
Spatially Multi-conditional Image Generation

Nikola Popovic1* Ritika Chakraborty1* Danda Pani Paudel1 Thomas Probst1

Luc Van Gool1,2
1Computer Vision Laboratory, ETH Zurich, Switzerland

2VISICS, ESAT/PSI, KU Leuven, Belgium
{nipopovic,critika, paudel, probstt, vangool}@vision.ee.ethz.ch

Abstract

In most scenarios, conditional image generation can be
thought of as an inversion of the image understanding pro-
cess. Since generic image understanding involves solving
multiple tasks, it is natural to aim at generating images via
multi-conditioning. However, multi-conditional image gen-
eration is a very challenging problem due to the heterogene-
ity and the sparsity of the (in practice) available condition-
ing labels. In this work, we propose a novel neural architec-
ture to address the problem of heterogeneity and sparsity of
the spatially multi-conditional labels. Our choice of spatial
conditioning, such as by semantics and depth, is driven by
the promise it holds for better control of the image genera-
tion process. The proposed method uses a transformer-like
architecture operating pixel-wise, which receives the avail-
able labels as input tokens to merge them in a learned ho-
mogeneous space of labels. The merged labels are then
used for image generation via conditional generative ad-
versarial training. In this process, the sparsity of the la-
bels is handled by simply dropping the input tokens cor-
responding to the missing labels at the desired locations,
thanks to the proposed pixel-wise operating architecture.
Our experiments on three benchmark datasets demonstrate
the clear superiority of our method over the state-of-the-
art and compared baselines. The source code can be found
at https://github.com/96ritika/TLAM .

1. Introduction
In recent years, automated image generation under user

control has become more and more of a reality. Such pro-
cesses typically use so-called conditional image generation
methods [32, 19]. One could see these as an intermedi-
ate between fully unconditional [14] and purely rendering
based [6] generation, respectively. Methods belonging to
these two extreme cases either offer no user control, or rely

*Equal contribution.

on all necessary information of image formation supplied
by the user. In many cases, neither extreme is desirable.
Therefore, several conditional image generation methods,
that circumvent the rendering process altogether, have been
proposed. These methods usually receive the image de-
scriptions either in the form of text [32, 43] or as spatially
localized semantic classes [19, 37, 45].

In this paper, we aim to condition the image generation
on more than just the desired semantics. In this regard,
we make a generic practical assumption that any seman-
tic or geometric aspect of the desired image may be avail-
able as a label for conditioning (such as semantic segmen-
tation, edges, depth, normals, etc). Moreover, these labels
do not have to be defined at all spatial locations. For exam-
ple, an augmented reality application may require to ren-
der a known object using its 3D model and specified pose,
but with missing texture and lighting details. In such cases,
geometric and semantic labels become instantly available
at that object’s location, while the labels of the other parts
of the same image may also be available partially or com-
pletely. This offers us the multi-conditioning inputs for the
image generation process. Incorporating all such informa-
tion in a multi-conditional manner to generate the desired
image, is the main challenge that we undertake. Another
example is 3D graphic design where the mentioned labels
are naturally a part of the designing and rendering process.
The designer can now focus on constructing detailed seman-
tic and geometric aspects for the important objects, while
leaving the rest of the image to the partial-imagination of a
deep network. In some sense, our approach bridges the gap
between generative and rendering based image synthesis.

Two major challenges of multi-conditional image gener-
ation, in the context of this paper, are the heterogeneity and
the sparsity of the available labels. The heterogeneity refers
to differences in representations of different labels, for e.g.
depth and semantics. On the other hand, the sparsity is ei-
ther simply caused by the label definition (e.g. sky has no
normal) or due to missing annotations [40]. It is important
to note that some geometric aspects of images, such as an

734



Generator

Input Labels

Label 

Merging

Block

Image

Synthesizing

Network

Ours

StandardInput Label

Image

Synthesizing

Network

Generated Image

Generated Image

Generator

Figure 1. Spatially multi-conditional image generation. Our
model uses multiple labels to generate an image, compared to stan-
dard approaches which use only the semantic segmentation label.
Multiple input labels, coming from different sources, are handled
by the proposed label merging block.

object’s depth and orientation, can be introduced manually,
without requiring any 3D model with its pose. This allows
users to geometrically control images (beyond the seman-
tics based control) both in the the presence or absence of
3D models. It goes without saying that the geometric ma-
nipulation of any image can be carried out by first inferring
its geometric attributes using existing methods [40, 47, 56],
followed by generation after manipulation.

