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Abstract

Research into non-line-of-sight imaging problems has
gained momentum in recent years motivated by intriguing
prospective applications in e.g. medicine and autonomous
driving. While transient image formation is well understood
and there exist various reconstruction approaches for non-
line-of-sight scenes that combine efficient forward render-
ers with optimization schemes, those approaches suffer from
runtimes in the order of hours even for moderately sized
scenes. Furthermore, the ill-posedness of the inverse prob-
lem often leads to instabilities in the optimization.

Inspired by the latest advances in direct-line-of-sight in-
verse rendering that have led to stunning results for re-
constructing scene geometry and appearance, we present a
fast differentiable transient renderer that accelerates the in-
verse rendering runtime to minutes on consumer hardware,
making it possible to apply inverse transient imaging on a
wider range of tasks and in more time-critical scenarios.
We demonstrate its effectiveness on a series of applications
using various datasets and show that it can be used for self-
supervised learning.

1. Introduction

Extending the vision beyond what is in the direct line of
sight of an observer is a challenging problem with possible
applications ranging from autonomous driving and robotic
vision to safety and medical scenarios. Researchers have
approached this non-line-of-sight (NLoS) imaging problem
by pointing an ultrafast laser source at a wall which is in
view of the observer as well as the hidden hidden target
scene [35]. Using sensors that are able to resolve the travel
time of the laser’s light to observe reflections on the same
wall, recording transient images, objects “around a corner”
can be identified and further analyzed.

Many recent methods that use transient images for NLoS
reconstruction represent the hidden scene as a volumetric
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Figure 1. The triangle mesh {ti} is rendered into a transient image
using a physically plausible forward model. After computing the
loss, the gradient with respect to the pixel values is backpropagated
onto triangle coordinates and their optional attributes. We show a
false color visualization, where hue represents the direction and
saturation the length of the xy gradients.

albedo distribution [35, 9, 27]. While they are relatively
fast and often yield convincing results, most of those ap-
proaches do not take important physical effects such as vis-
ibility/occlusion and surface normals into account. On the
other hand, it has been proposed to reconstruct the hidden
shape as a mesh using an analysis-by-synthesis approach,
i.e., by making repeated forward simulations of light trans-
port. Such methods are typically slow and need hours for
the reconstruction [33, 11].

This work is inspired by the recent trend to solve inverse
problems using task-specific differentiable renderers. The
proposed differentiable renderer is specifically targeted to
NLoS reconstruction. It extends the forward rendering ap-
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Table 1. Comparison of relevant NLoS reconstruction approaches in terms of scene representation (Volume/Surface), usage of a physically-
based image formation model (included ✔, somewhat included (✔), not part of the model ✘), their reconstruction time scales ranging
from the order of milliseconds (ms) to hours (h) and their capability to generalize and adapt to new measurement geometries and higher
resolutions, ranging from high (+) to intermediate (#) and to low/very low (−/−−) flexibility.
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proach by Iseringhausen and Hullin [11] with additional de-
grees of freedom, such as surface albedo, and pairs it with
an efficient implementation of the backward pass to back-
propagate gradients to the parameters of the scene represen-
tation (Fig. 1). This enables the implementation of inverse
solvers for a variety of NLoS sensing setups. A key feature
of reconstructions obtained this way is that they are inher-
ently consistent with a physically justifiable image forma-
tion model, a feature still missing in most recent reconstruc-
tion techniques.

We consider the following to be the main contributions
of this work:

• We introduce a fast differentiable transient renderer for
NLoS light transport. It extends an existing image for-
mation model [11] by spatially varying albedo that is
optimized jointly with the scene geometry in a simpli-
fied global optimization scheme.

• We demonstrate the effectiveness of the renderer for
reconstructing NLoS scenes represented as radial ba-
sis functions and depth maps on simulated and real
data. We further show that the framework generalizes
to very high input resolution and object tracking tasks,
thanks to its adaptability to irregular samplings and the
use of stochastic optimization algorithms.

