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Abstract

Transformers have shown great promise in medical im-
age segmentation due to their ability to capture long-range
dependencies through self-attention. However, they lack the
ability to learn the local (contextual) relations among pix-
els. Previous works try to overcome this problem by em-
bedding convolutional layers either in the encoder or de-
coder modules of transformers thus ending up sometimes
with inconsistent features. To address this issue, we pro-
pose a novel attention-based decoder, namely CASCaded
Attention DEcoder (CASCADE), which leverages the multi-
scale features of hierarchical vision transformers. CAS-
CADE consists of i) an attention gate which fuses features
with skip connections and ii) a convolutional attention mod-
ule that enhances the long-range and local context by sup-
pressing background information. We use a multi-stage fea-
ture and loss aggregation framework due to their faster con-
vergence and better performance. Our experiments demon-
strate that transformers with CASCADE significantly out-
perform state-of-the-art CNN- and transformer-based ap-
proaches, obtaining up to 5.07% and 6.16% improvements
in DICE and mIoU scores, respectively. CASCADE opens
new ways of designing better attention-based decoders.

1. Introduction
Medical image segmentation is one of the critical steps

in pre-treatment diagnoses, treatment planning, and post-
treatment assessments of various diseases. Medical image
segmentation can be formulated as a dense prediction prob-
lem which performs pixel-wise classification and creates
segmentation maps of lesions or organs. Convolutional neu-
ral networks (CNNs) have been widely used for medical im-
age segmentation tasks [24, 37, 15, 22, 23, 10]. Specifically,
UNet [24] has shown remarkable performance in medical
image segmentation due to producing high-resolution seg-
mentation maps aggregating multi-stage features using skip
connections. Due to the sophisticated encoder-decoder ar-
chitecture of UNet, a few variants of UNet, such as UNet++
[37], UNet 3+ [15], DC-UNet [22] have demonstrated im-

pressive performance in medical image segmentation. De-
spite the satisfactory performance of CNN-based methods,
they have limitations in learning the long-range dependen-
cies among pixels due to the spatial context of the convolu-
tion operation [2]. To overcome this limitation, some works
[23, 6, 10] incorporate attention modules in their architec-
tures to enhance the feature map for better pixel-level classi-
fication of medical images. Although these attention-based
methods achieve improved performance (due to capturing
salient features), they still suffer from capturing insufficient
long-range dependencies.

The recent progress in vision transformers [9] over-
comes the above limitation in capturing long-range depen-
dencies, particularly for medical image segmentation [3, 2,
8, 30]. Transformers rely on an attention-based network
architecture; they were first introduced for sequence-to-
sequence prediction in natural language processing (NLP)
[28]. Transformers use self-attention to learn correlations
among all the input tokens that enable them to capture long-
range dependencies. Following the success of transform-
ers in NLP, the vision transformer [9] divides an image
into non-overlapping patches which are fed into the trans-
former module with positional embeddings. More recently,
hierarchical vision transformers, such as Swin transformer
[20] with window-based attention and pyramid vision trans-
former (PVT) [31] with spatial reduction attention have
been introduced to reduce the computational costs. These
hierarchical vision transformers are effective for medical
image segmentation tasks [2, 8, 30]. However, the self-
attention used in transformers limits their ability to learn
local (contextual) relations among pixels [7, 16].

Recently, SegFormer [35], UFormer [33] and PVTv2
[32] try to overcome this limitation by embedding convo-
lution layers in transformers. Although these architectures
can partly learn the local (contextual) relations among pix-
els, they i) have limited discrimination ability due to em-
bedding convolution layer directly between fully-connected
layers of the feed-forward network, and ii) do not properly
aggregate the multi-stage features generated by the hierar-
chical encoder. Considering these issues, we introduce a
novel CASCaded Attention DEcoder (CASCADE) which
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leverages the hierarchical representation of vision trans-
formers. CASCADE fuses (with skip connections) and re-
fines features using attention gates (AGs) and convolutional
attention modules (CAMs), respectively. Due to using hier-
archical transformers as a backbone network and aggregat-
ing multi-stage features using attention-based convolutional
modules, CASCADE captures both global and local (con-
textual) relationships among pixels. Our contributions are
summarized as follows:

• Novel Network Architecture: We introduce a novel
hierarchical cascaded attention-based decoder (CAS-
CADE) for 2D medical image segmentation which
takes advantage of the multi-stage feature represen-
tation of vision transformers while learning multi-
scale and multiresolution spatial representations. We
build our decoder using a novel convolutional atten-
tion module which suppresses unnecessary informa-
tion. Additionally, we incorporate skip connections
with attention-gated fusion which also suppresses ir-
relevant regions and highlights salient features. To the
best of our knowledge, we are the first to propose this
type of decoder for medical image segmentation.

• Multi-stage Loss Optimization and Feature Aggre-
gation: We aggregate and optimize multiple losses
from different stages of the hierarchical decoder. Our
empirical analysis shows that multistage loss enables
faster convergence of models accuracy and improves
decoder performance. We also produce the final seg-
mentation map incorporating multi-resolution features
which puts more confidence on salient features.

