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Abstract

Daily indoor scenes often involve constant changes due
to human activities. To recognize scene changes, existing
change captioning methods focus on describing changes
from two images of a scene. However, to accurately per-
ceive and appropriately evaluate physical changes and then
identify the geometry of changed objects, recognizing and
localizing changes in 3D space is crucial. Therefore, we
propose a task to explicitly localize changes in 3D bound-
ing boxes from two point clouds and describe detailed scene
changes, including change types, object attributes, and spa-
tial locations. Moreover, we create a simulated dataset
with various scenes, allowing generating data without labor
costs. We further propose a framework that allows different
3D object detectors to be incorporated in the change detec-
tion process, after which captions are generated based on
the correlations of different change regions. The proposed
framework achieves promising results in both change de-
tection and captioning. Furthermore, we also evaluated on
data collected from real scenes. The experiments show that
pretraining on the proposed dataset increases the change
detection accuracy by +12.8% (mAP0.25) when applied to
real-world data. We believe that our proposed dataset and
discussion could provide both a new benchmark and in-
sights for future studies in scene change understanding.

1. Introduction
Physical-world often involves continuous and numer-

ous changes. For example, indoor scenes often experi-
ence quantity, location, and arrangement changes involving
household appliances. Accurate perception and recognition
of changing information is an essential capability for fu-
ture AI systems to provide appropriate assistance to human
users, such as providing up-to-date information of house-
hold appliances for people with physical disabilities.

Scene change detection based on two observations of
the same scene, either images or 3D scans, has previ-

ously been studied [1, 2, 3, 4]. These studies focus on
localizing changed parts from scenes, ignoring semantic
context of change such as changed object type. Scene
change captioning is an emerging research field aimed at
generating language descriptions of changes. The major-
ity of scene change captioning [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15] utilize a pair of 2D images as inputs. How-
ever, most previous change captioning studies were con-
ducted using datasets with limited visual complexity, such
as CLEVR-Change [11] and CLEVR-Multi-Change [12].
These datasets consist of primitive shapes and solid color
backgrounds. In addition, the precise physical scales and
3D shapes of changing regions are difficult to obtain from
2D images, even though understanding 3D context is essen-
tial in real world applications such as object grasping, navi-
gation, and room rearrangements. Moreover, it is difficult to
fully comprehend changes that are randomly spanned in 3D
space from a 2D image observed from a single viewpoint.

To address the above-mentioned problems, we propose
a novel task of scene change detection and captioning from
dynamic 3D scans (Figure 1). Due to the uncertainty of hu-
man activities, it is often necessary to observe scenes from
various viewpoints to identify scene changes. Therefore, we
deal with two 3D scans observed from different routes and
viewpoints, which we call dynamic 3D scans. In contrast to
2D images, observing various viewpoints allows capturing
changes that randomly exist in a 3D space. More specifi-
cally, we conduct a fine-grained change understanding in-
cluding the location, changed object type, change type, and
the spatial relationships between objects and room from
two registered 3D point clouds. To evaluate and measure
progress, we build a synthetic dataset, Change Detection
and Captioning from Dynamic Scans (DyS2Change). We
use an existing 3D simulator AI2THOR [16], which con-
sists of a series of simulated interior rooms that allow object
interactions. DyS2Change contains a total of 120 scenes,
37,715 change pairs, and 661,345 captions, capable of di-
agnosing various capabilities in change understanding.

We also propose an approach to detect change regions
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The microwave has been moved 

close to the faucet.

The fridge on the corner of the 

room has been opened.