• We provide a complete PyTorch implementation of our
renderer, along with the implementation of other NLoS
reconstruction algorithms and various useful tools.1

Our framework runs on a consumer-grade GPU, and has
proven to accept a wide range of input configurations. It
can therefore serve as a portable and flexible development

1https://github.com/unlikelymaths/totrilib

and test environment for future NLoS reconstruction ap-
proaches. We demonstrate this on the example application
of a self-supervised network training that is based on our
differentiable renderer.

2. Related Work

Transient/NLoS Imaging. Transient imaging allows to
capture a scene’s light response in space and time. Pro-
posed originally by Abramson as early as 1978 using holo-
graphic techniques [1], it has become an increasingly rele-
vant imaging modality with the development and growing
accessibility of ultrafast photodetecting devices like streak
cameras, single-photon avalanche diodes (SPADs) and pho-
tonic mixer devices (PMDs). A comprehensive overview of
transient imaging advances can be found in [14].

In NLoS imaging, the light response of a scene is ob-
served not directly, but via its reflection on a relay wall,
while the target scene itself is outside the camera’s view.
Key tasks in this sensing mode are the reconstruction of po-
sition, shape and albedo of objects that are hidden both from
direct illumination and observation. The reconstruction of
NLoS scenes using transient data has been studied inten-
sively using different types of measurement hardware, and
different approaches exist in the literature [35, 39, 21, 3, 15,
9, 19, 26, 37, 36]. We compare the most important repre-
sentatives by their different aspects and features in Table 1.
Backprojection-based methods [35, 2] represent the hidden
scene as a voxel grid and calculate a heat map of possible
locations contributing to the measured space-time data, fol-
lowed by a filtering step. Furthermore, Shen et al. [30] have
proposed to optimize a neural transient field to reconstruct
the hidden volume with arbitrary resolution. A different ap-
proximative approach, the light-cone transform (LCT) [27],
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Figure 2. Coaxial measurement setup with the occluded scene
represented as triangle mesh (top) and antialiasing of the corre-
sponding temporal response using a trapezoidal filter (bottom).

provides a closed-form solution to the problem in a coaxial
setup, where the relay wall is scanned in a regular grid with
a beam-combined light source and detector. To reduce the
acquisition time of transient images, circular sensing pat-
terns have been proposed [12].

Since scenes represented as scattering density volumes
by default do not support surface normals and occlusion
effects, extensions with directional kernels [41] and itera-
tively adjusted linear weights [8] have been proposed. By
modelling the light transport as the propagation of a (vir-
tual) wave field, algorithms from wave optics and seismic
tomography, like f -k migration, have successfully been
adopted to solve the problem for regularly gridded input
data [22, 20].

Instead of treating the hidden scene as a voxel-based
albedo volume, several recent NLoS algorithms have intro-
duced surface representations, for which physically justifi-
able light transport models are easier to achieve. After early
attempts using planar walls [28], more recent approaches
attempt to optimize triangle meshes and their reflectance
properties by wrapping stochastic [33] or deterministic [11]
renderers a task-specific optimization scheme. The renderer
proposed in this paper builds upon the model by Isering-
hausen and Hullin [11] and achieves significantly improved
reconstruction times by introducing analytical derivatives
and utilizing a modern deep learning infrastructure.

Lastly, the availability of large amounts of synthetically

generated data has enabled the training of feed-forward net-
works for the NLoS reconstruction problem for surface-
oriented [7], volumetric [4, 25] and implicit [6] scene rep-
resentations.

Differentiable Rendering. In the case of direct-line-of-
sight inverse rendering a number of studies have investi-
gated approaches to compute the gradient of the visibility
between two points, which is not differentiable as it is ei-
ther 0 or 1. This is especially problematic as those gradients
are needed to properly move edges across pixels/the visible
hemisphere of a surface. One of the first general approaches
was published by Li et al. [18]. They compute the gradi-
ent through Monte Carlo sampling rays along the edges of
triangles. More recently, Zhang et al. [42] have proposed
a method to directly differentiate path integrals through a
reparametrization. However, in line with the work of Tsai
et al. [33], we do not take visibility gradients into account,
as the computation would increase the complexity. We still
demonstrate that our method works even for cases where
occlusion happens in the scene.

