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Abstract

Accurate per-pixel semantic class annotations of the en-
tire video are crucial for designing and evaluating video se-
mantic segmentation algorithms. However, the annotations
are usually limited to a small subset of the video frames
due to the high annotation cost and limited budget in prac-
tice. In this paper, we propose a novel human-in-the-loop
framework called HVSA to generate semantic segmentation
annotations for the entire video using only a small anno-
tation budget. Our method alternates between active sam-
ple selection and test-time fine-tuning algorithms until an-
notation quality is satisfied. In particular, the active sam-
ple selection algorithm picks the most important samples to
get manual annotations, where the sample can be a video
frame, a rectangle, or even a super-pixel. Further, the test-
time fine-tuning algorithm propagates the manual annota-
tions of selected samples to the entire video. Real-world ex-
periments show that our method generates highly accurate
and consistent semantic segmentation annotations while si-
multaneously enjoys significantly small annotation cost.

1. Introduction
Video-level segmentation annotations are important in

multiple applications such as autonomous driving [19],
flight [4], and augmented reality [23]. They also facilitate
model training in other tasks like video deblurring/dehaz-
ing [35, 36], action recognition [22], and 3D reconstruc-
tion [24]. However, manually annotating per-pixel seman-
tic segmentation labels for the entire video is usually ex-
pensive [14]. Therefore, a typical method is to only sample
a subset of video frames to get human annotations [14, 6].
And then given sparsely annotated frames, the method ap-
plies Label Propagation (LP) to populate annotations on se-
lected frames to all frames to get dense annotations [7, 3, 8].
Unfortunately, these annotate-once-then-propagate meth-
ods do not utilize annotation budget efficiently.

To annotate the entire video with semantic segmenta-
tion labels at a low cost, we propose the Human-in-the-loop
Video Semantic segmentation Auto-annotation (HVSA)

Figure 1. Performance of HVSA after 2 iterations. The method
actively selects the most important samples to get human annota-
tions in each iteration, then propagates the annotations to the en-
tire video by jointly considering spatial-temporal consistency and
semantic information of the video. Thus less human effort is re-
quired to obtain the high-quality pixel-level segmentation.

framework. Unlike most work that annotates sampled
frames only once, our HVSA framework works iteratively,
keeping collecting annotations and updating segmentation
models at the same time unitl high quality of segmentation
is satisfied. See Fig. 2. In each iteration of HVSA, sam-
ples are actively selected to be manually annotated and then
a video-specific network is fine-tuned based on the accu-
mulated manual annotations. The updated outputs of the
network can be used in the next iteration to decide which
sample to select for human annotations. Finally, the well
fine-tuned network is used to generate segmentation anno-
tations for the entire video. To the best of our knowledge,
HVSA is the first human-in-the-loop framework that applies
active sample selection for efficient video semantic segmen-
tation auto-annotation. See Fig. 1.

To select video frames for annotation, most existing
work only uses naive strategies, e.g., the first few frames,
uniformly random sampling, or arbitrarily random sam-
pling [3, 2, 8]. These strategies do not consider the video
content or domain knowledge, leading to low utilization
of the limited manual annotation budget. Instead, in our
HVSA framework, we propose Active Sample Selection
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Figure 2. Overview of the HVSA framework. Active sample selection searches for uncertain and diverse samples from the input video. Test-
time fine-tuning fine-tunes the image-based semantic segmentation network from the previous iteration by minimizing two complementary
losses (a & b). The whole process repeats until high quality semantic segmentation is satisfied.

(ASS) method, which takes both video content and seman-
tic segmentation network into consideration. In detail, we
evaluate the prediction uncertainty of the network and try to
select samples with least prediction confidence. Also, we
generate features of all samples and try to select the most
representative samples. In this way, our ASS method not
only samples by uncertainty but also by diversity, so it is
able to improve the utilization of manual annotation budget
and boost the label propagation accuracy.

