitrary resolution. A different approximative approach, the light-cone transform (LCT) [27],

1https://github.com/unlikemaths/totrilib
provides a closed-form solution to the problem in a coaxial setup, where the relay wall is scanned in a regular grid with a beam-combined light source and detector. To reduce the acquisition time of transient images, circular sensing patterns have been proposed [12].

Since scenes represented as scattering density volumes by default do not support surface normals and occlusion effects, extensions with directional kernels [41] and iteratively adjusted linear weights [8] have been proposed. By modelling the light transport as the propagation of a (virtual) wave field, algorithms from wave optics and seismic tomography, like f-k migration, have successfully been adopted to solve the problem for regularly gridded input data [22, 20].

Instead of treating the hidden scene as a voxel-based albedo volume, several recent NLoS algorithms have introduced surface representations, for which physically justifiable light transport models are easier to achieve. After early attempts using planar walls [28], more recent approaches attempt to optimize triangle meshes and their reflectance properties by wrapping stochastic [33] or deterministic [11] renderers a task-specific optimization scheme. The renderer proposed in this paper builds upon the model by Iseringhausen and Hullin [11] and achieves significantly improved reconstruction times by introducing analytical derivatives and utilizing a modern deep learning infrastructure.

Lastly, the availability of large amounts of synthetically generated data has enabled the training of feed-forward networks for the NLoS reconstruction problem for surface-oriented [7], volumetric [4, 25] and implicit [6] scene representations.

Differentiable Rendering. In the case of direct-line-of-sight inverse rendering a number of studies have investigated approaches to compute the gradient of the visibility between two points, which is not differentiable as it is either 0 or 1. This is especially problematic as those gradients are needed to properly move edges across pixels/the visible hemisphere of a surface. One of the first general approaches was published by Li et al. [18]. They compute the gradient through Monte Carlo sampling rays along the edges of triangles. More recently, Zhang et al. [42] have proposed a method to directly differentiate path integrals through a reparametrization. However, in line with the work of Tsai et al. [33], we do not take visibility gradients into account, as the computation would increase the complexity. We still demonstrate that our method works even for cases where occlusion happens in the scene.

In the setting of transient imaging, various approaches have been proposed to address the forward rendering problem [32, 13, 31, 24] and to model sensors for accurate simulation of transient images [10]. General differentiable renderers such as [40, 38] aim to facilitate analysis-by-synthesis reconstruction approaches. However, their universality comes at the cost of computational complexity and they suffer from long runtimes even in cloud computing environments. By restricting the image formation model to the three-bounce NLoS setting, our renderer runs fast on consumer-grade GPUs with moderate amounts of memory.

3. Differentiable Transient Rendering

The key part of our method is the formulation of the transient image formation model as a differentiable function and the efficient backpropagation of gradients through the renderer. We discuss the forward model and the gradient computation in Section 3.1. To increase stability of optimization problems on measurement data, we propose to add a background network in Section 3.2.

3.1. Image Formation

Our image formation model follows that by Iseringhausen and Hullin [11]. Here, we recall it for the coaxial capture geometry, where laser and detector are combined in a single beam, before outlining the computation of gradients. More detailed gradient equations, special cases, and their derivation for both coaxial and independent scanning geometries are given in a supplemental document.
Forward Model.} Fig. 2 depicts the measurement setup that is approximated by our renderer and a visualization of the distribution of the recorded light into temporal bins of the time-resolved detector. As interreflections on the object contribute little to the rendered transients, we follow the common three-bounce assumption which only takes light paths into account that move from the laser source s_o to a point on the wall s, onto a triangle $t = (v_0, v_1, v_2)$ of the object surface, back to the wall point s, and are recorded by the time-resolved sensor that is collocated with the laser at s_o.