In the setting of transient imaging, various approaches
have been proposed to address the forward rendering prob-
lem [32, 13, 31, 24] and to model sensors for accurate
simulation of transient images [10]. General differentiable
renderers such as [40, 38] aim to facilitate analysis-by-
synthesis reconstruction approaches. However, their uni-
versality comes at the cost of computational complexity and
they suffer from long runtimes even in cloud computing en-
vironments. By restricting the image formation model to
the three-bounce NLoS setting, our renderer runs fast on
consumer-grade GPUs with moderate amounts of memory.

3. Differentiable Transient Rendering

The key part of our method is the formulation of the tran-
sient image formation model as a differentiable function and
the efficient backpropagation of gradients through the ren-
derer. We discuss the forward model and the gradient com-
putation in Section 3.1. To increase stability of optimization
problems on measurement data, we propose to add a back-
ground network in Section 3.2.

3.1. Image Formation

Our image formation model follows that by Isering-
hausen and Hullin [11]. Here, we recall it for the coaxial
capture geometry, where laser and detector are combined in
a single beam, before outlining the computation of gradi-
ents. More detailed gradient equations, special cases, and
their derivation for both coaxial and independent scanning
geometries are given in a supplemental document.
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Forward Model. Fig. 2 depicts the measurement setup
that is approximated by our renderer and a visualization of
the distribution of the recorded light into temporal bins of
the time-resolved detector. As interreflections on the object
contribute little to the rendered transients, we follow the
common three-bounce assumption which only takes light
paths into account that move from the laser source so to a
point on the wall s, onto a triangle t = (v0, v1, v2) of the
object surface, back to the wall point s, and are recorded by
the time-resolved sensor that is collocated with the laser at
so.

We approximate the incoming radiance for each triangle
by the constant radiance of the triangle centroid c(t) over
the full area of the triangle as

α(s, t) = f(s → c(t) → s)η(s → c(t))η(c(t) → s)A(t),
(1)

where f denotes the BRDF, η(x → y) the geometric cou-
pling between the two points x and y, and A the area of the
triangle. Using n(t) = (v1 − v0)× (v2 − v0) as the unnor-
malized normal vector of the triangle, and ns as the surface
normal of the wall at s, and further assuming Lambertian
reflection with albedo a(t), the full expression for α can be
simplified to

α(s, t) = a(t)
⟨ns, c(t)− s⟩2⟨n(t), c(t)− s⟩2

∥n(t)∥∥c(t)− s∥ . (2)

However, Lambertian reflection is no restriction of our
method and any differentiable BRDF model can be used.
We have removed the visibility term from α for ease of no-
tation as it is not differentiable, but still perform a visibility
check ν(s, c(t)) between the triangle centroid and the wall
as seen in Eq. (6).

To compute the total irradiance contributed by a triangle
to each transient bin b, α(s, t) is distributed according to a
weighting function w(s, t, b) as shown in Fig. 2 according
to the length of the light paths and hence the time of flight.
Assuming rectified measurements, the corresponding bin of
each vertex is given by

θ(vi) = (2∥vi − s∥2 − ϕ)/δ, (3)

where ϕ denotes the offset and δ the bin width of the scan-
ning setup. Note that θ is not an integer value and as such
is differentiable. We assume that the vertices are sorted in
ascending order of total distance. The weight at the center
is given as

ωc(t) =
2

θ(v2)− θ(v0)
. (4)

For the bins that fall between the points θ(v0) and θ(v1), we
compute the weight as the area under the left triangle as

ω(s, b, t) =

(
b+

1

2
− θ(v0)

)
ωc(t)

θ(v1)− θ(v0)
. (5)

Figure 3. Architecture of our background network. The position
of the scan points and the temporal bin are encoded using cosine
terms (two each in this example), followed by a linear neural net-
work operating on the first dimension and a scaling. Layers with
learnable parameters are highlighted.