Figure 1. The illustration of the proposed task. We deal with the input of two dynamic scans, each of which is obtained after randomly
routing a camera through the scene (see the observation route, the dotted lines indicate the observation route and the arrows indicate the
observation direction). The obtained scans (point clouds) are used to detect observable changes between the two scans, as well as to provide
a linguistic description for each change region to obtain a detailed understanding of the changes.

with 3D bounding boxes and simultaneously generate cap-
tions for each changed region. The proposed method
consists of a region feature extractor to coarsely localize
changes and a captioning module that generates change
captions based on the features of detected regions. We
then evaluate various abilities required in this task, includ-
ing change detection, object recognition, and change cap-
tioning, and evaluated different model designs. The pro-
posed methods obtained promising results for both change
captioning and detection. Furthermore, we conducted fur-
ther experiments using real-world data. More specifi-
cally, we pretrained models on the proposed DyS2Change
and fine-tuned models on a real-world scan-based dataset.
The experimental results demonstrate the efficacy of the
DyS2Change dataset in real-world environments.

The major contributions of this work are as follows. (1)
We propose a new task and dataset, DyS2Change, aimed
at detecting and describing multiple scene changes from
dynamic 3D scans of indoor scenes. (2) We propose an
end-to-end framework that simultaneously detects and de-
scribes changes. (3) We conduct a simulation-to-reality
(sim2real) study in this task. The results of pretraining
on the DyS2Change dataset show significant model perfor-
mance improvements (+12.8% in mAP0.25), demonstrating
the efficacy of DyS2Change in real-world applications.

2. Related Work
2.1. Change Understanding

Change detection is designed to recognize pixel-level
changes in sequential scene views. Change detection meth-
ods using 2D images [1, 2, 3, 4, 17] and 3D environ-

ments [18, 19, 20, 21] have been widely discussed previ-
ously. Among them, Ku et al. [21] proposed Change3D, a
dataset for change detection from 3D point cloud. However,
those above-mentioned methods usually do not specify de-
tails of the changed contents, such as the change type (e.g.
adding or disappearing). In this work, we address the task
of scene change captioning to assess the ability to capture
the detailed change content.

More recently, several studies focused on change cap-
tioning, which generates language descriptions of scene
changes from 2D images [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
or 3D data [22, 23]. The authors of study [7] first introduced
a small-scale dataset for describing changes that occurred
in surveillance videos. The authors of studies [11] and [12]
proposed single and multiple object change captioning and
intended to recognize detailed scene changes, including at-
tributes and spatial location of changed objects. However,
they only discussed under a primitive scene setup using ge-
ometric shapes and solid color backgrounds. The authors
of [22] and [23] also proposed change captioning from 3D
point clouds of indoor scenes. However, they discussed ob-
servations from fixed camera positions and only considered
single-object changes, limiting their efficacy for scenes con-
taining occlusion or multiple object changes.

This study focuses on 3D contexts and performs change
captioning by using two dynamic scene scans to mimic
the human observations. Moreover, while existing meth-
ods have been evaluated on synthetic datasets with lim-
ited complexities [11, 12] or outdoor scenes [7], we pro-
pose a dataset made up of indoor environments with various
scenes. Additionally, we explicitly localize changes while
previous methods only discuss on attention maps [11, 12].
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Spot-the-Diff [7]             CLEVR-Change [11]          CLEVR-Multi-Change [12]

(c) DyS2Change (Ours)

1. The desk lamp against the wall has 
been moved from its original 
position.

2. The laptop on the bed has been 
closed.

3. Someone removed the chair next to 
the bed.

1. There is a new big yellow 
metal cube.

2. The big green matte 
cylinder replaced the 
small purple matte cube.

1. A car appears in 
the slot in the after 
image that isn’t in 
before image.

1. The big yellow metal cylinder 
is replaced by a big cyan 
metal cylinder.

• Detection only.
• Not capturing semantic context 

(e.g., changed object type).

• Captioning only.
• Not detecting changed objects.

• Detecting changed objects.
• Describing semantic context 

(e.g., changed object type).

Figure 2. Dataset examples of previous change detection (a) and change captioning (b) tasks and the proposed DyS2Change task (c).