We approximate the incoming radiance for each triangle by the constant radiance of the triangle centroid $c(t)$ over the full area of the triangle as

$$\alpha(s, t) = f(s \rightarrow c(t) \rightarrow s)\eta(s \rightarrow c(t))\eta(c(t) \rightarrow s)A(t),$$

where f denotes the BRDF, $\eta(x \rightarrow y)$ the geometric coupling between the two points x and y, and A the area of the triangle. Using $n(t) = (v_1 - v_0) \times (v_2 - v_0)$ as the unnormalized normal vector of the triangle, and n_x as the surface normal of the wall at s, and further assuming Lambertian reflection with albedo $\alpha(t)$, the full expression for α can be simplified to

$$\alpha(s, t) = a(t)\frac{(n_x, c(t) - s)^2(n(t), c(t) - s)^2}{\|n(t)\|\|c(t) - s\|}.$$

However, Lambertian reflection is no restriction of our method and any differentiable BRDF model can be used. We have removed the visibility term from α for ease of notation as it is not differentiable, but still perform a visibility check $\nu(s, c(t))$ between the triangle centroid and the wall as seen in Eq. (6).

To compute the total irradiance contributed by a triangle to each transient bin b, $\alpha(s, t)$ is distributed according to a weighting function $w(s, t, b)$ as shown in Fig. 2 according to the length of the light paths and hence the time of flight. Assuming rectified measurements, the corresponding bin of each vertex is given by

$$\theta(v_i) = (2\|v_i - s\|_2 - \phi)/\delta,$$

where ϕ denotes the offset and δ the bin width of the scanning setup. Note that θ is not an integer value and as such is differentiable. We assume that the vertices are sorted in ascending order of total distance. The weight at the center is given as

$$\omega_c(t) = \frac{2}{\theta(v_2) - \theta(v_0)}.$$

For the bins that fall between the points $\theta(v_0)$ and $\theta(v_1)$, we compute the weight as the area under the left triangle as

$$\omega(s, b, t) = \left(b + \frac{1}{2} - \theta(v_0)\right)\frac{\omega_c(t)}{\theta(v_1) - \theta(v_0)}.$$

The equation for weights between $\theta(v_1)$ and $\theta(v_2)$ follows analogously. The full rendering function of a set of n triangles can be written as

$$I(t_0, \ldots, t_{n-1}) = \sum_{i=0}^{n-1} \nu(s, c(t_i))\alpha(s, t_i)\omega(s, b, t_i).$$

Backpropagation. To avoid the need for numerical derivatives [11], we explicitly compute gradients through backpropagation of the gradient of a loss function $L(I)$. During the backward pass, we evaluate

$$\nabla_{t_i} L = \sum_s \sum_b \frac{\partial L}{\partial I_s, b} \nabla_{t_i} I_s, b$$

for each triangle t_i. We can reformulate this as

$$\nabla_{t_i} L = \sum_s \nu(s, t_i) \left(\nabla_{t_i} \alpha(s, t) \sum_b \frac{\partial L}{\partial I_s, b} \omega(s, b, t) + \alpha(s, t) \sum_b \frac{\partial L}{\partial t_i} \nabla_{t_i} \omega(s, b, t)\right).$$

The gradient of α can be computed using logarithmic derivatives as shown in the supplemental document. In order to efficiently evaluate the gradients, we implement all computations as NVIDIA Optix programs. This enables us to directly continue with the radiance/gradient computation after the visibility test. Note that there is no need to evaluate the full sums as shown in Eq. (8), but only the subset between the bins $\theta(v_0)$ and $\theta(v_2)$ which are evaluated first.

3.2. Background Model and Reconstruction Loss

Even though the formulated model is physically motivated, inconsistencies with real measurements can be expected. This can be due to approximations or in the case where the true BRDF is different from the model. More prominently, there can be background illumination, for instance from other surfaces that are not part of the scene. Those effects would lead to incorrect gradients and reduce the quality of the reconstruction.
To remedy the influence of such effects, we propose to add a background prediction network (Fig. 3) to the optimizations that use the differentiable rendering proposed above. The network takes each scan position \((x, y)\) together with the temporal position \(t_i\) and transforms them into positional and temporal encodings using cosines similar to the approach originally proposed by Vaswani et al. [34]. Those encodings are passed through a simple neural network to produce a transient response. To improve performance, the temporal resolution is reduced by a factor of 8 and the transient image produced by the network is linearly upsampled to the final resolution.