• Versatile and Improved Performance: We empiri-
cally show that CASCADE can be used with any hi-
erarchical vision encoder (e.g., PVT [32], TransUNet
[3]) while significantly improving the performance of
2D medical image segmentation. When compared
against multiple baselines, CASCADE produces new
state-of-the-art (SOTA) results on ACDC, Synapse
multi-organ, and Polyp segmentation benchmarks.

2. Related Work
We divide the related work into three parts, i.e., vi-

sion transformers, attention mechanisms, and medical im-
age segmentation; these are described next.

2.1. Vision transformers

Dosovitskiy et al. [9] first introduce the vision trans-
former (ViT), which achieves outstanding performance due
to capturing long-range dependencies among the pixels.
While early vision transformers were computationally ex-
pensive, recent works have tried to further enhance ViT in
several ways. Touvron et al. [27] introduce DeiT which

tries to minimize the computational cost for ViT using data-
efficient training strategies. Liu et al. [20] develop the Swin
transformer using a sliding window attention mechanism.
In SegFormer, Xie et al. [35] introduce a Mix-FFN mod-
ule for encoding better positional information and an effi-
cient self-attention mechanism for reducing the computa-
tional costs. SegFormer is also a hierarchical transformer
where image patches are merged to preserve the local con-
tinuity among patches. Wang et al. [31] propose a pyra-
mid vision transformer (PVT) where the computational cost
is reduced using a spatial reduction attention mechanism.
In PVTv2, Wang et al. [32] improve the performance of
PVT by incorporating a linear complexity attention layer,
an overlapping patch embedding, and a convolutional feed-
forward network.

Although vision transformers have shown excellent
promise, their performance is limited when trained on small
datasets. This limitation makes the transformers difficult to
train for applications like medical image segmentation with
small amounts of data. We try to overcome this limitation
by using pretrained transformer backbones in large datasets
(like ImageNet); indeed, previous studies [8, 30] have found
that pretrained transformer weights on other non-medical
large datasets boost the performance of medical image seg-
mentation tasks.

2.2. Attention mechanisms

Oktay et al. [23] introduce a low-cost attention gate
module for U-shaped architectures to fuse features with
skip-connections; this helps the model focus on the relevant
information in the image. Chen et al. [6] propose a reverse
attention module to explore the missing detail information
which results in high resolution and accurate outputs. Hu
et al. [14] introduce a squeeze-and-excitation block using
global average-pooled features to compute channel atten-
tion; this identifies the important feature maps for learning
and then enhances them. Although channel attention can
identify which feature map to focus on, it lacks the abil-
ity to identify where to focus. To supplement the channel
attention block, Chen et al. [4] propose a spatial attention
block to better focus on a feature map. Woo et al. [34]
introduce a convolutional block attention module (CBAM)
utilizing both channel and spatial attention to capture where
and on which feature to focus in a feature map. Their ex-
periments show that channel attention followed by spatial
attention produces the best results.

Due to the additive advantage of CBAM with negligi-
ble overhead, we incorporate channel attention followed
by spatial attention in our CAM. The CAM differs from
CBAM in the design of the block itself and in how the
blocks are used. Firstly, our CAM consists of channel at-
tention, spatial attention, and a convolutional block, while
CBAM consists of only channel attention and spatial at-
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Figure 1. PVT-CASCADE network architecture. (a) PVTv2-b2 Encoder backbone with four stages, (b) CASCADE decoder, (c) Attention
gate (AG), (d) Convolutional attention module (CAM), (e) Channel attention (CA), (f) Spatial attention (SA), (g) ConvBlock, (h) UpConv.
X1, X2, X3, and X4 are the output features of the four stages of hierarchical encoder backbones. p1, p2, p3, and p4 are output feature maps
from four stages of our decoder.

tention. Secondly, CBAM is placed in each convolutional
block of both encoder and decoder, while the CAM module
appears only in the decoder.

2.3. Medical image segmentation

Medical image segmentation is a dense prediction task
that classifies the pixels of organs or lesions in a given med-
ical image (e.g., CT, MRI, endoscopy, OCT, etc.) [3, 8].
UNet [24] and its variants [37, 15, 22, 23] are widely used
in medical image segmentation tasks because of their bet-
ter performance and sophisticated architecture. UNet [24]
is an encoder−decoder architecture where features from
the encoder are aggregated with upsampled features of the
decoder using skip connections to produce high-resolution
segmentation maps. Zhou et al. [37] introduce UNet++
where the encoder-decoder sub-networks are linked using
nested and dense skip connections. Huang et al. [15] pro-
pose UNet 3+ utilizing full-scale skip connections includ-
ing intra-connections among the decoder blocks. Lou et al.
[22] introduce a dual channel UNet (DC−UNet) architec-
ture that utilizes the multi-resolution convolution block and
residual path in skip connections. Following the progress
of computer vision, the ResNet architecture [13] has been

generally adopted as the backbone for medical image seg-
mentation. The pyramid pooling and dilated convolution [5]
are also used for lesion and organ segmentation [12, 11].