Datasets Task Scene pairs Captions Scenes Data format Change contents
Multiple Relationship

Change3D [21] Change detection 866 - Outdoor 3D ! %

Spot-the-Diff [7] Change captioning 13,192 13,192 Outdoor 2D ! !

CLEVR-Change [11] Change captioning 79,606 493,735 Solid color background 2D % !

CLEVR-Multi-Change [12] Change captioning 60,000 300,000 Solid color background 2D ! !

Indoor Scene Change [22] Change captioning 12,000 300,000 Indoor 3D (fixed cameras) % %

DyS2Change (Ours) Change detection, captioning 37,715 661,345 Indoor 3D ! !

Table 1. Comparison of change captioning and detection datasets.

2.2. 3D Scene Understanding

3D object detection is a crucial task that aimed at detect-
ing objects from 3D scenes. ScanNet [24] and SUN RGB-
D [25] are two widely used datasets, both consisting of var-
ious 3D scans of indoor scenes with object bounding box
annotations. Qi et al. proposed a Hough transform voting-
based method VoteNet [26] that is built on point cloud
feature extractor PointNet++ [27], while H3DNet [28]
introduced a set of geometric primitives for enhancing
VoteNet. Recently, several studies have introduced trans-
formers [29, 30, 31]. Pointformer [29] introduced local
and global transformer modules to better deal with differ-
ent scales. 3DETR [30] extended 2D transformer-based de-
tector DETR [32] to allow processing of point clouds. The
authors of [31] proposed a Voxel Set Transformer which re-
gards point cloud processing as a set-to-set translation. In-
stead of focusing on object detection, we propose an end-
to-end network that enables the use of different 3D object
detectors for change detection and captioning.

Recently, various studies, such as embodied question

answering [33, 34], vision language navigation [35], and
referring expression comprehension [36, 37], have incor-
porated language into 3D environments. Similar to those
mentioned above, we propose DyS2Change, which incor-
porates languages into 3D environments and facilitates de-
scribing and localizing scene changes. Additionally, several
methods for generating language descriptions of 3D data
have been proposed, including image captioning [38, 39],
and dense captioning [40, 41]. In contrast to these tasks,
which take a single scene as input, we focus on describing
scene changes, which requires capturing the relationships
between two scenes. Weihs et al. [42] introduced a task of
visual room rearrangement in which an embodied agent re-
stores changed objects to their initial positions, which also
requires change recognition, but our method extends that
process to include change captioning and localization.

3. Dataset

Indoor scenes often undergo constant changes brought
about by consumption/replenishment of home expendables,
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object movements, and room furniture arrangements. How-
ever, despite their significance, there have been few efforts
aimed at understanding indoor scene change. Hence, this
study proposes the first benchmark dataset for change cap-
tioning and detection within indoor scenes. Moreover, to
generate a scale dataset at low cost, we build up our dataset
upon a simulator AI2THOR, which includes 120 simulated
rooms with a range of interactable objects, thereby resulting
in a dataset with relatively high visual complexity.

3.1. Dataset Novelty

In Figure 2 and Table 1 we compare our dataset to sev-
eral existing datasets and summarize their differences in
terms of change detection [21] and captioning [7, 11, 12,
22]. The Change3D [21] change detection dataset is very
limited in size and does not consider fine-grained object
changes such as the change location. Spot-the-Diff [7],
CLEVR-Change [11], CLEVR-Multi-Change [12], and In-
door Scene Change [22] describe detailed changes but ei-
ther only discussed under 2D images [7, 11, 12] or fixed
camera setup [22], with limited dataset size [7] or limited
dataset complexity [11, 12], and neither of them explic-
itly localizes changed regions. In contrast, our dataset is
the first attempt to facilitate fine-grained changes in indoor
scenes that is capable of allowing both change descriptions
and localization. Additionally, our dataset consists of vari-
ous scenes and objects with relatively high dataset complex-
ity. Moreover, we utilize dynamic 3D scans in which every
scene observation is collected randomly from multiple cam-
era views, which is similar to human observations.