We also add a condition to prevent the transient background from capturing too much of the true image as follows. The output of the network \(I_B \in (0, 1)^{S \times B}\) is scaled using an intensity value \(i_B\) that is part of the network parameters. Defining the average power of the transient image produced by the network is linearly upsampled to the final resolution.

The output of the network \(I_B \in (0, 1)^{S \times B}\) is scaled using an intensity value \(i_B\) that is part of the network parameters. Defining the average power of the transient image produced by the network is linearly upsampled to the final resolution.

\[
P(I_B) \leq \lambda_I P(I_R), \quad P(I) = \frac{1}{S} \sum_{i=0}^{S-1} \|I_i\|_2 \tag{9}
\]

which we enforce by clamping \(i_B\) appropriately after each optimization step, where \(I_R\) is the rendered transient image of the current iterate. The parameter \(\lambda_I\) can be used to control the total amount of light in the transient background. For most of our experiments we set it to 1, which we found to work well.

The benefit of using such a network is that it is independent of the arrangement of scan and laser points and that both sharp jumps as well as smooth gradients can be represented, depending on the input and the effects easily captured by our forward model.

We formulate the reconstruction loss as

\[
L(\rho, \phi) = \min_\gamma \|\gamma(I_R(\rho) + I_B(\phi)) - I_B\|_2, \tag{10}
\]

where \(\rho\) is the scene parameterization, \(\phi\) the parameters of the background network, and \(\gamma\) the unknown scaling between the input and the reconstruction. For the optimization of depth maps in Section 4.2 we add \(\gamma\) to the set of parameters after initializing it appropriately. Unfortunately, we found that this approach is problematic in the case of radial basis function optimization as the addition and the removal of blobs can lead to a significant change in the transient image. Instead, we replace \(\gamma\) with the minimizer of Eq. (10).

An extension to other loss functions that more accurately represent the noise model of transient images, is possible, but similar to [33] we found \(L2\) loss to work well over a large range of datasets.

4. Applications

To demonstrate the effectiveness of our implementation, we show its application on three different parametrizations of the geometry used for reconstruction (Section 4.1 and Section 4.2) and tracking (Section 4.3) of hidden objects. In addition, we show that our method can also be used for self-supervised training in Section 4.4.

We evaluate our method on common datasets using both simulated data from [5] and our own renderer, as well as measurements from [35], [20], and [27].

4.1. Radial Basis Function Approximation

As a direct optimization of triangular meshes is difficult due to e.g. self intersections, we follow the approach of [11] and optimize a set of radial basis functions that approximate the density inside a volume. We generate a mesh by extracting the isosurface using a differentiable marching cubes [23] implementation.

For a set of Gaussian basis functions \(f_i\) with parameters \(p_i\) and \(\sigma_i\), the density at a position \(x \in \mathbb{R}^3\) is given as

\[
d(x) = \sum_i f_i(x), \quad f_i(x) = e^{-\frac{\|x-p_i\|^2}{2\sigma_i^2}}. \tag{11}
\]

Additionally, we allow the basis functions to carry attributes such as an albedo value. This yields another volume by computing the weighted average of the attribute values. Those values are interpolated along with the vertex positions in our implementation of the marching cube algorithm.

Note that in this scenario, the computational complexity of the derivative of the rendering as well as the marching cubes step does not depend on the number of radial basis...
functions. Therefore, the iterative algorithm of [11] can be adapted to allow an optimization of all basis parameters in all steps, because there is less need to reduce the number of derivatives that are computed. Additionally, we add another sampling of new blobs that is focused on modifying the surface of the mesh. By backpropagating the current loss to the vertices, we add new blobs at the vertex positions with probability proportional to the length of the vertex gradients. We reduce runtime of the optimization by choosing a rough resolution at the initial iterations and doubling the resolution at certain intervals. More details are given in the supplemental document.

We demonstrate the runtime improvement of our method over the baseline of Iserinhausen and Hullin [11] in Fig. 4. Both methods reconstruct the same synthetically rendered mesh on the same hardware setup. Our method yields convincing results after a few minutes, while the baseline method takes a full day to produce a recognizable solution.