To address the problems of both heterogeneity and di-
versity, we propose a label merging network that learns to
merge the provided conditioning labels pixel-wise. To this
end, we introduce a novel transformer-based architecture,
that is designed to operate on each pixel individually. The
provided labels are first processed by a label-specific mul-
tilayer perceptrons (MLPs) to generate a token for each la-
bel. The tokens are then processed by the transformer mod-
ule. In contrast to standard vision transformers that per-
form spatial attention [8, 57], our transformer module ap-
plies self-attention across the label dimension, thus avoid-
ing the high computational complexity. The pixel-wise in-
teraction of available labels homogenizes the different la-
bels to a common representation for the output tokens. The
output tokens are then averaged to obtain the fused labels
in the homogeneous space to form the local concept. This
is performed efficiently for all pixels in parallel by sliding
the pixel-wise transformer over the input label maps. Fi-
nally, the concepts are used for the image generation via
conditional generative adversarial training, using a state-of-
the-art method [45]. During the process of label merging,
the spatial alignment is always preserved. The sparsity of
the labels is handled by simply dropping the input tokens
of the missing labels, at the corresponding pixel locations.
This way, the transformer learns to construct the concept for
each pixel, also in the case when not all labels are available.
We study the influence of several spatially conditioning la-
bels including semantics, depth, normal, curvature, edges,
in three different benchmark datasets. The influence of the

labels is studied both in the case of sparse and dense label
availability. In both cases, the proposed method provides
outstanding results by clearly demonstrating the benefit of
conditioning labels beyond the commonly used image se-
mantics. The major contribution of this paper can be sum-
marized as follow:

1. We study the problem of spatially multi-conditional
image generation, for the first time.

2. We propose a novel neural network architecture to fuse
the heterogeneous multi-conditioning labels provided
for the task at hand, while also handling the sparsity of
the labels at the same time.

3. We analyse the utility of various conditioning types for
image generation and present outstanding results ob-
tained by the proposed method in benchmark datasets.

2. Related Work
Conditional Image Synthesis. A description of the desired
image to be generated can be provided in various forms,
from class conditions [33, 2], text [32, 43], spatially local-
ized semantic classes [19, 37, 45], sketches [19], style infor-
mation [12, 21, 22] to human poses [31]. Recently, differ-
ent data structures (e.g. text sequences) have also received
attention in the literature [59, 54]. The problem of spa-
tially multi-conditional image generation is orthogonal to
the problem of unifying different (non-spatial) modalities,
as it seeks to fuse heterogeneous spatially localized labels
into concepts, while preserving the spatial layout for image
generation. Isola et al. [19] later introduced the Pix2Pix
paradigm to convert sketches into photo-realistic images,
leveraging the image-to-image translation UNet [44] back-
bone as a generator combined with a convolutional discrim-
inator. This work was improved by Wang et al. to sup-
port high resolution image translation in Pix2PixHD [53]
and video translation in Vid2Vid [52]. Recently, Shaham et
al. introduced the ASAP-Net [45] which achieves a supe-
rior trade-off of inference time and performance on several
image translation tasks. We employ the ASAP-Net as one
component in our architecture.
Conditioning Mechanisms. The conditioning mechanism
is at the core of semantically controllable neural networks,
and is often realized in conjunction with normalization tech-
niques [9, 17]. Perez et al. introduced a simple feature-wise
linear modulation FiLM [39] for visual reasoning. In the
context of neural style transfer [11], Huang et al. intro-
duced Adaptive Instance Normalization AdaIN [18]. Park
et al. extended AdaIN for spatial control in SPADE [37],
where the normalization parameters are derived from a se-
mantic segmentation. Zhu et al. [60] further extend SPADE
to allow for independent application of global and local
styles. Finally, generic normalisation schemes that make

735



Figure 2. Pixel-wise Transformer Label Merging block (TLAM). The heterogeneous labels of each pixel xijk are first projected into the
same dimensionality eijk , and then passed to the concept generation block. A transformer module promotes the interaction between labels,
before finally distilling them to a concept vector zij by averaging the homogeneous label representations zijk at every pixel location.

use of kernel prediction networks to achieve arbitrarily
global and local control include Dynamic Instance Nor-
malization (DIN) [20] and Adaptive Convolutions (Ada-
Conv) [4]. While being greatly flexible, they also increase
the resulting inference time, unlike ASAP-Net that uses
adaptive implicit functions [46] for efficiency.
Differentiable Rendering Methods. Since rendering is
a complex and computationally expensive process, several
approximations were proposed to facilitate its use for train-
ing neural networks. Methods starting from simple approx-
imations of the rasterization function to produce silhou-
ettes [24, 29, 26] to more complex approximations mod-
elling indirect lighting effects [27, 35, 30] have been pro-
posed. These algorithms have also been incorporated into
popular deep learning frameworks [42, 27, 36]. Differen-
tiable renderers have been successfully used in several neu-
ral networks including those used for face [50, 49] and hu-
man body [28, 38] reconstruction. We refer the interested
reader to the excellent surveys of Tewari et al. [48] and Kato
et al. [23] for more details. In contrast to rendering ap-
proaches which require setting numerous scene parameters,
our method directly generates realistic images from only a
sparse set of chosen labels.