Nowadays, transformer-based methods have also shown
great success in medical image segmentation [3, 2, 19, 8,
30]. Chen et al. [3] proposed TransUNet which uses a hy-
brid CNN- transformer encoder to capture long-range de-
pendencies and a cascaded CNN upsampler as a decoder to
capture local contextual relations among pixels. In contrast,
we propose a new attention-based cascaded decoder which
shows a significant performance boost when used on top of
the encoder. Li et al. [19] introduce TFCNs by combining
transformer and fully convolutional DenseNet to propagate
semantic features and filter out non-semantic features. Cao
et al. [2] proposed Swin-Unet, which is a pure transformer
architecture based on Swin transformer [20]. Swin-Unet
uses transformers in both the encoder and decoder, which
does not lead to performance improvement.

Recent studies incorporate different attention mecha-
nisms with CNN [23, 10, 36] and transformer-based archi-
tectures [8, 30] for medical image segmentation. Fan et
al. [10] adopt reverse attention [6] for polyp segmentation.
Zhang et al. [36] utilize squeeze-and-excitation attention
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[14] for segmenting vessels in retina images. Dong et al.
[8] adopt a CBAM [34] attention block in their decoder;
they use the CBAM block only with the low-level features
from the first layer of the PVTv2 which limits the ability
to refine all multi-stage features. In contrast, we incorpo-
rate the AG to fuse features with skip connection and use a
CAM module in all of our decoder blocks.

3. Method

We first introduce the transformer backbones and our
proposed CASCADE decoder. We then describe two differ-
ent transformer-based architectures (TransCASCADE and
PVT-CASCADE) incorporating our proposed decoder.

3.1. Transformer backbones

To ensure enough generalization and multi-scale feature
processing abilities for medical image segmentation, we
use the pyramid transformer, as well as the hybrid CNN-
transformer (instead of only CNN) as the encoder. Specif-
ically, we adopt the encoder design of PVTv2 [32] (Figure
1(a)) and TransUNet [3]. PVTv2 uses the convolution op-
eration instead of the patch embedding module of the tradi-
tional transformer to consistently capture the spatial infor-
mation. TransUNet utilizes a transformer on top of CNN
to capture both global and spatial relationships among fea-
tures. Our proposed decoder is flexible and easy to adopt
with other hierarchical backbone networks.

3.2. CASCaded Attention DEcoder (CASCADE)

Existing transformer-based models have limited (local)
contextual information processing ability among pixels. As
a result, the transformer-based model faces difficulties in
locating the more discriminating local features. To ad-
dress this issue, we propose a novel attention-based cas-
caded multi-stage feature aggregation decoder, CASCADE,
for pyramid features.

As shown in Figure 1(b), CASCADE consists of the Up-
Conv block to upsample the features, the AG for cascaded
feature fusion, and the CAM to robustly enhance the fea-
ture maps. We have four CAM blocks for the four stages of
pyramid features from the encoder backbone and three AGs
for three skip connections. To aggregate the multi-scale
features, we first combine the upsampled features from the
previous decoder block with the features from the skip con-
nections using AG. Then, we concatenate the fused features
with the upsampled features from the previous layer. After-
ward, we process the concatenated features using our CAM
module for pixel grouping and suppressing background in-
formation using both channel and spatial attention. Finally,
we send the output from each CAM layer to a prediction
head and aggregate four different predictions to produce the
final segmentation map.

3.2.1 Attention gate (AG)

AGs are used to progressively suppress features in irrelevant
background regions by adopting a grid-attention technique
where the gating signal is based on the spatial information
of the image [23]. More specifically, the gating signal used
to aggregate each skip connection fuses the multi-stage fea-
tures which increase the spatial resolution of the query sig-
nal. Like Attention UNet [23], we use additive attention
to obtain the gating coefficient because of its better perfor-
mance compared to multiplicative attention. The additive
attention gate AG(·) is given in Equations 1 and 2:

qatt(g, x) = σ1(BN(Cg(g) +BN(Cx(x))))) (1)

AG(g, x) = x ∗ σ2(BN(C(qatt(g, x)))) (2)

where σ1(·) and σ2(·) correspond to ReLU and Sigmoid ac-
tivation function, respectively. Cg(·), Cx(·), and C(·) repre-
sent channel-wise 1×1 convolution operation. BN (·) is the
batch normalization operation. g and x are the upsampled
and skip connection features, respectively.

3.2.2 Convolutional attention module (CAM)

We use the convolutional attention modules to refine the
feature maps. CAM consists of a channel attention [14]
(CA(·)), a spatial attention [4] (SA(·)), and a convolutional
block (ConvBlock) as in Equation 3:

CAM(x) = ConvBlock(SA(CA(x))) (3)

where x is the input tensor and CAM (·) represents the con-
volutional attention module.