To further evaluate the correctness of our model we use the simulated bunny data from [5] and compare our results qualitatively (Fig. 5) and quantitatively (Table 2) against various other reconstruction methods. To convert volumetric reconstructions into a mesh we use marching cubes [23] and search for a threshold that maximizes the intersection over union (IoU). While our GPU implementations of those methods run much faster, we found that the quality of the results deteriorates quickly when using lower resolution input. At the same time, we needed to use a scanning resolution of 64×64 for a fair comparison with the method of Tsai et al. [33], which also uses differentiable rendering, but is much slower than our method.

While our Rbf-based reconstruction overestimates the shape of the bunny, it manages to reconstruct one ear and the overall shape very accurately, which is confirmed by an IoU value that is only surpassed by our depth map based reconstruction shown in the next section. We also include results for a reconstruction from a transient sinogram as posed by [12], where the overall shape is even larger, but it still yields convincing results and an error comparable with volume based methods even though only 8.7% of the transient spectra are used.

We test the reconstruction of objects with spatially varying albedo on the Spot model and show results in Fig. 6. Although the albedo information is associated with the radial basis functions and not provided as a high-resolution texture, simple changes in albedo are faithfully reconstructed, as can be seen with features like the cow model’s dark spots and hooves.

We also demonstrate the application of our method on real data using the mannequin measurements of Velten et al. [35] and show the reconstructions in Fig. 6 along with a reconstruction using a rendered mannequin using the same setup. The overall shape of the reconstruction matches the mannequin from the reference, even though details are lacking when compared to the synthetic reconstruction. As the data was acquired using a non-confocal setup, there are only a few methods that can reconstruct such a measurement. Figure 6 also highlights the ability of our background network to deal with an arbitrary scanning setup and its importance for the reconstruction.

4.2. Depth Map Optimization

In this example application, we optimize the vertex positions similarly to [33]. To remove the need for additional mesh operations we restrict the optimization of the position to the depth values of a grid, i.e. only the z-coordinate is optimized. As such an object would lead to a large amount of unwanted background we also optimize the albedo of the vertices.

To improve stability of this approach we opt to add a total variation regularization [29] to our loss. We regularize both the color attribute as well as the depth. As the color values $c \in [0, 1]^{H \times W}$ are naturally bounded to the $[0,1]$ interval, we choose to limit the depth map $d \in [0, 1]^{H \times W}$.
Table 2. Quantitative comparison of reconstructions from the simulated measurements of the bunny [5] with various other methods showing the runtime (minutes:seconds), intersection over union (IoU; higher is better) and root-mean-square error (RMSE; lower is better) in cm. For each metric, the best value is highlighted in red and the best follow-up in blue.

<table>
<thead>
<tr>
<th>Method</th>
<th>Runtime</th>
<th>IoU</th>
<th>MAE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBP [35]</td>
<td><0:01</td>
<td>0.738</td>
<td>4.86</td>
<td>5.03</td>
</tr>
<tr>
<td>f–k [20]</td>
<td><0:01</td>
<td>0.659</td>
<td>3.81</td>
<td>4.86</td>
</tr>
<tr>
<td>Fermat [39]</td>
<td>0:12</td>
<td>0.730</td>
<td>1.05</td>
<td>1.58</td>
</tr>
<tr>
<td>D-LCT [41]</td>
<td>0:05</td>
<td>0.728</td>
<td>0.59</td>
<td>0.95</td>
</tr>
<tr>
<td>Tsai et al. [33]</td>
<td>102:06</td>
<td>0.730</td>
<td>0.28</td>
<td>1.03</td>
</tr>
<tr>
<td>Rbf</td>
<td>4:51</td>
<td>0.760</td>
<td>0.41</td>
<td>1.33</td>
</tr>
<tr>
<td>Rbf (Sinogram)</td>
<td>1:34</td>
<td>0.490</td>
<td>1.13</td>
<td>2.10</td>
</tr>
<tr>
<td>Depth Map</td>
<td>2:25</td>
<td>0.803</td>
<td>0.26</td>
<td>0.76</td>
</tr>
</tbody>
</table>

We demonstrate this representation on the synthetic maneque dataset [11] (d) and a reconstruction of the “Spot” model (synthetic), represented using radial basis functions with spatially varying albedo (e,f).