3. Method
We start by introducing a few formal notations. As an

input, we have a set of labels X = {X1,X2, ...,XN}, where
each label Xk ∈ RH×W×Ck has height H , width W and
Ck channels. The element of Xk corresponding to the pixel
location (i, j) is denoted as xijk ∈ RCk . Hence, elements
of the label set X corresponding to the pixel location (i, j)
form a set X ij = {xij1 , x

ij
2 , ..., x

ij
N}. The model takes the

set of labels X as an input and produces I = ϕ(X ), where
I ∈ RH×W×3 is the generated image.

3.1. Label Merging

We describe the mechanism of the label merging compo-
nent, as illustrated in Figure 2. This component processes

different pixel locations of the input labels X ij indepen-
dently, and is efficiently executed on all pixels in parallel.
We empirically found this to be sufficient. In this process,
we are interested to merge all available heterogeneous la-
bels {xijk } into a latent vector zij , for each pixel location.
Thus, we get a latent tensor Z that we can use to synthe-
size the image I, while avoiding the problems of label het-
erogeneity and sparsity. Input labels are heterogeneous be-
cause they come from different sources and can have differ-
ent numbers of channels Ck, as well as different ranges of
values (i.e. semantic segmentation is represented with dis-
crete values, while surface normals are continuous). Input
labels can be sparse because they do not have to be available
for every pixel location [40]. Furthermore, label merging is
performed by two blocks: the projection block and the con-
cept generation block, which we described in the following.

3.1.1 Projection Block

This block projects every heterogeneous input label Xk into
an embedding space Ek ∈ RH×W×d, where d is the di-
mensionality of the embedding space. It does so by trans-
forming every element xijk with the projection function fk,
fk : xijk 7→ eijk , where eijk ∈ Rd. All the elements of a
given label Xk share the same projection function fk, but
different input labels k have different fk. We use an affine
transformation followed by the GeLU nonlinearity a(·) [15]
to serve as the embedding function,

eijk = fk(x
ij
k ) = a(Akx

ij
k + bk), (1)

where Ak ∈ Rd×Ck and bk ∈ Rd. We implement fk by
using a different 1 × 1 convolution module for each input
label Xk, followed by a GeLU activation function. When
the value of a label Xk is missing at a certain spatial loca-
tion (due to sparsity), its element xijk is dropped by setting it
to a zero vector. This will send a signal to the concept gen-
eration block that the label k is not present at location (i, j),
and that it should extract the information from other labels.
Also, the absence of a whole label Xk is handled similarly.

736



Generator
Input Labels

Label 

Merging

Block

Image

Synthesizing

Network

Discriminator

Generated Image

Real Image

Figure 3. Network overview. Different input labels are embed-
ded into a homogeneous space with the label merging block. The
image synthesizer uses this embedding to generate an image. Dur-
ing training, the discriminator uses the labels, real and generated
images, to optimize the label merger and the image synthesizer.

3.1.2 Concept Generation Block

The set of embedding vectors corresponding to different la-
bels E = {e1, e2, ..., eN} serve as input tokens for our con-
cept generation block (we drop the spatial index ·ij for sim-
plicity). This block uses a novel attention module to model
interaction across labels, and this module is shared across
all pixel locations. It therefore does not require expensive
spatial attention as is the case with standard vision trans-
formers [51, 8]. In other words, we apply the same label-
transformer on each pixel individually. Transformers nat-
urally encourage interactions between different labels, thus
labels share their label-specific information while forming
the final homogeneous representation. Before feeding E to
the transformer, we apply label specific encoding to obtain
z
(0)
k = ek + pk. Then we pass Z(0) = {z(0)1 , z

(0)
2 , ..., z

(0)
N }

through l transformer blocks Bm. Each block Bm takes the
output of the previous block Z(m−1) and produces Z(m) =

Bm(Z(m−1)), where Z(m) = {z(m)
1 , z

(m)
2 , . . . , z

(m)
N }.