Curious readers may find that we are doing active sample
selection, rather than active frame selection as in previous
work. This is because one of the critical considerations in
semantic segmentation is the granularity of the annotation
unit. It has been studied in the image semantic segmen-
tation tasks, including frame-based [45, 41, 16], rectangle-
based [28, 10, 13], and super pixel-based [40, 9] work. The
recent work [9] suggests that super pixel-based annotation is
the most efficient for image segmentation tasks. In our ASS
method, the sample can be a frame, a rectangle of frame, or
even a super pixel. Moreover, to resemble real-world man-
ual annotation process, we first adopt the click-based an-
notation measurement [28, 13] to simulate annotation cost,
then generate “manual annotations” based on clicks and use
them in the evaluation. Our experiment results show that
optimal granularity in video annotation task is not deter-
mined but depends on desired level of annotation quality.

Traditional LP methods [7, 3, 8] propagate manual an-
notations of selected frames to the entire video only using
spatial-temporal information. Therefore, they do not take
advantage of semantic information captured in existing se-
mantic segmentation models or manual annotations, leading
more manual annotations to fill where the spatial-temporal
constraints do not cover. In Test-time Fine-Tuning (TFT)
method of our HVSA framework, we design a new loss
function considering both spatial-temporal consistency and
semantic information in model fine-tuning. It further im-
proves label propagation quality and saves annotation cost.

In summary, our contributions include:

1. A novel human-in-the-loop framework HVSA, alter-

nating between active sample selection and test-time
fine-tuning methods, is proposed for video semantic
segmentation auto-annotation at a low annotation cost.

2. In active sample selection, the sample can be a frame,
a rectangle of frame, or even a super-pixel. And sam-
ples are selected by both uncertainty of the network
and the diversity among samples, taking advantage of
information from both network and video.

3. In test-time fine-tuning, we propose a new loss func-
tion combining both the semantic knowledge and the
spatial-temporal information.

4. We study the desired granularity for the video seman-
tic segmentation auto-annotation problem. Our results
give insights to the future work along the line in terms
of selecting the annotation unit.

5. Real-world experiments, e.g., Fig. 1, demonstrate that
our method generates highly accurate and consistent
semantic segmentation annotations of the whole video
at a low annotation cost.

2. Related Work
In this section, we briefly summarize related work due to

page limit. See Appendix A for complete discussion.
Video semantic auto-annotation. Pseudo-labeling and
semi-supervised learning are the two popular types of meth-
ods for automating video semantic segmentation annota-
tions. The pseudo-labeling approaches [27] use a pre-
trained teacher model to generate labels for the test video
sequences. However, these approaches are typically frame-
based and do not consider the rich temporal constraints
in the videos. Among the semi-supervised learning ap-
proaches, Label Propagation (LP) is widely adapted [3, 2,
30, 18, 32]. These methods rely on accurate optical flow es-
timation, which is difficult to obtain. Instead, our test-time
fine-tuning is optimizing a new loss that takes both seman-
tic and temporal information into consideration and predicts
temporally consistent semantic annotations across the full
video without the limitations of traditional LP methods.
Active learning. Inspired by the success of active learn-

5882



ing [39], previous methods [17, 40] studied how to select
instances to refine a network for segmentation tasks. [43]
studies the active frame selection problem for LP. Our work
is different in two ways: First, their method selects frames
only once, while our method could select video frames,
rectangle of frames, or even super-pixels in multiple iter-
ations. Second, their method closely ties with a particular
LP technique and does not comply with modern deep net-
works. Our method is generic and can work with different
segmentation networks.
Human-in-the-loop for visual annotations. There exists
some work [1, 34] trying to reduce the annotation cost in
human-in-the-loop model learning. And [20, 12] studied the
interactive video object segmentation frameworks. How-
ever, solving video semantic segmentation problem in the
human-in-the-loop framework has never been studied.

3. Methods
In this section, we describe our HVSA framework

(Fig. 2) in detail, including pre-processing, active sample
selection, test-time fine-tuning, and cost calculation.