3.2. Generation Process

Dataset Setup. Similar to existing change captioning
datasets [11, 12], we consider the five critical atomic change
types, including add, delete, move, open, and close objects.
We introduce 21 changeable object categories defined in
AI2THOR along with 19 object categories that are included
in object relationships to describe various changes.

Scene Change Generation. The scenes are observed
twice to generate change pairs in which one to four ran-
dom changes were implemented between the two observa-
tions. To mimic human observations, for each observation,
we generate a random route through the room for each cir-
cuit, during which the observing agent’s height is set to 1.8
meters and the agent conducts observations from the view-
points of straight ahead, 30 degrees left/right, and 30 de-
grees up/down. We record the registered point cloud, object
classes and positions, and bounding boxes of changed re-
gions during each observation.

Caption Generation. Change captions are automati-
cally generated from recorded change information, object
positions, and 30 predefined change caption templates. In
order to reflect object relationships and localization in cap-

tions, we consider two relationship types: object-room (in-
cluding room corner, room center, and against the wall) to
reflect object localization inside a room, and object-object
relationships (including below, above, on, and near) to re-
fer to a change object (target-object) using a nearby object
(anchor-object). One caption template is shown below. All
caption templates and the detailed relationship definitions
are provided in the supplementary material.

The <target-object> that is <relationship1> <anchor-
object1> was moved from its original location to
<relationship2> <anchor-object2>.

Dataset Statistics.We used 96 scenes for training and
24 scenes for the test. After removing instances with-
out observable changes, we obtained 37,715 scene change
pairs and 661,345 captions. As shown in Figure 2 and Ta-
ble 1, our dataset is the first change captioning dataset to
allow both change caption, detection, and includes multiple
changes in one scene and object relationship descriptions
in change captioning to identify the specific object instance
within an object class.

4. Methodology
Existing change captioning methods mainly generate

change captions from two images without explicit change
localization. The change region is critical in change recog-
nition and various downstream tasks, such as change ob-
ject rearrangement [42]. Hence, we propose an end-to-end
framework called dense caption change (DenseChangeCap)
(Figure 3) that detects the change regions in 3D bounding
boxes, predicts the changed object classes, and then gener-
ates a change caption for each change region. We deal with
point clouds’ input observed before and after scene changes.
DenseChangeCap details are provided in the following.

Input Data. The model input includes two registered
point clouds with known camera positions observed before
and after scene changes. Since the differences between
point clouds are expected to be effective in determining
change localization, we compute point cloud differences by
extracting the changed points in the before and after change
point clouds. More specifically, we extract points from the
before and after change point clouds that have distances ex-
ceeding the before and after surface threshold (threshold is
set to 0.05 meters). Then, we obtain “before” and “after”
change point clouds and “before\after” and “after\before”
point clouds. Next, we adjust the rate of the four different
point clouds and down sample the adjusted point clouds to
a total of N points. Each point is represented with four di-
mensions, including the 3D coordinates X, Y, and Z, and
one dimension indicating the resource of the point (before,
after, before\after, or after\before).

Point Feature Extraction. Unlike images, point clouds
is difficult to be processed using conventional CNN struc-
tures due to their irregular forms. Here, in a manner similar
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Region feature

extractor

PointNet++ 

backbone
Captioner

Detection head
Point features

Region features

Before

After

Before∖After

After∖Before
The laptop appears on the TV stand.

The sofa has been moved to the 

center of the room.

Someone moved the coffeetable

to the next of the TV stand.