Each transformer block Bm is composed of a Multi-head
Self Attention block (MSA), followed by a Multilayer Per-
ceptron block (MLP) [51, 8]. MSA is a global operation,
where every label token interacts with every other token and
thus information is shared across labels. The MSA block
executes the following operations:

Ẑ(m) = MSA(LN(Z(m−1))) + Z(m−1), (2)

where LN represents Layer Normalization [1]. The MSA
block is followed by the MLP block, which processes
each token separately using the same Multilayer Perceptron.
This block further processes label tokens, after their global
interactions in the MSA block, by sharing and refining the
representations of each token across all their channels. The
MLP block executes the following operations:

Z(m) = MLP(LN(Ẑ(m))) + Ẑ(m). (3)

Finally, all elements of the output set Z = Z(l) =

{z(l)1 ,...,z
(l)
N } are averaged to obtain z = 1

N

∑
k=1:N z

(l)
k .

This gives us the Concept Tensor Z∈RH×W×d.

Note that, for standard vision transformers [8] operating
on M spatial elements (e.g. pixels/patches), the computa-
tional complexity of the self-attention is O(M2). Our pixel-
wise transformer, operating only onN label tokens, reduces
the complexity of self-attention to O(N2) (for each pixel)
with the number of labels N ≪M.

3.2. Network Overview

The proposed generative model is divided into two com-
ponents: the label merging block and the image synthesiz-
ing network. This is depicted in Figure 3.
Label Merging Block. This block takes a set of hetero-
geneous labels X as the input and merges them into a ho-
mogeneous space Z = ψ(X ), where Z ∈ RH×W×d is the
Concept Tensor. It is important to note that the label merg-
ing block does not require all input labels to be defined for
each pixel location. The label merging block first translates
all labels Xk into embeddings Ek with the same dimension-
ality, using the projection block. Then, it uses the concept
generation block to translate embeddings Ek to the Concept
Tensor Z. In short, the label merging block fuses the het-
erogeneous set of input labels X into a homogeneous repre-
sentation Z. We name this block as the Transformer LAbel
Merging (TLAM) block and it is depicted in Figure 2.
Image Synthesizing Network. The task of the image syn-
thesizing network is to take the produced Concept Ten-
sor Z and generate the image I = g(Z), as shown in
Figure 3. For this purpose, we employ the state-of-the-
art ASAP model [45]. This model synthesizes the high-
resolution pixels using lightweight and highly parallelizable
operators. ASAP performs most computationally expensive
image analysis at a very coarse resolution. We modify the
input to ASAP, by providing the Concept Tensor Z as an in-
put, instead of giving only one specific input label Xk (i.e.
semantics). The synthesizing network therefore exploits the
merged information from all available input labels X .
Adversarial Training for Multi-conditioning. We follow
the optimization protocol of ASAP-Net [45]. We train our
generator model adversarially with a multi-scale patch dis-
criminator, as suggested by pix2pixHD [53]. To achieve
this, we modify the input to the discriminator by using the
Concept Tensor Z instead of a specific label Xk.

4. Experiments

Implementation details. We follow the optimization
protocol of ASAP-Net [45]. We train our generator
with a multi-scale patch discriminator, as suggested by
pix2pixHD [53]. The training includes an adversarial
hinge-loss, a perceptual loss and a discriminator feature
matching loss. The learning rates for generator and dis-
criminator are 0.0001 and 0.0004, respectively. We use
ADAM [25] with β1=0 and β2=0.999, following [37, 45].

737



All-dense All-sparse SPADE [37] ASAP [45]
TLAM
(Ours)

Sparse-TLAM
(Ours)

Figure 4. Visual comparisons on the Taskonomy dataset. Column 1 & 2: five different labels tiled horizontally for dense and 50% sparse
cases. Column 5 & 6: images generated by our method using the labels from column 1 & 2. Column 3 & 4: images generated by the dense
semantic methods. Our method generates more realistic images with fine geometric and visual details from both dense and sparse labels.

Backbone Method Label sparsity FIDS E C D N

SPADE [37] Regular 72.3
Naı̈ve baseline 66.1

ASAP [45]

Regular 73.8
Naı̈ve baseline 74.6

CLAM baseline 43.8
TLAM (ours) 37.9

CLAM baseline 37.1
TLAM (ours) 30.6

Table 1. FID scores on the Taskonomy dataset. Our TLAM
method generates images with significantly better visual quality
for both sparse and dense labels. Symbol corresponds to dense
labels, while corresponds to 50% label sparsity. S stands for
semantics, E for edges, C for curvature, D for depth and N for
normals. Please, refer Figure 4 for corresponding images.