3.1. Pre-Processing

Granularity of samples. A suitable sample granularity
needs to be carefully chosen to minimize the human anno-
tation effort. We investigate three types of annotation unit:
frame, rectangle, and super-pixel, which are typically used
in image semantic segmentation tasks. Fig. 3 shows ex-
ample of three units. To get rectangle units, we uniformly
crop each frame to non-overlapping rectangles. And we use
DMMSS-FCN [21] to generate super-pixel units. The n-
th sample from the t-th frame is denoted as snt . For frame
samples, n is always 0. All samples are prepared in the
unlabeled sample pool at the beginning of our framework.
Build temporal correspondence. We rely on correspon-
dences between frames to leverage video temporal informa-
tion. Here we extract the dense correspondences by estimat-
ing optical flow [42], Ot→t′ , of a frame pair from frame t to
t′. Computing optical flow for all frame pairs is expensive,
thus we limit the distance between frames to be smaller than
3. We further apply a forward-backward consistency check
to cope with occlusion/dis-occlusions to extract only reli-
able correspondences. As a result, each optical flow Ot→t′

will have a binary mask Mt→t′ , where pixels with forward-
backward flow difference larger than 1 pixel are set to 0.

3.2. Active Sample Selection

To reduce annotation cost, we propose the active sam-
ple selection (ASS) to actively select the most important
samples for manual annotations in each iteration. The ASS
method takes both the network and the video content into
consideration, which involves uncertainty sampling and di-
versity sampling and their combination.

(a) Frame (b) Rec100 (c) Rec16 (d) SP
Figure 3. When annotating a video, user could annotate samples of
frame (a), rectangle (b) (c), or even super-pixel [21] (d). Segments
in (b) and (c) are of size 100 and 16 respectively. There are similar
number of segments in (c) and (d).

Margin of confidence and uncertainty sampling. The
motivation behind uncertainty sampling is that if a net-
work predicts on a sample with little confidence, this sam-
ple needs to be selected for manual annotation. To cap-
ture confidence, we use the margin of confidence [25]. For
each pixel, its margin of confidence is defined as the dif-
ference between the prediction scores of top-1 and top-2
label predictions from the model trained in each iteration.
Intuitively, large margin means large prediction confidence.
After being subtracted from 1, the pixel margin of confi-
dence is converted to the pixel uncertainty. The uncertainty
of sample snt is then defined as the summation of pixel un-
certainties within the sample region:

u(snt ) =
∑
x∈snt

Pθk−1
(y∗1,x|It)− Pθk−1

(y∗2,x|It), (1)

where It is the input frame, y∗ is the prediction from
softmax, x is a pixel position within snt , and θk−1 is the
previous model. By applying uncertainty sampling, the
ASS method knows what are the samples that the current
network is unsure about its prediction and then theses sam-
ples will be selected accordingly.

However, uncertainty sampling has a shortcoming in iso-
lation. It might focus on one part of the decision boundary
and select similar samples, causing a waste of human effort.
To make the selection strategy comprehensive, we further
require the method to samples that are different from each
other, which refers to the diversity sampling.
Deep feature and diversity sampling. Clustering-based
sampling naturally targets a diverse selection of samples.
We first conduct clustering on unlabeled samples then select
centroid samples for annotation. We re-use the downstream
segmentation model as a feature extractor. Specifically, we
transform each frame It to a feature map Ft using the pre-
vious model backbone network without segmentation head.
Then the sample feature fnt is defined as the average along
the spatial dimensions of Ft within snt region:

Ft = ψθk−1
(It),

fnt = MeanPoolx∈snt
(Ft,x),

(2)

where ψ denotes the segmentation network backbone. We
employ the k-Means algorithm with Euclidean distance on
f for clustering.
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Figure 4. Visualization of model uncertainty and annotation selections on VEIS. After fine-tuning on the high uncertainty sample, the
generated annotation in the second iteration improves significantly within sample regions across all neighbor frames.