Down sampling N× 𝟒 M× (𝟑 + 𝑪)

K× (𝟑 + 𝑪)

Figure 3. The illustration of DenseChangeCap. Given two point clouds collected from the before and after scene changes, DenseChangeCap
first computes the point cloud differences. Then, the before, after, and point cloud differences are combined and down-sampled, resulting
a point cloud with N points. Next, the point features are extracted using the PointNet++ backbone, and the region features are obtained
via the region feature extractor. The final output with region bounding boxes and their related change captions are computed through a
detection head and a captioner.

to VoteNet [26] and 3DETR [30], we use PointNet++ [27]
as the backbone to obtain point features from point clouds.
More specifically, given the input point cloud with N×4 di-
mensions, the PointNet++ hierarchically extracts point fea-
tures from local to global regions, resulting in point features
with M×(3+C) dimensions, where the M is the downsam-
pled point number, 3 is the 3D coordinates of each point,
and C is the feature dimension of each point.

4.1. Region Feature Extraction

Inspired by Densecap [43], which generates captions
from image region-based features, we introduce a region
feature extractor to cluster point features to region features
in order to perform change localization and captioning. In
our experiments, two region feature extractors 3DETR [30]
and VoteNet [26] are employed. For additional details about
these models, please refer to [30] and [26], respectively.

3DETR [30] adopts a transformer encoder-decoder
structure on the top of point features to perform object de-
tection. The 3DETR model introduces a query structure in
the transformer decoder, which is obtained by farthest point
sampling and Fourier positional embedding. We adopted
the 3DETR structure here and obtained K × (3 + C)-
dimensional features, where K is the number of queries.

VoteNet [26] introduces a Hough transform voting mech-
anism for clustering region features on top of point features
and obtains M × (3 + C) votes from the point features.
Next, the VoteNet further applies the set aggregation opera-
tion introduced in PointNet++, resulting in K clusters with
(3 + C) dimensions.

4.2. Detection Head and Captioner

Given K×(3+C)-dimensional region features, we use a
detection head to perform change detection and a captioner
to generate a change caption for each change region. More

specifically, the detection head conducts 3D bounding box
regression and predicts the change type of each region as
well as the changed object class. Here, similar to 3DETR,
we predict bounding box information b̂ as b̂ = [ĉ, d̂, ŝ, ô],
where ĉ, d̂ ∈ [0, 1]

3 represents the center and size of bound-
ing boxes, ŝ = [0, 1]

Dchange is the probability distribu-
tion over Dchange change types, and ô = [0, 1]

Dobject is the
probability distribution over Dobject object types.

We introduce two different captioners based on LSTM
and Transformer. Captioners generate probability distribu-
tions over vocabulary for each word of the change caption
sentence of each change region. At each step t, the input is
a region feature with 3+C dimensions and the hidden state
ht−1. The LSTM-based captioner generates the words of
each sentence step-by-step. We also adopt a standard trans-
former decoder for caption generation, in which a masked
self-attention and a feed-forward network are used to pro-
cess the sentence features.

4.3. Loss Function.

The DenseChangeCap simultaneously conducts change
detection, change object recognition, and change caption-
ing. For change detection, we adopt the bipartite set match-
ing used in DETR [32] and 3DETR [30], as the following:

Lossdet = λc∥ĉ− c∥1 + λd∥d̂− d∥1 − λss
T
c logŝc (1)

We adopt standard cross-entropy loss Lossobj for change
object recognition and Losscap for change captioning. The
final loss has three terms as the following:

Loss = λ1Lossdet + λ2Lossobj + λ3Losscap (2)

Implementation Details. We randomly sample a total of
20,000 points as inputs during all experiments. In the base
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(1) The sofa near the table has been deleted.

(2) Someone added a new desk next to the table.

(1) The chair has been moved from its original location to next to 

the sofa.