Channel Attention (CA): Channel attention identifies
which feature maps to focus on (and then refine them). The
channel attention CA(·) is defined using Equation 4:

CA(x) = σ2(C2(σ1(C1(Pm(x)))) + C2(σ1(C1(Pa(x)))))⊛ x
(4)

where σ2(·) is the Sigmoid activation. Pm(·) and Pa(·) de-
note adaptive maximum pooling and adaptive average pool-
ing, respectively. C1(·) is a convolutional layer with 1 × 1
kernel size to reduce the channel dimension 16 times. σ1 is
a ReLU activation layer and C2(·) is another convolutional
layer to recover the original channel dimension. ⊛ is the
Hadamard product.

Spatial Attention (SA): Spatial attention determines
where to focus in a feature map and then enhances those
features. The spatial attention SA(·) is given in Equation 5:

SA(x) = σ(C(Cm(x) + Ca(x)))⊛ x (5)

where σ(·) is a Sigmoid activation function. Cm(·) and Ca(·)
represent the maximum and average values obtained along

6225



the channel dimension, respectively. C(·) is a 7 × 7 convo-
lutional layer with padding 3 to enhance spatial contextual
information (as in [8]).

ConvBlock: The ConvBlock is used to further enhance
the features generated using our CA and SA operations.
ConvBlock consists of two 3 × 3 convolution layers each
followed by a batch normalization layer and a ReLU activa-
tion layer. ConvBlock(·) is formulated as Equation 6:

ConvBlock(x) = σ(BN(C(σ(BN(C(x)))))) (6)

where σ is the ReLU activation layer, BN (·) represents
batch normalization, and C(·) is a 3× 3 convolution layer.

3.2.3 UpConv

UpConv progressively upsamples the features of the cur-
rent layer to match the dimension to the next skip connec-
tion. Each UpConv layer consists of an UpSampling UP (·)
with scale-factor 2, a 3 × 3 convolution Conv(·), a batch
normalization BN (·), and a ReLU activation layers. The
UpConv(·) can be formulated as Equation 7:

UpConv(x) = ReLU(BN(Conv(Up(x)))) (7)

3.3. Multi-stage loss and feature aggregation

We use four prediction heads for the four stages of hi-
erarchical encoders. We compute the final prediction map
using additive aggregation as in Equation 8:

output = w × p1 + x× p2 + y × p3 + z × p4 (8)

where p1, p2, p3, and p4 are the feature maps of four pre-
diction heads, and w, x, y, and z are the weights for indi-
vidual prediction heads. In our experiments, we set all w,
x, y, and z to 1.0. We get the final prediction output by ap-
plying the Sigmoid activation for binary segmentation and
Softmax activation for multi-class segmentation.

However, we compute the loss for each prediction head
separately and then aggregate them using equation 9:

loss = α×lossp1+β×lossp2+γ×lossp3+ζ×lossp4 (9)

where lossp1, lossp2, lossp3, and lossp4 are the losses for
four different prediction heads, and α, β, γ, and ζ are the
weights for the loss of individual prediction heads. In our
experiments, we set all α, β, γ, and ζ to 1.0.

3.4. Overall architecture

We utilize two different hierarchical backbone encoder
networks such as PVTv2 [32] and TransUNet [3] for our
experiments. In the case of TransUNet, we only use their
hybrid CNN-transformer backbone encoder network. By
utilizing the PVTv2-b2 (Standard) encoder, we create the
PVT-CASCADE architecture. To adopt PVTv2-b2, we first

extract the features (X1, X2, X3, and X4) from four layers
and feed them (i.e., X4 in the upsample path and X3, X2,
X1 in the skip connections) into our CASCADE decoder as
shown in Figure 1(a-b). Then our CASCADE decoder pro-
cesses them and produces four prediction feature maps for
the four stages of the encoder network. Afterward, we ag-
gregate the prediction feature maps using Equation 8 to pro-
duce the final prediction feature map. Finally, we apply the
Sigmoid activation for binary segmentation and Softmax for
multi-class segmentation tasks. Besides, we introduce Tran-
sCASCADE architecture by adopting the backbone encoder
network of TransUNet. We follow similar steps in our Tran-
sCASCADE architecture. These two architectures achieve
SOTA performance on Synapse multi-organ segmentation,
ACDC, and several polyp segmentation benchmarks. De-
tails are given in the experimental section.

4. Experiments
In this section, we first compare the results of our pro-

posed CASCADE decoder with SOTA methods to demon-
strate the superiority of our proposed method. Then, we
carry out ablation studies to evaluate the effectiveness of
our CASCADE decoder.