Combining uncertainty and diversity sampling. In first
iteration of our framework, as the network hasn’t been fine-
tuned, we only apply diversity sampling. Later in iterations,
we first selects half of the most uncertain samples and clus-
ter them into b clusters, where b is the annotation budget
in one iteration. Then, b cluster centroids are selected and
sent to human annotators. In this way, selected samples are
of high uncertainty and are relatively different from each
other. See Fig. 4 for an example.

3.3. Test-time Fine-tuning on Input Video

While a network may be pre-trained on relevant datasets,
directly applying it to an arbitrary video would lead to in-
ferior results, e.g., Figure 5. To progressively adapt it to
a video, in each iteration, we fine-tune the model leverag-
ing two different information sources, inspired by how hu-
man annotators handle the video annotation tasks. Given a
target frame and the video, an annotator will naturally an-
alyze its neighbor frames to decide the correct categories
of the objects in the scene; The annotator will also refer to
the existing annotations within the same video. Moreover,
we propose a new loss designed from the two information
sources, and show how we optimize it.

Figure 5. The model pre-trained on NYU-V2 performs poorly on
new out-of-domain input video as in (c). (d) Our framework adapts
the model to the input video and produces better results.

Temporal consistency loss. Our temporal consistency loss,
Ltc, encourages consistent predictions across correspond-
ing pixels on different frames. Unlike other methods [46, 8]
which directly propagate labels between frames, we prop-
agate predicted class probabilities from the model. More

specifically, we penalize the difference between predicted
class probabilities qt and q′

t of frame t and t′ at pixel posi-
tion x as:

Ltc,t→t′(x) =Mt→t′(x) ∥qt(x)− q̂t′→t(x)∥22 , (3)

where q̂t′→t(x) is the warped prediction score from frame
t′ to t using the pre-computed flow Ft→t′ and Mt→t′ is the
mask associated with Ft→t′ .

Here we illustrate why and how we have the mask
Mt→t′ . We apply a forward-backward consistency check
to cope with occlusion/dis-occlusions to extract only reli-
able correspondences. As a result, each optical flow Ot→t′

will have a binary mask Mt→t′ , where pixels with forward-
backward flow difference larger than 1 pixel are marked as
0. Mt→t′ at position x can be formulated as

M
(x)
t→t′ = 1

[∥∥∥O(x)
t→t′ − Ô

(x)
t′→t

∥∥∥2
2
< 1

]
, (4)

where Ôt′→t is the warped version of Ot′→t using flow
Ot→t′ . So that the position of Ot→t′ and Ôt′→t is aligned
and they can be compared directly.

Unlike the existing approaches [46] which only consider
the temporal relation between annotated frames and their
neighbors, we apply the temporal consistency loss to even
unlabeled image pairs. As a result, labeled image informa-
tion transforms to more than 3 frames away, which is the
distance limitation of optical flow.
Semantic loss. Temporal constraints tell the model which
pixel to share labels with but not where to hold. This se-
mantic information will have to come from the annotated
samples on the input video. We compute the regular cross-
entropy loss, Lce, for any frame or frame region with man-
ual annotations:

Lce,t = LCE(qt, Lt), (5)

Lt denotes the semantic label at frame t, where unlabeled
region is set to a special “ignored index”.

5884



Optimization. In the test-time fine-tuning, each training
sample consists of two frames that pass through the single-
frame model in parallel, giving two sets of class probability
predictions. The two predictions are then used to compute
the temporal loss Ltc. If any frame region of the pair has
manual annotations, the cross-entropy loss Lce will be cal-
culated as well. In summary, we fine-tune the single-frame
segmentation network weights using standard backpropaga-
tion during test-time fine-tuning by minimizing:

L = λLtc + Lce. (6)

We initialize the network weights using the pre-trained
model in the first selection iteration. In later iterations, the
network fine-tunes from the previous checkpoint, and then
predicts segmentation labels on all the frames.