(1) (2)
Before After Before After

Figure 4. Two dataset examples chosen from the SUNRGBD2Change dataset.

experiments, we set the rate of point cloud differences in
the total point cloud to 90% (before\after and after\before)
and 10% for before and after change point clouds and set the
object query number to 128. For change caption, we select
query features during the training process using the region
closest to the center of the ground truth change region. For
testing, we use the detected change region for captioning.
We train each model for 100 epochs on the training and
evaluate via the testing set. For 3DETR implementation,
we set the encoder head layer to 3 and 4 and the decoder
to 8 and 4. We implement LSTM captioners with two lay-
ers and 512 hidden dimensions, and transformer captioners
with two layers and two heads, and 2048 feed-forward di-
mensions. The weights of different losses in Equations (1)
and (2) are set as: λc = 1, λd = 1, λs = 0.1, λ1 = 1,
λ2 = 0.1, and λ3 = 0.1.

5. Experiment

5.1. Datasets.

We use the proposed DyS2Change dataset to evaluate
models’ performance in change localization and caption-
ing. DyS2Change is built based on the AI2THOR simu-
lator, and the scenes included are purely synthetic. Accord-
ingly, to evaluate the efficacy of the DyS2Change dataset
when applied to real-world environments, we created a sep-
arate dataset named SUNRGBD2Change based on the 3D
scan dataset SUN RGB-D [25], which was collected using
RGB-D cameras in real-world indoor environments.

We chose four object classes: “bed”, “chair”, “desk”,
“sofa” from the SUN RGB-D dataset and implemented
“add”, “delete”, “move” changes for the four object classes.
We introduced the “close” relationship to describe the ob-
ject spatial relationships. For each scene pair, we randomly
generated one to three changes. After the above processes,
we obtained the SUNRGBD2Change dataset with 6,425
change pairs (3,326 for training and 3,099 for testing) and
84,565 captions. Two examples are shown in Figure 4.

5.2. Experimental Setup

Evaluation Metrics. The change detection performance
of each model was evaluated through 3D detection evalu-
ation metrics mAP0.25, mAP0.5, mAR0.25, and mAR0.5,
where mAPs determine intersections over union above 25%
and 50%. Similarly, mARs consider the average recall. For
object classification and change caption, we introduce the
m@kIoU proposed in [40]. The m in m@kIoU stands for
the accuracy for object classification and four different cap-
tioning evaluation metrics BLEU [44], CIDER [45], ME-
TEOR [46], and ROUGE [47], which evaluate the similari-
ties between ground truth and predicted captions.

Baselines. We consider the two baselines in compari-
son with the proposed DenseChangeCap method. In detail,
we implemented Baseline3D by directly adding an LSTM
captioner to VoteNet to allow a caption to be generated for
each region proposal. The Baseline3D input was set to
50% of before and 50% of after change point clouds with-
out using the point cloud differences. We also introduced
three state-of-the-art 2D image-based methods DUDA [11],
MCCFormers-D and MCCFormers-S [12] during the cap-
tioning module evaluation, and set the before and after
change image to the scene top view to allow change cap-
tion generation from image pairs.

5.3. Experiments on DyS2Change Dataset

In this subsection, we conducted experiments on
DyS2Change to evaluate change captioning and localiza-
tion of different model designs.

Base Experiments. As shown in Table 2, compared
with Baseline3D, our DenseChangeCaps obtained better
performance for both change detection (mAPs, mARs) and
change caption (B, C, M, R@0.25IoU), indicating the ef-
ficacy of DenseChangeCaps in this task. Also, we found
that both 3DETR and VoteNet detectors obtained similar
performance levels, although 3DETR showed higher per-
formance when IoU=0.25, while the VoteNet-based mod-
els were better when IoU=0.5. For change captioning eval-
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Method Detector Captioner Change detection Object Change caption (B,C,M,R@0.25IoU)
mAP0.25 mAP0.5 mAR0.25 mAR0.5 ACC@0.25IoU BLEU CIDER METEOR ROUGE

Baseline3D VoteNet LSTM 15.9 7.9 75.5 47.0 6.0 7.0 19.8 5.3 9.9

DenseChangeCap 3DETR LSTM 35.3 16.5 88.4 55.0 17.8 19.9 57.3 13.4 24.5
DenseChangeCap 3DETR Transformer 32.3 16.0 84.8 55.0 16.7 16.6 53.7 11.7 22.0
DenseChangeCap VoteNet LSTM 23.0 15.7 82.6 64.5 9.6 11.2 32.7 8.1 15.0
DenseChangeCap VoteNet Transformer 24.4 17.1 81.4 65.9 10.2 12.2 34.9 8.7 16.0

Table 2. Evaluation of different methods applied to the DyS2Change dataset.