Label sparsity. Here we explain how inputs with S% label
sparsity are generated. First, the pixel space is divided into
distinct regions corresponding to semantic segmentation in-
stances. Then, for each region we repeat the following pro-
cess: for each available label independently, we drop all of
its values in that region with S% probability. Please look at
Fig. 1-4 in the supplementary for a visual demonstration.

4.1. Datasets

We experiment on three different datasets to demonstrate
the versatility and effectiveness of our approach.
Taskonomy dataset [58] is a multi-label annotated dataset
of indoor scenes. The entire dataset consists of over 4 Mil-
lion images from around 500 different buildings with high
resolution RGB images, segmentation masks and other la-
bels. We chose this dataset for our main experiments be-
cause of its wide selection of both semantic and geomet-
ric labels. In our experiments, we use the following labels:

SPADE ASAP Näıve
baseline

(SPADE)

Näıve
baseline
(ASAP)

CLAM
baseline
(sparse)

TLAM
(ours)

(sparse)

CLAM
baseline
(dense)

TLAM
(ours)

(dense)

0

20

40

60

80

F
ID

72.3 73.8
66.1

74.6

43.8
37.9 37.1

30.6

Taskonomy dataset performance

Semantic

Sparse

Dense

Figure 5. Model comparison. Our TLAM method preforms bet-
ter compared to the established baselines as well as to the SotA
models which use semantic segmentation labels only.

semantic segmentation, depth, surface normals, edges and
curvature. We selected two buildings from the large dataset
resulting a total of 18,246 images, split into 14,630/3,619
training/validation images.

Cityscapes dataset [7] contains images of urban street
scenes from 50 different cities and their dense pixel an-
notations for 30 classes. The training and validation split
contains 3000 and 500 samples respectively. To obtain fur-
ther labels, we use a state-of-the art depth estimation net-
work [13] for depth. The estimated depth, along with the
camera intrinsics were used to compute the local patch-wise
surface normals. Additionally, we use canny filters for edge
detection. This resulted four labels for Cityscape.

NYU depth v2 dataset [34] consists of 1449 densely labeled
pairs of aligned RGB images and depth, normals, semantic
segmentation and edges maps of indoor scenes. We split the
data into 1200/249 training/validation sets.

The presented qualitative and quantitative results are
generated on the respective hold-out test sets, with the ex-
ception of Figure 9, where we follow the protocol of [53]
for comparison with the other methods.

738



4.2. Baselines and Metrics

Since this is the first work in spatially multi-conditional
image generation, we construct our own baselines.
Naı̈ve baseline takes all available labels and concatenates
them along the channel dimension to create the input, which
is fed to the ASAP-Net/SPADE backbone. This is equiv-
alent to spatial multi-conditioning without explicit label
merging, and therefore it also serves as an ablation to study
the efficacy and necessity of the label merging block.
Convolutional Label Merging (CLAM) baseline stacks
multiple consecutive blocks similar to the projection block
from (1). The first block is exactly (1), while the following
l blocks perform the same operation with Al

k ∈ Rd×d, blk ∈
Rd, preserving the dimensionality d. After the final block,
all output elements corresponding to the same spatial lo-
cation are averaged, just like after the TLAM block. This
baseline is a deep network with a very simple label merging
mechanism. Thus, we use it to evaluate the efficacy of the
more sophisticated label merging mechanism of TLAM.
SotA semantic-only methods. We also compare our
method with state-of-the-art semantic image synthesis mod-
els, including SPADE [37], ASAP-Net [45], CRN [5],
SIMS [41], Pix2Pix [19] and Pix2PixHD [53].
Performance Metrics. We follow the evaluation proto-
col of previous methods [45, 37]. We measure the quality
of generated images using the Fréchet Inception Distance
(FID) [16], which compares the distribution between gen-
erated data and real data. The FID summarizes how similar
two groups of images are in terms of visual feature statistics.
The second metric is the segmentation score, obtained by
evaluating mean-Intersection-over-Union (mIoU) and pixel
accuracy (accu) of a semantic segmentation model applied
to the generated images. We use state-of-the-art seman-
tic segmentation networks DRN-D-105 [55] for Cityscapes
and DeepLabv3plus [3] for NYU depth v2 dataset.