3.4. Annotation Cost Calculation

In practice, the annotation cost is measured by expense
or human labeling time. Some conventional semantic seg-
mentation AL work [40] uses percentage of labeled pixels
to represent manual effort. We follow some recent work
[28, 13, 9] to measure cost by annotation clicks, which is
more realistic. Semantic segmentation label mask is pixel-
level, while in actual labeling tasks, human annotators usu-
ally use a polygon-based tool [13]. Annotators first click on
several vertices on the boundary of the one object to form
a closed polygon (“Boundary click”), then select the object
type by clicking once (“Class click”). In this way, all pixels
within this polygon get the label of this class.

Here we introduce how we use algorithm to mimic hu-
man annotator to locate the “Boundary click” positions
from the existing segmentation labels, and calculate the to-
tal clicks as the annotation cost. For each connect compo-
nent of a single class object, we find its contour pixels, and
simplify the contour pixels into some polygon vertices using
Ramer–Douglas–Peucker (RDP) algorithm. Each polygon
vertex costs one “Boundary click”. In addition, each poly-
gon costs one “Class click” to specify its class label. Fig. 6
shows an example.

For rectangle-based and super-pixel-based annotations,
there are no clicks required on the sample boundary. If a
sample only consists of a single class object, the required
number of clicks is one “Class click”. For super-pixel, un-
like [9], we do not assign the dominant label to the entire
super-pixel since the error label will be propagated to neigh-
bor frames, hurting the final annotation quality.
Mimic “manual annotation”. [9] uses a similar method to
estimate annotation clicks, while using the GT labels pro-
vided by the dataset as training labels. However, this is
not appropriate, as the RDP algorithm simplifies the object
polygon boundaries, which leads to a rougher annotation
of GT. In their case, the click-based cost is underestimated
compared to the training label quality. On the contrary, we

Figure 6. Example of annotating the center rectangle sample in
(a). The red “Boundary click” are generated by the RDP algo-
rithm from the original object contour. No clicks are needed in
the boundaries of the sample to enclose the polygon. The green
“Class click” specifies Bed and Floor class in this example. (b) is
the segmentation label annotated by the shown 9 clicks.

mimic manual annotation (MA) by converting the simpli-
fied polygons back to label masks. We use MA rather than
GT in fine-tuning models, which better fits the video seg-
mentation annotation tasks in practice.

4. Experiments

In this section, we conduct experiments on two datasets
with dense segmentation GT on every frame to support the
evaluation of the framework. We first compare the proposed
ASS method with different frame selection baselines using
various sample granularities. Then, we study the effective-
ness of the proposed test-time fine-tuning by comparing it
with other label propagation methods. Finally, we envision
the generated annotations to show more details of the out-
puts from the proposed framework.

4.1. Experimental Settings

Training settings. We perform three iterations of ASS for
each testing sequence. The annotation budget for each iter-
ation is divided equally from the total budget.

We use the HRNet-W48 [44] as the backbone network
(other networks can be easily incorporated). We set the con-
sistency loss weight λ = 1. The initial learning rate in each
iteration is 0.004. In each iteration, we fine-tune the net-
work for 15 epochs with a learning rate of 0.004 and SGD
optimizer [37] with momentum 0.9. We follow the “poly”
learning rate policy to reduce the learning rate gradually.
The batch size is 14 for SceneNet RGB-D [29] dataset, and
2 for VEIS [38] dataset.

Evaluation and metrics. We use four metrics to evaluate
our method thoroughly, which are pixel accuracy, mean In-
tersection over Union (mIoU), boundary Intersection over
Union (Boundary-IoU), and temporal consistency. The first
two are commonly used in segmentation tasks to measure
the accuracy of predictions. See Appendix B for details.

5885



Figure 7. Active sample selection results on SceneNet RGB-D: (a),(b),(d) show the generated annotation mIoU and the normalized
boundary-IoU in annotation clicks %, and (b) is a zoom-in version of (a). (c) shows the generated annotation mIoU in annotated pixel %.