4.1. Datasets and evaluation metrics

Synapse multi-organ dataset. The Synapse multi-
organ dataset1 has 30 abdominal CT scans with 3779 ax-
ial contrast-enhanced abdominal CT images. Each CT
scan consists of 85-198 slices of 512 × 512 pixels, with a
voxel spatial resolution of ([0:54-0:54] × [0:98-0:98]×[2:5-
5:0])mm3. Following TransUNet [3], we divide the dataset
randomly into 18 scans for training (2212 axial slices), and
12 for validation. We segment 8 anatomical structures, such
as aorta, gallbladder (GB), left kidney (KL), right kidney
(KR), liver, pancreas (PC), spleen (SP), and stomach (SM).
ACDC dataset. The ACDC dataset2 consists of 100 cardiac
MRI scans collected from different patients. Each scan con-
tains three organs, right ventricle (RV), left ventricle (LV),
and myocardium (Myo). Following TransUNet [3], we use
70 cases (1930 axial slices) for training, 10 for validation,
and 20 for testing. Polyp datasets. CVC-ClinicDB [1] con-
tains 612 images, which are extracted from 31 colonoscopy
videos. Kvasir includes 1,000 polyp images, which are
collected from the polyp class in the Kvasir-SEG dataset
[17]. Following the settings in PraNet [10], we adopt the
same 900 and 548 images from CVC-ClinicDB and Kvasir
datasets as the training set, and the remaining 64 and 100
images are employed as the respective testsets. To evaluate
the generalization performance, we test the model on three
unseen datasets, namely EndoScene [29], ColonDB [26],
and ETIS-LaribDB [25]. These three testsets are collected

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Architectures
Average

Aorta GB KL KR Liver PC SP SM
DICE↑ HD95↓ mIoU↑ ASD↓

UNet [24] 70.11 44.69 59.39 14.41 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96
AttnUNet [23] 71.70 34.47 61.38 10.00 82.61 61.94 76.07 70.42 87.54 46.70 80.67 67.66
R50+UNet [3] 74.68 36.87 − − 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
R50+AttnUNet [3] 75.57 36.97 − − 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
SSFormerPVT [30] 78.01 25.72 67.23 4.56 82.78 63.74 80.72 78.11 93.53 61.53 87.07 76.61
PolypPVT [8] 78.08 25.61 67.43 4.89 82.34 66.14 81.21 73.78 94.37 59.34 88.05 79.4
TFCNs [19] 75.63 30.63 64.69 5.29 88.23 59.18 80.99 73.12 92.02 54.24 88.36 68.9
TransUNet [3] 77.61 26.9 67.32 4.66 86.56 60.43 80.54 78.53 94.33 58.47 87.06 75
SwinUNet [2] 77.58 27.32 66.88 4.7 81.76 65.95 82.32 79.22 93.73 53.81 88.04 75.79

PVT-CASCADE (Ours) 81.06 20.23 70.88 3.61 83.01 70.59 82.23 80.37 94.08 64.43 90.1 83.69
TransCASCADE (Ours) 82.68 17.34 73.48 2.83 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52

Improve TransUNet 5.07 9.56 6.16 1.83 0.07 8.05 7.12 6.03 0.1 6.86 3.73 8.52

Table 1. Results of Synapse multi-organ segmentation. Only DICE scores are reported for individual organs. R50+UNet and
R50+AttnUNet adopt a pre-trained ResNet50 backbone network. We reproduce the results of UNet, AttnUNet, SSFormerPVT, Polyp-
PVT, TFCNs, TransUNet, and SwinUNet with the default experimental settings of TransUNet. ↑ denotes higher the better, ↓ denotes lower
the better. All CASCADE results are averaged over five runs. The best results are in bold.

Architectures Avg DICE RV Myo LV

R50+UNet [3] 87.55 87.10 80.63 94.92
R50+AttnUNet [3] 86.75 87.58 79.20 93.47
ViT+CUP [3] 81.45 81.46 70.71 92.18
R50+ViT+CUP [3] 87.57 86.07 81.88 94.75
TransUNet [3] 89.71 86.67 87.27 95.18
SwinUNet [2] 88.07 85.77 84.42 94.03

PVT-CASCADE (Ours) 91.46 88.9 89.97 95.50
TransCASCADE (Ours) 91.63 89.14 90.25 95.50

Table 2. Results on ACDC dataset. DICE scores are reported for
individual organs. We reproduce the results of SwinUNet. All
CASCADE results are averaged over five runs.

from different medical centers. In other words, the data
from these three sources are not used to train our model.
EndoScene, ColonDB, and ETIS-LaribDB contain 60, 380,
and 196 images, respectively.

Evaluation metrics. We use DICE, mean intersection
over union (mIoU), 95% Hausdorff Distance (95HD), and
Average surface distance (ASD) as the evaluation metrics in
our experiments on Synapse Multi-organ dataset. Following
existing methods, we use only DICE scores for the ACDC
dataset. For the experiments on polyp segmentation, we use
DICE and mIoU as the evaluation metrics.

4.2. Implementation details

All our experiments are implemented in Pytorch 1.11.0.
We train all models on a single NVIDIA RTX A6000 GPU
with 48GB of memory. We utilize the pre-trained weights
on ImageNet for backbone networks. We use AdamW opti-
mizer [21] with learning rate and weight decay of 1e-4.