Method Detector Captioner Change caption Change caption (BLEU)
BLEU (Overall) CIDER METEOR ROUGE Add Delete Open Close Move

Baseline2D - DUDA [11] 33.1 107.8 22.1 46.1 31.2 31.6 35.7 33.9 29.8
Baseline2D - MCCFormers-D [12] 34.5 118.7 23.4 48.4 30.9 33.5 35.8 34.4 35.3
Baseline2D - MCCFormers-S [12] 40.1 155.0 25.4 50.1 36.3 37.1 44.3 40.2 40.6

DenseChangeCap 3DETR LSTM 67.2 242.2 45.0 80.6 39.7 51.8 71.2 75.9 64.4
DenseChangeCap 3DETR Transformer 62.8 240.0 43.4 79.8 36.1 50.1 72.3 60.4 65.1
DenseChangeCap VoteNet LSTM 64.8 232.0 44.3 79.4 25.4 47.2 71.4 68.2 68.9
DenseChangeCap VoteNet Transformer 62.9 214.6 43.2 78.4 15.2 17.8 79.1 69.0 68.1

Table 3. Upper bound of methods on change captioning in the DyS2Change dataset.

m
A
P0
.2
5

16 32 64 128 256
Query number

0
5
10
15
20
25
30
35

0 50 90 100
Rate (%) of point cloud difference in input

Figure 5. Ablation study on rate of point cloud differences and
query number.

uations in which the predicted bounding boxes were used
for caption generation, models obtained better performance
with the 3DETR detector due to its superior ability to detect
change regions.

To evaluate captioning modules individually, we com-
pared DenseChangeCaps with existing 2D-based methods,
as shown in Table 3. Here, unlike Table 2 in which the
predicted bounding boxes were used for change caption-
ing, we provide the features of ground truth bounding boxes
to DenseChangeCaps and found that, compared with Base-
line2Ds, our methods performed better in change caption-
ing, thereby indicating the superiority of using 3D infor-
mation in this task. Additionally, we found the transformer-
based methods provided the same level of performance with
the LSTM structure, which might be because the proposed
dataset consists of language generated from templates and
the caption complexity is limited.

Evaluation of Different Change Types. We provide the
model performance for different change types in Table 3
(right five columns). Baseline2Ds obtained relatively the
same performance levels for different change types. On the
contrary, all DenseChangeCaps perform worse for add and

delete changes when compared to open, close, and move
changes. In our dataset setup, we detect two separated
bounding boxes for open, close, and move changes but only
detect one bounding box for add and delete changes, thus
making the learning examples relatively less prominent in
those two change types.

Rate of Point Cloud Difference. We experimented on
models with different point cloud difference rates in Fig-
ure 5 (left). Here, we found that compared with models
without point cloud differences (0%) or without original
point clouds (100%), using a portion (50% and 90%) of
the point cloud differences could improve the model per-
formance, demonstrating the efficacy of point cloud differ-
ences in localizing changes.

Query number. We experimented on different query
numbers using DenseChangeCap with 3DETR detector and
Transformer captioner in Figure 5 (right). The models ob-
tained higher performance with query numbers of 64 and
128 when compared with query numbers of 16 and 32, in-
dicating that increasing the query number could improve the
model performance. However, the model performance with
query number of 256 is decreased, revealing that there could
be an upper bound of performance when the query number
keeps increase.