4.2. Comparative Assessment

4.2.1 SceneNet RGB-D

We use the SceneNet RGB-D [29], which is a photorealistic
indoor trajectory dataset with semantic segmentation anno-
tations for every video frame to evaluate the overall system
performance. Unlike regular indoor scene datasets [15, 31],
the room layouts/object placements of the ScenNet RGB-D
dataset are generated randomly. We train a 14-class HRNet-
W48 model using the NYU-V2 [31] training set as the pre-
trained model, which has only 15.04% mean-Intersection-
over-Union (mIoU) on the SceneNet testing videos. We will
demonstrate that our test-time fine-tuning method adapts
the segmentation model to randomly generated scenes and
achieves more satisfying results (examples in Fig. 5). We
randomly picked five sequences from the SceneNet test set
in our experiments, each containing 300 frames. We test
four granularity settings: frame, 40×40-pixel rectangle,
16×16-pixel rectangle and super-pixel, denoted as Frame,
Rec40, Rec16, and SP respectively. Given the SceneNet
frame resolution of 240×320, Rec40 and Rec16 split a
frame into 56 and 300 segments respectively. We let SP
split a frame into about 300 segments.

We evaluate the generated annotations by measuring
their mIoU with the GT. Fig. 7 compares the generated la-
bel quality from different selection methods and annotation
sample granularities. The “Annotation Clicks %” (shown
in log scale) is the number of annotation clicks normalized
by the number of clicks to annotate the whole video. We
can see from (a) that the proposed ASS method outperforms
random selection baselines in all sample granularity. Rec16
gives the best annotation mIoU with fewer clicks among
all the granularities because it provides better sample diver-
sity than larger samples. This diversity favors model fine-
tuning when annotations are limited. As annotation clicks
increase, the gap between all the settings becomes smaller,
so we zoom in on the curves in this part in (b).

Annotating Frame surpasses others when the percentage
of clicks is over 20%. The reason is that the sample di-
versity saturates with more manually annotated samples. In

Table 1. This table shows the most efficient sample granularity for
different mIoU benchmarks in SceneNet. The last row represents
manually annotating all the frames.

Annotation mIoU Granularity Anno. Clicks Anno. Pixel

80% Rec16 1.5% 0.2%
85% Rec16 2.5% 0.3%
90% Rec40 5.0% 1.4%
95% Frame 27% 23%

99% Frame 100% 100%

this stage, annotating more pixels keep improving final out-
puts quality by label propagation. Annotating frames ob-
tains the most labeled pixels per click compared to smaller-
sized samples, due to the effort to handle truncated object
contours or the dividing objects merged by imperfect super-
pixels. As a result, a larger granularity annotation sample
achieves higher label quality faster. To this end, we sug-
gest users choose a proper sample granularity to annotate
depending on their desired label quality.
Click cost for label quality benchmarks. In Tab. 1 we list
the least annotation clicks required to generate 80%, 85%,
90%, and 95% mIoU labels, and the corresponding sam-
ple granularity. The last row represents the manual labeling
of the full video. Annotating Rec16 samples first achieves
80% and 85% mIoU, the annotation click cost is 1.5% and
2.5%. Rec40 first achieves 90% mIoU with 5% of anno-
tation clicks. Annotating Frame first achieves 95% mIoU
with 27% annotation clicks, which is over five times the
clicks to achieve 90% mIoU. This observation shows the
mIoU gain is sub-linear to the annotation clicks. However,
it still saves 73% annotation effort compared to annotating
the full video, demonstrating the proposed method gener-
ates very high-quality annotations while saving human ef-
fort significantly. It is worth mentioning that the pre-trained
model performs poorly on testing sequences (Fig. 5), which
shows the proposed framework can adapt to the target se-
quence by learning from selected samples and leveraging
the temporal information.