The equation for weights between θ(v1) and θ(v2) follows
analogously. The full rendering function of a set of n trian-
gles can be written as

I({t0, . . . , tn−1}) =
(

n−1∑
i=0

ν(s, c(ti))α(s, ti)ω(s, b, ti)

)
s,b

(6)

Backpropagation. To avoid the need for numerical
derivatives [11], we explicitly compute gradients through
backpropagation of the gradient of a loss function L(I).
During the backward pass, we evaluate

∇tiL =
∑
s

∑
b

∂L

∂Is,b
∇tiIs,b (7)

for each triangle ti. We can reformulate this as

∇tiL =
∑
s

v(s, ti)

(
∇tiα(s, t)

∑
b

∂L

∂Is,b
ω(s, b, t)+

α(s, t)
∑
b

∂L

∂Is,b
∇tiω(s, b, t)

)
.

(8)

The gradient of α can be computed using logarithmic
derivatives as shown in the supplemental document. In or-
der to efficiently evaluate the gradients, we implement all
computations as NVIDIA Optix programs. This enables us
to directly continue with the radiance/gradient computation
after the visibility test. Note that there is no need to evalu-
ate the full sums in Eq. (8), but only the subset between the
bins θ(v0) and θ(v2) which are evaluated first.

3.2. Background Model and Reconstruction Loss

Even though the formulated model is physically moti-
vated, inconsistencies with real measurements can be ex-
pected. This can be due to approximations or in the case
where the true BRDF is different from the model. More
prominently, there can be background illumination, for in-
stance from other surfaces that are not part of the scene.
Those effects would lead to incorrect gradients and reduce
the quality of the reconstruction.
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To remedy the influence of such effects, we propose to
add a background prediction network (Fig. 3) to the op-
timizations that use the differentiable rendering proposed
above. The network takes each scan position (x, y) together
with the temporal position ti and transforms them into po-
sitional and temporal encodings using cosines similar to the
approach originally proposed by Vaswani et al. [34]. Those
encodings are passed through a simple neural network to
produce a transient response. To improve performance, the
temporal resolution is reduced by a factor of 8 and the tran-
sient image produced by the network is linearly upsampled
to the final resolution.

We also add a condition to prevent the transient back-
ground from capturing too much of the true image as fol-
lows. The output of the network IB ∈ (0, 1)S×B is scaled
using an intensity value iB that is part of the network pa-
rameters. Defining the average power of the transient spec-
tra P (I) we add the condition

P (IB) ≤ λIP (IR), P (I) =
1

S

S−1∑
i=0

∥Ii,:∥2 (9)

which we enforce by clamping iB appropriately after each
optimization step, where IR is the rendered transient image
of the current iterate. The parameter λI can be used to con-
trol the total amount of light in the transient background.
For most of our experiments we set it to 1, which we found
to work well.

The benefit of using such a network is that it is indepen-
dent of the arrangement of scan and laser points and that
both sharp jumps as well as smooth gradients can be rep-
resented, depending on the input and the effects easily cap-
tured by our forward model.

We formulate the reconstruction loss as

L(ρ, ϕ) = min
γ

∥γ(IR(ρ) + IB(ϕ))− Iin∥2, (10)

where ρ is the scene parameterization, ϕ the parameters of
the background network, and γ the unknown scaling be-
tween the input and the reconstruction. For the optimization
of depth maps in Section 4.2 we add γ to the set of param-
eters after initializing it appropriately. Unfortunately, we
found that this approach is problematic in the case of radial
basis function optimization as the addition and the removal
of blobs can lead to a significant change in the transient im-
age. Instead, we replace γ with the minimizer of Eq. (10).

An extension to other loss functions, that more accu-
rately represent the noise model of transient images, is pos-
sible, but similar to [33] we found L2 loss to work well over
a large range of datasets.