Qualitative Results. Figure 6 shows experimental re-
sults of DenseChangeCap with 3DETR detector and LSTM
captioner. In these examples, the proposed method cor-
rectly detected most of the change regions and generated
content-related change captions. However, we also noticed
that there is still room for improvement, such as in the de-
tection of small objects, where the plunger in example (2)
were not detected, and in captioning accuracy regarding the
change types (e.g. “missing” and “moved” in example (1))
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Ground truth: 

(1) A garbage can which is near sink 

has been added.

(2) The coffee machine which was 

on the sink has disappeared. 

(3) The microwave which is near the 

countertop has been opened. 

(4) The fridge which is against the 

wall has been closed.

Generated captions: 

(1) The garbage can which was near 

the dining table is missing.

(2) The coffee machine near the 

countertop has been moved. 

(3) The microwave against the wall 

has been opened. 

(4) The fridge near the countertop has 

been closed. 

Ground truth: 

(1) A side table which is close to the 

wall has been added.

(2) The garbage can against the wall 

changed its location to near the sink. 

(3) The plunger near the toilet 

changed its location.

Generated captions: 

(1) The side table which is near the bed 

has been added.

(2) The garbage can which was near 

the toilet is near the bathtub now.

(1) (2)

Figure 6. Example results for DenseChangeCap (with 3DETR detector and LSTM Captioner) on DyS2Change dataset. The ground truth
bounding boxes are highlighted in red and the predicted bounding boxes are highlighted in other colors. Incorrect change captions are
highlighted in red.

and spatial relationships (e.g. “near the bed” and “near the
toilet” in example (2)). We believe that the model’ perfor-
mance could be strengthened by improving object detec-
tion.

5.4. Sim2Real on SUNRGBD2Change Dataset

To evaluate the efficacy of the DyS2Change when ap-
plied to real-world environments, we evaluated the sim2real
performance of models pretrained on DyS2Change dataset
and then adopted those models to SUNRGBD2Change
dataset, which consists of 3D scans of actual houses.

We conducted experiments on DenseChangeCap with a
3DETR detector and compared models with/without pre-
training on the DyS2Change dataset. DyS2Change dataset
pretraining was performed for 60 epochs, after which mod-
els were trained on the SUNRGBD2Change dataset for 10
epochs. The experimental results are shown in Table 4.
Here, we found that models pretrained on the DyS2Change
dataset outperformed models trained from scratch on SUN-
RGBD2Change dataset by large margins (with maximum
+12.8% on mAP0.25 and +14.6% on BLEU). Even though
the SUNRGBD2Change dataset consists of point cloud data
with RGB-D camera sensor noise, the experimental re-
sults indicate the efficacy and potential of our proposed
DyS2Change dataset and the applicability of our methods
to real-world environments.

Network Dataset Change Detection Change Captioning
Detector Captioner Pre-training (mAP0.25) (BLEU)

3DETR LSTM - 39.3 30.9
3DETR LSTM DyS2Change 49.7 45.5
3DETR Transformer - 37.0 30.4
3DETR Transformer DyS2Change 49.8 44.8

Table 4. Sim2Real study on SUNRGBD2Change dataset.

6. Conclusion

This paper proposed a novel task and a dataset for change
detection and localization from dynamic 3D scans of indoor
scenes. Existing change captioning methods do not explic-
itly detect change regions and were mainly evaluated on
datasets with primitive objects and solid color background.
Moreover, existing studies focus on 2D image pairs, limit-
ing the model’s performance in room-scale change recogni-
tion. To resolve these issues, we proposed change caption-
ing and localization from dynamic 3D scenes and a dataset
with various indoor scenes. We also proposed an end-to-end
framework that can incorporate various 3D object detectors
and achieved promising results in the task. The experimen-
tal results also suggest the effectiveness of pretraining on
proposed dataset for real-world application. We hope that
our study can provide a benchmark in dynamic scene un-
derstanding and change recognition in 3D space.
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