The reconstruction of the diffuse S shows a failure case of our background network, which cannot deal with the large amounts of spatially varying background present in the dataset. We clean the data up by applying a semi-automatic flat field correction that estimates a static background component from the signal-less portion of the dataset (before the first transient onset). The resulting reconstruction is similar to the one of Tsai et al. [33], but runs in under three minutes.

We show the application of this approach on measurement data of a statue [20] in Fig. 7 and the diffuse S [27] in Fig. 8. The quality of the reconstructions of the statue is on par with the reconstruction of D-LCT from [41]. Even after reducing the resolution down to 32 × 32 the quality stays consistent with a reconstruction time of only 39 seconds. For higher resolutions, we switch to a stochastic gradient descent optimization with batch size of 4096 scan points. Therefore, the reconstruction time does not increase beyond a resolution of 64 × 64 and keeps below three minutes.

The reconstruction of the diffuse S shows a failure case of our background network, which cannot deal with the large amounts of spatially varying background present in the dataset. We clean the data up by applying a semi-automatic flat field correction that estimates a static background component from the signal-less portion of the dataset (before the first transient onset). The resulting reconstruction is similar to the one of Tsai et al. [33], but runs in under three minutes.
4.3. Tracking

This application takes as input one or more meshes of hidden objects and a transient image of these objects at unknown positions. The aim is to infer the hidden object’s spatial position and orientation. To this end, we optimize the position vector and the orientation quaternion of each object to match the given transients.

We demonstrate the tracking of two armadillo meshes over a video in Fig. 9. The first frame is initialized to the correct position and rotation and we iteratively optimize the transformation of both objects for each frame using the results of the previous frame as an initialization.

The positions and rotations are matched with negligible errors for both objects. The accuracy of the armadillo in the back is slightly lower because of the reduced light intensity reaching the wall, and it degrades during the middle of the video where most of the object is occluded by the armadillo in the foreground. The estimation quality is, however, still reasonable even though our method only approximates the full visibility of the triangles and does not compute gradients for the visibility term. The optimization of a single transform with more translation and rotation is shown in the supplemental document.

4.4. Proof of Concept: Self-Supervised Learning

Finally, we demonstrate the flexibility of our differentiable renderer by using it to train a reconstruction net-

work in a purely self-supervised manner. We generate synthetic data from random sets of gaussian blobs similar to Section 4.1. The convolutional network takes the transient image as input and outputs a density volume that is converted into a mesh using marching cubes. We pass this mesh through our differentiable renderer and compute the L2 loss between the resulting transient image and the network input, which can be backpropagated through all steps to update the network parameters.

We train the network for 500000 iterations using Adam [16] with a batch size of 32. The volume and scan point resolution is set to 32. Additionally, we add a small L2 regularization of the gradients of the volumetric output for smoothness. Results are shown in Fig. 10.

5. Conclusion

We have demonstrated that an efficient computation of the gradients for differentiable transient rendering greatly improves the reconstruction speed compared to other rendering based NLoS reconstructions. Our implementation is general enough to handle many cases and yields reconstructions quantitatively better than other approaches. Paired with a background network we were able to show results on a large range of simulated and real measurements. As the implementation is integrated into the PyTorch environment, it offers great flexibility and we have demonstrated its use in a self-supervised learning application. Furthermore, it may serve as a building block for future end-to-end training approaches or methods that also make use of the latest neural scene representations.

A major limitation of our method is its restriction to three-bounce, pulse-based setups, a necessity to achieve the highest possible performance for non-line-of-sight problems. As future work, we can imagine to extend the software by implementing gradients with respect to scan positions to allow for calibration similar to [17], but using more complex targets.

Acknowledgements. This work was supported by the European Research Council under ERC Starting Grant “ECHO” (802192).
References