4. Applications
To demonstrate the effectiveness of our implementation,

we show its application on three different parametrizations

Figure 4. Runtime comparison with the baseline method of
Iseringhausen and Hullin [11]. Both methods yield accurate
meshes with a mean absolute depth error of 2.91cm (ours) and
2.98cm (baseline) at the end of the optimization for this synthetic
2x2m scene.

of the geometry used for reconstruction (Section 4.1 and
Section 4.2) and tracking (Section 4.3) of hidden objects.
In addition, we show that our method can also be used for
self-supervised training in Section 4.4.

We evaluate our method on common datasets using both
simulated data from [5] and our own renderer, as well as
measurements from [35], [20], and [27].

4.1. Radial Basis Function Approximation

As a direct optimization of triangular meshes is diffi-
cult due to e.g. self intersections, we follow the approach
of [11] and optimize a set of radial basis functions that ap-
proximate the density inside a volume. We generate a mesh
by extracting the isosurface using a differentiable marching
cubes [23] implementation.

For a set of Gaussian basis functions fi with parameters
pi and σi the density at a position x ∈ R3 is given as

d(x) =
∑
i

fi(x), fi(x) = e
− ∥x−pi∥2

2σi . (11)

Additionally, we allow the basis functions to carry at-
tributes such as an albedo value. This yields another vol-
ume by computing the weighted average of the attribute
values. Those values are interpolated along with the ver-
tex positions in our implementation of the marching cube
algorithm.

Note that in this scenario, the computational complexity
of the derivative of the rendering as well as the marching
cubes step does not depend on the number of radial basis
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(a) FBP [35] (b) f − k
Migration [20]

(c) Fermat [39] (d) D-LCT [41] (e) Tsai et
al. [33]

(f) Rbf
(Sinogram)

(g) Rbf (h) Depth Map
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Figure 5. Reconstructions of the simulated bunny from [5] of various methods (a–e) compared to our results (f–h). The first row shows
the resulting meshes and the second row plots the corresponding depth errors between the respective reconstructions and the ground truth.

functions. Therefore, the iterative algorithm of [11] can be
adapted to allow an optimization of all basis parameters in
all steps, because there is less need to reduce the number of
derivatives that are computed. Additionally, we add another
sampling of new blobs that is focused on modifying the sur-
face of the mesh. By backpropagating the current loss to
the vertices, we add new blobs at the vertex positions with
probability proportional to the length of the vertex gradi-
ents. We reduce runtime of the optimization by choosing
a rough resolution at the initial iterations and doubling the
resolution at certain intervals. More details are given in the
supplemental document.

We demonstrate the runtime improvement of our method
over the baseline of Iserinhausen and Hullin [11] in Fig. 4.
Both methods reconstruct the same synthetically rendered
mesh on the same hardware setup. Our method yields
convincing results after a few minutes, while the baseline
method takes a full day to produce a recognizable solution.

To further evaluate the correctness of our model we use
the simulated bunny data from [5] and compare our results
qualitatively (Fig. 5) and quantitatively (Table 2) against
various other reconstruction methods. To convert volumet-
ric reconstructions into a mesh we use marching cubes [23]
and search for a threshold that maximizes the intersection
over union (IoU). While our GPU implementations of those
methods run much faster, we found that the quality of the
results deteriorates quickly when using lower resolution in-
put. At the same time, we needed to use a scanning reso-
lution of 64 × 64 for a fair comparison with the method of
Tsai et al. [33], which also uses differentiable rendering, but
is much slower than our method.

While our Rbf-based reconstruction overestimates the
shape of the bunny, it manages to reconstruct one ear and
the overall shape very accurately, which is confirmed by a
IoU value that is only surpassed by our depth map based
reconstruction shown in the next section. We also include
results for a reconstruction from a transient sinogram as pro-

posed by [12], where the overall shape is even larger, but it
still yields convincing results and an error comparable with
volume based methods even though only 8.7% of the tran-
sient spectra are used.

We test the reconstruction of objects with spatially vary-
ing albedo on the Spot model and show results in Fig. 6. Al-
though the albedo information is associated with the radial
basis functions and not provided as a high-resolution tex-
ture, simple changes in albedo are faithfully reconstructed,
as can be seen with features like the cow model’s dark spots
and hooves.