4.3. Quantitative Results

Image Generation. Table 1 reports the FID scores obtained
on the Taskonomy dataset. We compare our method with
several baselines and under different label sparsity. Our
TLAM significantly outpreforms SPADE and ASAP SotA
methods, which use only semantic segmentation maps as
inputs. This shows that using different spatial input labels
can indeed improve the generation quality. Moreover, when
SPADE and ASAP simply concatenate multiple labels as
an input (naı̈ve baseline), they do not preform significantly
better than with just the semantics. This emphasizes the
difficulty of merging multiple spatial labels, which are het-
erogeneous in nature. Some labels represent semantic im-
age properties, while others represent geometric properties.
Also, some labels are continuous, while others are discrete.
Furthermore, our TLAM preforms better than the CLAM
baseline, showing the value of having a better label merg-

Method mIoU Accuracy FID
CRN [5] 52.4 77.1 104.7

SIMS [41] 47.2 75.5 49.7
Pix2Pix [19] 39.5 78.3 80.7

Pix2PixHD [53] 58.3 81.4 95.0
SPADE [37] 62.3 81.9 71.8

ASAP [45] 44.9 78.6 72.5
TLAM (ours) 45.5 85.3 68.3

Table 2. Quantitative results on Cityscapes. Our method uses
ASAP as the image synthesizing network, which improves perfor-
mance compared to a stand-alone ASAP by a significant margin.

Method mIoU Accuracy
SPADE [37] 33.1 47.4

ASAP [45] 36.2 49.1
TLAM (ours) 38.3 53.1

Table 3. Quantitative results on NYU. Our method demonstrates
the benefit of spatial multi-conditioning over the baseline ASAP.

ing block to deal with the heterogeneity present in the input
labels. Finally, we compare TLAM and the CLAM baseline
with dense and sparse labels. As expected, having dense la-
bels achieves better image quality. Also, the visual quality
when using 50% sparse labels is close to that of using dense
labels. This is interesting and desirable, since in practical
scenarios one often ends up having sparse labels [40].

The results on Cityscapes and NYU are summarized in
Tables 2 and 3. On the Cityscapes dataset, we compare our
method with the SotA methods and report FID, and seg-
mentation mIoU and accuracy. Our method achieves bet-
ter accuracy compared to the other methods. As reported
in [37] the SIMS model produces a lower FID, but has poor
segmentation accuracy on the Cityscapes. This is because
SIMS synthesizes an image by first stitching image patches
from the training dataset. On the NYU dataset, our method
achieves better mIoU and accuracy. Unfortunately, we are
unable to compute the FID, due to the small size of only
249 images in the validation set.
Training Convergence. Figure 6a shows the evolution of
FID during training on Taskonomy. We evaluate the FID
on the validation set every 20 epochs for TLAM, and the
naı̈ve and CLAM baselines. One can observe that TLAM
quickly achieves a very good FID, even after 20 epochs.
At this instance, TLAM has 2.5 and 1.3 times better FID
than those of the naı̈ve and CLAM baselines, respectively.
We can also see that TLAM converges faster than the other
models. One training epoch in Figure 6a takes about 1.7hrs
for our method on one GeForce GTX TITAN X GPU.

4.4. Qualitative Results

To visually compare our TLAM label merging, we
present qualitative results for both dense and sparse labels
on the Taskonomy dataset in Figure 4, together with the
semantic-only baselines. TLAM with all-dense and all-
sparse labels generates high-fidelity images. Our method
generates fine structural details such as lights, decorations,

739



0 20 40 60 80 100

Epoch

40

60

80

100

F
ID

FID convergence of different models (with ASAP)

Näıve baseline

CLAM baseline

TLAM (ours)

(a) Convergence of different models. We compare
FID scores during training of our TLAM method to
the naı̈ve and CLAM baselines. Our method converges
faster and achieves better FID compared to those of the
baselines at every point during training.

10 20 30 40 50 60 70

Label sparsity [%]

30

35

40

45

50

55

F
ID

Effects of different label sparsity

Sparse labels

All labels

(b) Effects of different label sparsity. Our model
achieves good FID score even when a fraction of la-
bels is presented during inference. With more labels
present, our model achieves better performance, even
though it was trained for 50% label sparsity.

Semantics
dropped

Edges
dropped

Normals
dropped

Depth
dropped

Curvature
dropped

0

20

40

60

80

F
ID

51.4

88.5

61.4

52.2

60.8

Effects of dropping input labels

(c) Effects of dropping input labels. We examine how
dropping a specific label affects the image quality of
our TLAM model. Dropping any label degrades FID
which leads to the conclusion that all labels provide
useful information for image synthesis.