Synapse Multi-organ dataset. Following TransUNet
[3], we use a batch size of 24 and train each model max-
imum of 150 epochs. We use the input resolution and patch
size P as 224×224 and 16, respectively. We employ random
flipping and rotation for data augmentation. The combined
cross-entropy and DICE loss are used as the loss function.
ACDC dataset. For the ACDC dataset, we train each model
for a maximum of 150 epochs with a batch size of 12. We
set the input resolution and patch size P as 224×224 and 16,
respectively. Random flipping and rotation are applied for
data augmentation. We use the combined cross-entropy and
DICE loss function. Polyp datasets. Following Polyp-PVT
[8], we use a batch size of 16 and train each model maxi-
mum of 100 epochs. We resize the image to 352× 352 and
use a similar multi-scale {0.75, 1.0, 1.25} training strategy
with a gradient clip limit of 0.5 as Polyp-PVT. We use the
combined weighted IoU and weighted BCE loss function.

4.3. Results

We compare our architectures (i.e., PVT-CASCADE and
TransCASCADE) with SOTA CNN and transformer-based
segmentation methods on Synapse Multi-organ, ACDC, and
Polyp (i.e., Endoscene [29], CVC-ClinicDB [1], Kvasir
[17], ColonDB [26], ETIS-LaribDB [25]) datasets. More
results are available in the supplementary materials.

4.3.1 Experimental results on Synapse dataset

We demonstrate the performance of different CNN and
transformer-based methods in Table 1. As shown in Ta-
ble 1, transformer-based models have superior performance
compared to CNN-based models. Our proposed CASCADE
decoder improves the average DICE, mIoU, and HD95
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Architectures
EndoScene CVC-ClinicDB Kvasir ColonDB ETIS-LaribDB

DICE mIoU DICE mIoU DICE mIoU DICE mIoU DICE mIoU

UNet [24] 71.0 62.7 82.3 75.5 81.8 74.6 51.2 44.4 39.8 33.5
UNet++ [37] 70.7 62.4 79.4 72.9 82.1 74.3 48.3 41.0 40.1 34.4
PraNet [10] 87.1 79.7 89.9 84.9 89.8 84.0 71.2 64.0 62.8 56.7
UACANet-L [18] 88.21 80.84 91.07 86.7 90.83 85.95 72.57 65.41 63.89 56.87
SSFormerPVT [30] 89.46 82.68 92.88 88.27 91.11 86.01 79.34 70.63 78.03 70.1
PolypPVT [8] 88.71 81.89 93.08 88.28 91.23 86.3 80.75 71.85 78.67 70.97

PVT-CASCADE (Ours) 90.47 83.79 94.34 89.98 92.58 87.76 82.54 74.53 80.07 72.58

Improve SSFormerPVT 1.01 1.11 1.46 1.71 1.47 1.75 3.2 3.9 2.04 2.48
Improve PolypPVT 1.76 1.9 1.26 1.7 1.35 1.46 1.79 2.68 1.4 1.61

Table 3. Results on polyp segmentation datasets. Training on combined Kvasir [17] and CVC-ClinicDB [1] trainset. The results of UNet,
UNet++ and PraNet are taken from [10]. We reproduce the results of PolypPVT, SSFormerPVT, and UACANet using their public source
code with default settings. All PVT-CASCADE results are averaged over five runs. The best results are in bold.

Components EndoScene CVC-ClinicDB Kvasir ColonDB ETIS-LaribDB
Cascaded AG CAM DICE mIoU DICE mIoU DICE mIoU DICE mIoU DICE mIoU

No No No 88.41 81.47 91.82 87.12 91.09 86.13 77.86 69.43 77.04 68.47
Yes No No 89.11 82.32 93.54 88.95 91.98 87.05 81.30 73.21 78.16 69.97
Yes Yes No 89.25 82.57 93.61 89.04 92.45 87.57 81.72 73.67 79.27 71.38
Yes No Yes 89.39 82.79 93.88 89.31 92.20 87.28 82.11 74.09 79.57 71.73
Yes Yes Yes 90.47 83.79 94.34 89.98 92.58 87.76 82.54 74.53 80.07 72.58

Table 4. Quantitative results of different components of CASCADE with PVTv2-b2 backbone. Training on combined Kvasir and CVC-
ClinicDB trainset and testing on five testsets (i.e., Endoscene, CVC-ClinicDB, Kvasir, ColonDB, ETIS-LaribDB). All results are averaged
over five runs. The best results are in bold.

scores of TransUNet by 5.07%, 6.16%, and 9.56, respec-
tively. TransCASCADE achieves the best average DICE
(82.67%), mIoU (73.48%), HD95 (17.34), and ASD (2.83)
scores among all other methods. Moreover, TransCAS-
CADE demonstrates significant performance improvements
in both small and large organ segmentation. For small or-
gans, 8.05%, 7.12%, and 6.03% improvements in gallblad-
der, left kidney, and right kidney, respectively. For large
organs, 8.52%, 6.86%, and 3.73% improvements in stom-
ach, pancreas, and spleen, respectively. This is because
CASCADE captures both long-range dependencies and lo-
cal contextual relations among pixels. Due to using atten-
tion, CASCADE better refines the feature maps and pro-
duces stronger feature representations than other decoders.
The lower HD95 scores indicate that our CASCADE de-
coder can better locate the boundary of organs.