We also demonstrate the application of out method on
real data using the mannequin measurements of Velten et
al. [35] and show the reconstructions in Fig. 6 along with a
reconstruction using a rendered mannequin using the same
setup. The overall shape of the reconstruction matches the
mannequin from the reference, even though details are lack-
ing when compared to the synthetic reconstruction. As the
data was acquired using a non-confocal setup, there are only
a few methods that can reconstruct such a measurement.
Figure 6 also highlights the ability of our background net-
work to deal with an arbitrary scanning setup and its impor-
tance for the reconstruction.

4.2. Depth Map Optimization

In this example application, we optimize the vertex po-
sitions similarly to [33]. To remove the need for additional
mesh operations we restrict the optimization of the position
to the depth values of a grid, i.e. only the z-coordinate is
optimized. As such an object would lead to a large amount
of unwanted background we also optimize the albedo of the
vertices.

To improve stability of this approach we opt to add a
total variation regularization [29] to our loss. We regularize
both the color attribute as well as the depth. As the color
values c ∈ [0, 1]H×W are naturally bounded to the [0, 1]
interval, we choose to limit the depth map d ∈ [0, 1]H×W
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(a) Photo (b) Reconstruction (c) W/o background

(d) Reconstruction (e) Spot Model (f) Reconstruction

Figure 6. Reconstructions of measured [35] (a–c) and a synthetic
mannequin dataset [11] (d), and a reconstruction of the “Spot”
model (synthetic), represented using radial basis functions with
spatially varying albedo (e,f).

Table 2. Quantitative comparison of reconstructions from the sim-
ulated measurements of the bunny [5] with various other methods
showing the runtime (minutes:seconds), intersection over union
(IoU, higher is better), as well as mean absolute error (MAE, lower
is better) and root-mean-square error (RMSE, lower is better) in
cm. For each metric, the best value is highlighted in red and the
best follow-up in blue.

Method Runtime IoU MAE RMSE
FBP [35] <0:01 0.738 4.86 5.03
f–k [20] <0:01 0.659 3.81 4.86
Fermat [39] 0:12 0.730 1.05 1.58
D-LCT [41] 0:05 0.728 0.59 0.95
Tsai et al. [33] 102:06 0.730 0.28 1.03
Rbf 4:51 0.760 0.41 1.33
Rbf (Sinogram) 1:34 0.490 1.13 2.10
Depth Map 2:25 0.803 0.26 0.76

to the same interval and apply a scaling and translation to
the reconstruction volume before the rendering. Hence, our
loss function can be written as

L(c, d) = ∥I −R(c, d)∥2 + λdTV (d) + λcTV (c), (12)

where TV is an isotropic total variation with ϵ = 0.001
for smoothing with regularization weights λd and λc. We
initialize with a coarse resolution depth map and double the
resolution during the optimization.

We also evaluate this representation on the synthetic
bunny from [5] in Fig. 5. The reconstruction captures the
fine details of the surface structure better than all other rep-
resentations, resulting in the best metrics as listed in Ta-
ble 2. While D-LCT [41] runs much faster, it lacks some
details when compared to differentiable rendering based ap-

(a) Object (photo) (b) Ours 32× 32 (c) Ours 512× 512

(d) Fermat [39] (e) Tsai et al. [33] (f) D-LCT [41]
Figure 7. Reconstruction of the “Statue” dataset photo shown
in (a) [20]. (d)–(f), three reconstructions from recent literature
(adapted from [41]). (b) and (c) show reconstructions obtained
from our framework using a depth map representation for different
input resolutions.

(a) Object (b) Tsai et al. (c) Ours raw (d) Ours flat-field
Figure 8. Reconstructions of the “Diffuse S” dataset [27]. From
left to right: photo of the object [27] (a); reconstruction by Tsai et
al. [33] (b); reconstructions using our method as depth map with
varying albedo: (c), raw dataset; (d), flat-field corrected dataset.

proaches. At the same time our method offers a significant
runtime improvement over the method of Tsai et al. [33].