Figure 6. Training convergence and label sensitivity. We analyse behavioural aspects of our models with regards to training and labels.

and even mirror reflections clearly better than SPADE and
ASAP. The results on the Cityscapes dataset are shown in
Figure 8. Notably, our method with sparse labels achieves
similar visual quality as other methods. Figure 9 shows
qualitative results on the NYU dataset, where Pix2PixHD
also renders images with good quality, however it fails to
capture the lighting conditions in contrast to our method.
Notably, our method captures the rich geometric structures
(such as on the ceiling), thanks to the geometric labels.
Please, refer to our supplementary material for more visual
results. Overall, the qualitative results demonstrate the ef-
fectiveness of TLAM, which exploits novel pixel-wise label
transformers, even for sparse labels.

4.5. Label Sensitivity Study

We analyse the sensitivity of our method with regards to
the provided labels on the Taskonomy dataset.
Label Sparsity. Figure 6b shows how the FID is affected by
label sparsity. Experiments conducted on increasing spar-
sity from 10% to 70%, show a steady degradation of FID
with less available labels. Note that our model already
achieves good FID using only 30% of available labels. The
experiments were conducted using a single model trained
with 50% sparsity. It also shows the generalizability of our
method across various levels of sparsity.
Removal of Labels. In Figure 6c, we plot the FID after
removing each label from the input, using the TLAM model
trained on Taskonomy with 50% sparsity. We observe that
among the five labels, edges play the most significant role.
On the other hand, the semantics and depth are the most
dispensable. Nevertheless, the removal of any label results
into a worsening of the FID at least by a factor of 1.3. This
suggests that all labels provide different information crucial
for image generation, while being mutually complimentary.

We conclude that the proposed label merging block can
successfully deal with incomplete labels and is able to ex-
ploit information from all available labels.

4.6. Concept Visualization and Image Editing

Concept Visualization. To visualize the concept tensor
Z ∈ RH×W×96, we project it to 3 channels, using Principal
Component Analysis [10], and present it in Figure 7, along
with the corresponding image and labels. One can observe
that the visualized concept tensor indeed resembles differ-
ent aspects of the input labels (e.g. edges and normals).

Geometric Image Editing with User Inputs. In order
to demonstrate an intuitive application of our method, we
perform image editing by inserting a new object into the
scene. Figure 10 shows how our method can mimic render-
ing while allowing the geometric manipulation of an image.
We render a TV in the given image, by simply augmenting
different labels with user-provided labels for the TV.

5. Conclusion

In this work, we offer a new perspective on image gener-
ation as inverse of image understanding. In the same way as
image understanding involves the solving of multiple differ-
ent tasks, we desire the control over the generation process
to include multiple input labels of various kinds. To this
end, we design a neural network architecture that is capa-
ble of handling sparse and heterogeneous labels, by map-
ping them to a homogeneous concept space in a pixel-wise
fashion. With our proposed module, we can equip spatially
conditioned generators with the desired properties. From
our experiments on challenging datasets, we conclude that
the benefits and flexibility of this additional layer of control
gives way to exciting results beyond the state-of-the-art.

Acknowledgments

This research was co-financed by Innosuisse under the
project Know Where To Look, Grant No. 59189.1 IP-ICT.

740



Concept Image Semantics Normals Edges Depth Curvature

Figure 7. Concept Tensor visualization. From left to right: Concept Tensor projected to RGB; original image; five different input labels.

Label Reference SPADE [37] ASAP [45]
TLAM
(Ours)

Sparse-TLAM
(Ours)

Figure 8. Visual comparison on the Cityscapes. Our approach achieves a visual quality on par with the compared methods.

Reference Pix2pix [19] CRN [5] pix2pixHD [53] SPADE [37] ASAP [45] TLAM (Ours)

Figure 9. Visual comparison on NYU. Our method generates images that better capture the lighting and geometry with more details.

Original Mask SPADE [37] ASAP [45] TLAM (Ours)

Figure 10. Object insertion. From left to right: original image; mask of the inserted object; generated image using SPADE, ASAP and
our method, respectively. This figure shows insertion of a TV, by inserting labels provided by the user at the location she/he chooses.

741



References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer normalization, 2016.
[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[3] Jinming Cao, Hanchao Leng, Dani Lischinski, Danny
Cohen-Or, Changhe Tu, and Yangyan Li. Shapeconv: Shape-
aware convolutional layer for indoor rgb-d semantic segmen-
tation. arXiv preprint arXiv:2108.10528, 2021.

[4] Prashanth Chandran, Gaspard Zoss, Paulo Gotardo, Markus
Gross, and Derek Bradley. Adaptive convolutions for
structure-aware style transfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7972–7981, June 2021.

[5] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. pages 1520–1529,
10 2017.

[6] Robert L Cook, Loren Carpenter, and Edwin Catmull. The
reyes image rendering architecture. ACM SIGGRAPH Com-
puter Graphics, 21(4):95–102, 1987.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

[9] Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian
Strub, Harm de Vries, Aaron Courville, and Yoshua Bengio.
Feature-wise transformations. Distill, 2018.