Fig. 7 (c) shows the comparison under the traditional
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Figure 8. Active sample selection results on VEIS: (a),(b),(d) show the generated annotation mIoU and the normalized boundary-IoU in
annotation clicks %, and (b) is a zoom-in version of (a). (c) shows the generated annotation mIoU in annotated pixel %.

Table 2. Comparison of the overall performance on SceneNet [29] with manual annotations selected by ASS method. Given the same
information from annotated frames, our method outperforms the other two and shows advantages at lower annotation cost.

2% clicks 4.6% clicks 7.1% clicks 9.3% clicks

mIoU P-Acc. TC mIoU P-Acc. TC mIoU P-Acc. TC mIoU P-Acc. TC

Fine-tune only 45.72 76.57 61.98 64.73 88.90 76.86 70.76 91.76 81.20 81.31 94.72 87.09
LP [8] 48.57 76.46 66.09 59.5 85.06 84.68 68.2 87.66 86.97 76.34 91.41 86.66
Ours 63.67 88.71 84.43 79.54 95.15 89.33 86.07 96.90 93.45 89.96 97.28 94.70

pixel-based annotation cost measurement. The observation
is very different from (a), as annotating Frame is always the
worst. We believe that the traditional pixel-based cost mea-
surement could be misleading in Segmentation AL tasks.
Comparison of boundary-IoU. Object boundary quality is
crucial in segmentation annotations. In Fig. 7 (d), we show
the boundary-Intersection-over-Union (boundary-IoU) [11]
normalized by mIoU, which reflects the boundary annota-
tion accuracy. Models trained on frame samples outperform
the others with no exceptions. The reason is frame level
annotation provides the richest semantic/boundary informa-
tion. On the contrary, the super-pixel-based selection is usu-
ally composed of pixels of the same object, which lacks the
information of the object boundaries. So its boundary pre-
diction accuracy is the worst. For rectangle samples, larger
granularity samples give better predictions on the bound-
ary. If the user has high requirements on the label boundary
quality, annotating whole frames is the best choice.

4.2.2 VEIS

For more extensive experiments, we conducted auto-
annotation experiments on an outdoor-scene synthetic
dataset VEIS [38]. It includes semantic segmentation
ground-truth for every video frame with the object classes
of standard real urban scene datasets, such as CamVid [6]
and Cityscapes [14]. We randomly pick six video clips from
the full VEIS sequence, each of which contains 200 frames.
The pre-trained model is trained with Cityscapes training
set from an ImageNet pre-trained checkpoint with mIoU of
32.56% on all the testing videos. We tested four granular-
ity settings: Frame, Rec100, Rec40, and SP. As the resolu-
tion of VEIS frames is 600×800, Rec100 and Rec40 split

a frame into 48 and 200 segments, respectively. We let SP
split a frame into about 200 segments.

Fig. 8 (a) compares the generated label mIoU given an-
notation clicks, and (b) zooms in the high mIoU plots.
The observations are very similar to the SceneNet results.
First, the ASS method always outperforms random selec-
tion baselines. Second, larger granularity annotation sam-
ples achieve higher label quality faster. When annotation
clicks are small, annotating Rec40 samples leads to the best-
generated annotations. After the annotation cost in clicks is
greater than 10%, annotating Frame outperforms all others.

Due to page limit, see Appendix C for click cost for la-
bel quality benchmarks and comparison of boundary-IoU
results on VEIS dataset.

4.3. Analysis

Model uncertainty and selected samples. Fig. 4 illustrates
how the proposed framework selects sample and learns
from it. This VEIS example is of annotating Rec100 with
about 3.3% annotation clicks. The first two rows are the
model uncertainty and generated annotation after the first
iteration. The ASS method selects a sample that are of high
uncertainty and inferior prediction. The similar regions in
other frames are not selected, as the proposed ASS consid-
ers both sample uncertainty and diversity. The last two rows
show the model results after fine-tuning with the selected
sample. The regions’ annotation quality in all the neighbor
frames is improved significantly, demonstrating the effec-
tiveness of the test-time fine-tuning component.
Effectiveness of label propagation module. We compare
the proposed test-time fine-tuning method with it’s ablated
version by removing temporal consistency loss (Fine-tune
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Figure 9. Visualization of our generated annotations in SceneNet RGB-D. (a) is the video frame, (b) costs about 5.0% clicks with annotating
Rec40, and (c) costs about 27% clicks with annotating Frame. (d) is the mimic manual annotation, and (e) is the ground-truth.