4.3.2 Experimental results on ACDC dataset

We evaluate the performance of our method on the MRI
images of the ACDC dataset. Table 2 presents the aver-
age DICE scores of our PVT-CASCADE and TransCAS-
CADE along with other SOTA methods. Our TransCAS-
CADE achieves the highest average DICE score of 91.63%
improving about 2% over TransUNet though we share the

same encoder. Our PVT-CASCADE gains 91.46% DICE
score which is also better than all other methods. Besides,
our TransCASCADE has an improvement of 2.5 - 3% DICE
score in challenging organs RV and Myo segmentation.

4.3.3 Experimental results on Polyp datasets

We evaluate the performance and generalizability of our
CASCADE decoder on five different polyp segmentation
test sets among which three are completely unseen datasets
collected from different labs. Table 3 displays the DICE
and mIoU scores of SOTA methods along with our CAS-
CADE decoder. From Table 3, we can show that CAS-
CADE significantly outperforms all other methods achiev-
ing 2.04 - 3.2% and 2.5 - 3.9% improvement in DICE and
mIoU scores in unseen test sets over the previous best model
using the same pre-trained transformer backbone. It is note-
worthy that CASCADE outperforms the best CNN-based
model UACANet by a large margin on unseen datasets (i.e.,
16.2% and 10% DICE score improvement in ETIS-LaribDB
and ColonDB, respectively). Therefore, we can conclude
that due to using transformers as a backbone network and
our attention-based CASCADE decoder, PVT-CASCADE
inherits the merits of transformers, CNNs, and attentions
which makes them highly generalizable for unseen datasets.
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Figure 2. CASCADE vs. Cascaded Upsampler (CUP) features. First and second rows present CASCADE and CUP features, respectively.
We put only the similar layers feature for our CASCADE decoder for fair comparisons. Layers are numbered based on their corresponding
transformer layer number. In both cases, we use the ImageNet pretrained PVTv2-b2 backbone as the encoder.
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Figure 3. Multi-stage loss and output aggregation vs. single loss
and output. We plot the average DICE scores of five testsets (i.e.,
Endoscene, CVC-ClinicDB, Kvasir, ColonDB, ETIS-LaribDB)
vs. # epochs in six different loss and output aggregation settings.

4.4. Ablation study

Effective enhancement/refinement of features. We vi-
sualize the features of our CASCADE, as well as Cascaded
Upsampler (CUP) [3] in Figure 2. We compute the aver-
age of all channels in the feature map and then produce the
heatmap using OpenCV-Python. It is evident from Figure 2
that the attention mechanism used in our CASCADE helps
identify, enhance, and group the pixels better than CUP.

Effectiveness of different parts of CASCADE. We
carry out ablation studies on the Polyp datasets to eval-
uate the effectiveness of the different components of our
proposed CASCADE decoder. We use the same PVTv2-
b2 backbone pre-trained on ImageNet and the same exper-
imental settings for polyp datasets in all experiments. We
remove different modules such as AGs and CAM from the
CASCADE decoder and compare the results. It is evident
from the Table 4 that the cascaded structure of the decoder
improves performance over the non-cascaded decoder. AG
and CAM modules also help improve performance. How-
ever, the use of both AG and CAM modules produces the
best performance in all test datasets.

Faster learning of multi-stage loss and output fusions.
We add the loss and output from four stages of our CAS-

CADE decoder to get the overall loss and final segmenta-
tion map. Figure 3 plots the average DICE score across
five datasets for each epoch. The graph contains six dif-
ferent loss and output aggregation settings such as ”1-loss,
1-output”, ”1-loss, 4-output”, ”4-loss, 1-output”, ”4-loss
(add), 4 output”, ”4-loss (avg), 4 output”, and ”1-loss, 1 out-
put with learning rate 4e-4”. It is evident from the graph that
”4-loss (add), 4 output” and ”4-loss (avg), 4 output” achieve
74 - 75% DICE scores in the first epoch, and these set-
tings gain more than 82% DICE score within 5 epochs. On
the other hand, other losses and output aggregations have a
DICE score of around 35 - 53%, and these settings achieve
71% DICE score within 5 epochs. We can also see from the
graph that ”4-loss (add), 4 output” shows the best perfor-
mance, achieving 84.67% average DICE score. Therefore,
we can conclude that aggregation of multi-stage loss and
output leverages multi-scale features that help to produce
accurate and high-resolution segmentation outputs.