We show the application of this approach on measure-
ment data of a statue [20] in Fig. 7 and the diffuse S [27] in
Fig. 8. The quality of the reconstructions of the statue is on
par with the reconstruction of D-LCT from [41]. Even after
reducing the resolution down to 32 × 32 the quality stays
consistent with a reconstruction time of only 39 seconds.
For higher resolutions, we switch to a stochastic gradient
descent optimization with batch size of 4096 scan points.
Therefore, the reconstruction time does not increase beyond
a resolution of 64× 64 and keeps below three minutes.

The reconstruction of the diffuse S shows a failure case
of our background network, which cannot deal with the
large amounts of spatially varying background present in
the dataset. We clean the data up by applying a semi-
automatic flat field correction that estimates a static back-
ground component from the signal-less portion of the
dataset (before the first transient onset). The resulting re-
construction is similar to the one of Tsai et al. [33], but runs
in under three minutes.
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Figure 9. The two armadillos are positioned with 1m and 1.5m
distance to the wall and perform a linear motion and rotation as
indicated by the key frames in the first column. The transient input
has a PSNR of 28.4. The plots on the right show the position and
rotation error in millimeters and degrees, respectively.

4.3. Tracking

This application takes as input one or more meshes of
hidden objects and a transient image of these objects at un-
known positions. The aim is to infer the hidden object’s
spatial position and orientation. To this end, we optimize
the position vector and the orientation quaternion of each
object to match the given transients.

We demonstrate the tracking of two armadillo meshes
over a video in Fig. 9. The first frame is initialized to the
correct position and rotation and we iteratively optimize the
transformation of both objects for each frame using the re-
sults of the previous frame as an initialization.

The positions and rotations are matched with negligible
errors for both objects. The accuracy of the armadillo in the
back is slightly lower because of the reduced light intensity
reaching the wall, and it degrades during the middle of the
video where most of the object is occluded by the armadillo
in the foreground. The estimation quality is, however, still
reasonable even though our method only approximates the
full visibility of the triangles and does not compute gradi-
ents for the visibility term. The optimization of a single
transform with more translation and rotation is shown in the
supplemental document.

4.4. Proof of Concept: Self-Supervised Learning

Finally, we demonstrate the flexibility of our differen-
tiable renderer by using it to train a reconstruction net-

Figure 10. Ground truth models (top) and their reconstructions
(bottom) using a network trained in a self-supervised regime with
synthetic data generated from volumetric blobs.

work in a purely self-supervised manner. We generate syn-
thetic data from random sets of gaussian blobs similar to
Section 4.1. The convolutional network takes the transient
image as input and outputs a density volume that is con-
verted into a mesh using marching cubes. We pass this
mesh through our differentiable renderer and compute the
L2 loss between the resulting transient image and the net-
work input, which can be backpropagated through all steps
to update the network parameters.

We train the network for 500000 iterations using
Adam [16] with a batch size of 32. The volume and scan
point resolution is set to 16. Additionally, we add a small
L2 regularization of the gradients of the volumetric output
for smoothness. Results are shown in Fig. 10.

5. Conclusion
We have demonstrated that an efficient computation of

the gradients for differentiable transient rendering greatly
improves the reconstruction speed compared to other ren-
dering based NLoS reconstructions. Our implementation is
general enough to handle many cases and yields reconstruc-
tions quantivatively better than other approaches. Paired
with a background network we were able to show results
on a large range of simulated and real measurements. As
the implementation is integrated into the PyTorch environ-
ment, it offers great flexibility and we have demonstrated its
use in a self-supervised learning application. Furthermore,
it may serve as a building block for future end-to-end train-
ing approaches or methods that also make use of the latest
neural scene representations.

A major limitation of our method is its restriction to
three-bounce, pulse-based setups, a necessity to achieve
the highest possible performance for non-line-of-sight prob-
lems. As future work, we can imagine to extend the soft-
ware by implementing gradients with respect to scan posi-
tions to allow for calibration similar to [17], but using more
complex targets.
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