only) and LP [8]. LP is a well known label propagation
algorithm, which can be directly applied to new target do-
main videos to propagate sparse annotations. Here we use
our ASS method to select manual annotated samples. Tab. 2
shows generated label’s mIoU, pixel accuracy, and Tempo-
ral consistency (TC). TC measures the mIoU between two
consecutive predictions similar to [26]. Given the same se-
lected samples, our method outperforms the Fine-tune only
and LP methods by a large margin in mIoU and TC at var-
ious annotation clicks percentages. The results prove the
effectiveness of consistency loss and test-time fine-tuning
method. The benefit is even more significant when the sam-
ple rates are lower, as our method incorporates both motion
and semantic cues to the test sequences.
Impact of number of ASS iteration. We conduct experi-
ments to understand the impact of the number of iterations
to the segmentation quality on SceneNet RGB-D. We feed
0.3% clicks of annotations per iteration, and fine-tune the
model up to nine iterations. The mIoU gains per iteration
are 6.91%, 1.32%, 0.89%, 0.35%, 0.16%, 0.43%, 0.07%,
0.31%, and 0.03%. Starting from the fourth iteration, the
mIoU gain becomes negligible. As a result, we use three
iterations for ASS.
Error pattern in high quality generated annotations. We
conduct experiments to investigate where the remaining er-
rors are when the generated annotation is already of high
quality. On SceneNet RGB-D, the 100% manual annota-
tion mIoU is 98.56%. When our method achieves 97.46%
mIoU, the boundary IoU is only 83.44%, indicating er-
rors appear in the object boundaries. Categories with high
boundary-to-area ratio have the largest impact from the im-
perfect boundary predictions. This can be reflected from
their below-average per-class IoU. In SceneNet, they are
”Object”, ”Chair”, and ”Table”. In VEIS, they are ”Pole”,
”Traffic Light”, and ”Rider”. With the error pattern in mind,
users could use the generated annotations more confidently.

Generated annotation visualization. In Fig. 9 we show
our generated annotations in SceneNet. The 90% mIoU an-
notations in (b) only cost about 5.0% clicks; The 95% mIoU
annotations in (c) cost about 27% clicks. See Appendix C
for visualizations of generated annotations in VEIS.

Model computation time. The model computation time
for one ASS iteration is mainly from sample selection and
test-time training steps. The test time fine-tuning computa-
tion time depends on image resolution and video sequence
length. For SceneNet RGB-D, a sequence of 300 frames
with resolution 320 × 240 takes 20 minutes for one itera-
tion on average. For VEIS, a sequence of 200 frames with
resolution 800 × 600 takes 33.3 minutes for one iteration
on average. Our experiments runs on 4×Nvidia 1080s. The
9 seconds sample selection CPU runtime can be neglected.
The dozens of minutes computation time prevents the anno-
tators from labeling the next batch of samples immediately.
However, this can be easily mitigated by multitasking ar-
rangements in practice.

5. Conclusion

We propose a human-in-the-loop framework HVSA to
generate video semantic segmentation annotations. It ac-
tively selects annotation samples at each iteration that bring
the most information for annotating. After selected sam-
ples get manual annotations, our method leverages both se-
mantic knowledge and temporal constraints to fine-tune a
video-specific semantic segmentation model. Finally, the
model is used to generate annotations for the entire video.
We conducte experiments on two datasets to show HVSA
can generate close-to-perfect annotations at a low cost, even
without good pre-trained networks. Each iteration of HVSA
takes dozens of minutes, which can be further optimized us-
ing multi-task parallelization.
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