5. Conclusion

In this paper, we have proposed a novel attention-based
decoder for hierarchical feature aggregation, which has ro-
bust generalization and learning ability; these are crucial
for medical image segmentation. We believe that CAS-
CADE has great potential to improve deep learning perfor-
mance in other medical image segmentation tasks. More-
over, experiments demonstrate that CASCADE effectively
enhances transformer features and incorporates spatial rela-
tionships among pixels (e.g., improves baseline TransUNet
by 5.07% DICE and 6.16% mIoU in Synapse Multi-organ
segmentation). Experimental results demonstrate that CAS-
CADE can locate the organs or lesions well (e.g., improves
HD95 score by 9.56) due to using attention in the decoding
process. Therefore, our decoder can be further used to en-
hance the transformer feature for general computer vision
and highly generalizable medical applications.

Acknowledgment

This work is supported, in part, by NSF grant CNS
2007284.

6229



References
[1] Jorge Bernal, F Javier Sánchez, Gloria Fernández-

Esparrach, Debora Gil, Cristina Rodrı́guez, and Fernando
Vilariño. Wm-dova maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from physi-
cians. Computerized medical imaging and graphics, 43:99–
111, 2015.

[2] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xi-
aopeng Zhang, Qi Tian, and Manning Wang. Swin-unet:
Unet-like pure transformer for medical image segmentation.
arXiv preprint arXiv:2105.05537, 2021.

[3] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan
Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou.
Transunet: Transformers make strong encoders for medi-
cal image segmentation. arXiv preprint arXiv:2102.04306,
2021.

[4] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian
Shao, Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and
channel-wise attention in convolutional networks for im-
age captioning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5659–5667,
2017.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[6] Shuhan Chen, Xiuli Tan, Ben Wang, and Xuelong Hu. Re-
verse attention for salient object detection. In Proceedings of
the European conference on computer vision (ECCV), pages
234–250, 2018.

[7] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-
aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-
sitional encodings for vision transformers. arXiv preprint
arXiv:2102.10882, 2021.

[8] Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li,
Huazhu Fu, and Ling Shao. Polyp-pvt: Polyp segmen-
tation with pyramid vision transformers. arXiv preprint
arXiv:2108.06932, 2021.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu
Fu, Jianbing Shen, and Ling Shao. Pranet: Parallel reverse
attention network for polyp segmentation. In International
conference on medical image computing and computer-
assisted intervention, pages 263–273. Springer, 2020.

[11] Shuanglang Feng, Heming Zhao, Fei Shi, Xuena Cheng,
Meng Wang, Yuhui Ma, Dehui Xiang, Weifang Zhu, and
Xinjian Chen. Cpfnet: Context pyramid fusion network for
medical image segmentation. IEEE transactions on medical
imaging, 39(10):3008–3018, 2020.

[12] Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huay-
ing Hao, Yitian Zhao, Tianyang Zhang, Shenghua Gao, and

Jiang Liu. Ce-net: Context encoder network for 2d medical
image segmentation. IEEE transactions on medical imaging,
38(10):2281–2292, 2019.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018.

[15] Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu,
Qiaowei Zhang, Yutaro Iwamoto, Xianhua Han, Yen-Wei
Chen, and Jian Wu. Unet 3+: A full-scale connected unet for
medical image segmentation. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1055–1059. IEEE, 2020.

[16] Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much
position information do convolutional neural networks en-
code? arXiv preprint arXiv:2001.08248, 2020.

[17] Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål
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Johansen. Kvasir-seg: A segmented polyp dataset. In Inter-
national Conference on Multimedia Modeling, pages 451–
462. Springer, 2020.

[18] Taehun Kim, Hyemin Lee, and Daijin Kim. Uacanet: Uncer-
tainty augmented context attention for polyp segmentation.
In Proceedings of the 29th ACM International Conference
on Multimedia, pages 2167–2175, 2021.

[19] Zihan Li, Dihan Li, Cangbai Xu, Weice Wang, Qingqi Hong,
Qingde Li, and Jie Tian. Tfcns: A cnn-transformer hybrid
network for medical image segmentation. arXiv preprint
arXiv:2207.03450, 2022.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021.

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[22] Ange Lou, Shuyue Guan, and Murray Loew. Dc-unet: re-
thinking the u-net architecture with dual channel efficient
cnn for medical image segmentation. In Medical Imaging
2021: Image Processing, volume 11596, pages 758–768.
SPIE, 2021.

[23] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee,
Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven
McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Atten-
tion u-net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999, 2018.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[25] Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray,
and Bertrand Granado. Toward embedded detection of
polyps in wce images for early diagnosis of colorectal can-

6230



cer. International journal of computer assisted radiology and
surgery, 9(2):283–293, 2014.

[26] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming
Liang. Automated polyp detection in colonoscopy videos
using shape and context information. IEEE transactions on
medical imaging, 35(2):630–644, 2015.

[27] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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