[10] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to
systems of points in space. Philosophical Magazine Series
1, 2:559–572.

[11] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A
neural algorithm of artistic style, 2015.

[12] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks.
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2414–2423, 2016.

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, 2017.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

[15] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2020.

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-
rium. In NIPS, 2017.

[17] Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling
Shao. Normalization techniques in training dnns: Methodol-
ogy, analysis and application, 2020.

[18] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), Oct 2017.

[19] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. CVPR, 2017.

[20] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang,
Errui Ding, Mingli Song, and Shilei Wen. Dynamic instance
normalization for arbitrary style transfer, 2019.

[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Computer Vision – ECCV 2016, pages 694–711, Cham,
2016. Springer International Publishing.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks,
2019.

[23] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando,
Toru Matsuoka, Wadim Kehl, and Adrien Gaidon. Differen-
tiable rendering: A survey, 2020.

[24] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015.

[26] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020.

[27] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):222:1–222:11, 2018.

[28] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers, 2021.

[29] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing, 2019.

[30] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob.
Reparameterizing discontinuous integrands for differentiable
rendering. Transactions on Graphics (Proceedings of SIG-
GRAPH Asia), 38(6), Dec. 2019.

[31] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-
laars, and Luc Van Gool. Pose guided person image genera-
tion. In NIPS, 2017.

[32] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[33] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. ArXiv, abs/1411.1784, 2014.

[34] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012.

742



[35] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and
Wenzel Jakob. Radiative backpropagation: An adjoint
method for lightning-fast differentiable rendering. Transac-
tions on Graphics (Proceedings of SIGGRAPH), 39(4), July
2020.

[36] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. Transactions on Graphics (Proceedings of SIG-
GRAPH Asia), 38(6), Dec. 2019.

[37] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization, 2019.

[38] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image, 2019.

[39] Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer, 2017.

[40] Nikola Popovic, Danda Pani Paudel, Thomas Probst, Guolei
Sun, and Luc Van Gool. Compositetasking: Understanding
images by spatial composition of tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6870–6880, 2021.

[41] Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun.
Semi-parametric image synthesis. pages 8808–8816, 06
2018.

[42] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020.

[43] Mr D Murahari Reddy, Mr Sk Masthan Basha, Mr M Chin-
naiahgari Hari, and Mr N Penchalaiah. Dall-e: Creating im-
ages from text.

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015.

[45] Tamar Rott Shaham, Michael Gharbi, Richard Zhang, Eli
Shechtman, and Tomer Michaeli. Spatially-adaptive pixel-
wise networks for fast image translation. In Computer Vision
and Pattern Recognition (CVPR), 2021.

[46] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. arXiv preprint
arXiv:1906.01618, 2019.

[47] Guolei Sun, Thomas Probst, Danda Pani Paudel, Nikola
Popovic, Menelaos Kanakis, Jagruti Patel, Dengxin Dai, and
Luc Van Gool. Task switching network for multi-task learn-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 8291–8300, 2021.

[48] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan
Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman,
Dan B Goldman, and Michael Zollhöfer. State of the art on
neural rendering, 2020.

[49] Ayush Tewari, Michael Zollöfer, Florian Bernard, Pablo
Garrido, Hyeongwoo Kim, Patrick Perez, and Christian
Theobalt. High-fidelity monocular face reconstruction based
on an unsupervised model-based face autoencoder. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
pages 1–1, 2018.

[50] Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo
Garrido, Florian Bernard, Patrick Perez, and Theobalt Chris-
tian. MoFA: Model-based Deep Convolutional Face Autoen-
coder for Unsupervised Monocular Reconstruction. In The
IEEE International Conference on Computer Vision (ICCV),
2017.

[51] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[52] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018.

[53] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[54] Weihao Xia, Yujiu Yang, Jing Xue, and Baoyuan Wu. Tedi-
gan: Text-guided diverse face image generation and manipu-
lation. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2256–2265, 2021.

[55] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated
residual networks. In Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[56] Ye Yu and William AP Smith. Inverserendernet: Learn-
ing single image inverse rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3155–3164, 2019.

[57] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis E. H. Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 538–547, 2021.

[58] Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J.
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018.

[59] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li,
Ming Ding, Jie Tang, Jingren Zhou, and Hongxia Yang. M6-
ufc: Unifying multi-modal controls for conditional image
synthesis. arXiv preprint arXiv:2105.14211, 2021.

[60] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020.

743


