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Abstract

Video stabilization is highly desirable when videos un-
dergo severe jittering artifacts. The difficulty of obtaining
sufficient training data obstructs the development of video
stabilization. In this work, we address this issue by present-
ing a Sim2RealVS benchmark with more than 1,300 pairs of
shaky and stable videos. Our benchmark is curated by an
in-game simulator with diverse scenes and various jittering
effects. Moreover, we propose a simple yet strong base-
line approach, named Motion-Trajectory Smoothing Net-
work (MTSNet), by fully exploiting our Sim2RealVS data.
Our MTSNet consists of three main steps: motion esti-
mation, global trajectory smoothing and frame warping.
In motion estimation, we design a Motion Correction and
Completion (MCC) module to rectify the optical flow with
low confidence, such as in textureless regions, thus provid-
ing more consistent motion estimation for next steps. Ben-
efiting from our synthetic data, we can explicitly learn a
Trajectory Smoothing Transformer (TST) with ground-truth
supervision to smooth global trajectories. In training TST,
we propose two fully-supervised losses, i.e., a motion mag-
nitude similarity loss and a motion tendency similarity loss.
After training, our TST is able to produce smooth motion
trajectories for the shaky input videos. Extensive qualita-
tive and quantitative results demonstrate that our MTSNet
achieves superior performance on both synthetic and real-
world data.

1. Introduction

Videos captured with unintentional motions (e.g., se-
vere shakes, quick rotations) often lead to unstable vi-
sual contents. Video stabilization is highly desirable to
eliminate the shaky effects and produce visually stabi-
lized videos. Notwithstanding a great success of the tra-
ditional [15, 8, 16, 6, 20, 19, 21, 18] and deep-learning
based [33, 37, 35, 31, 29] stabilization techniques, a large
variety of scenes or jittering effects are still difficult to be
covered by existing benchmarks, and state-of-the-art video
stabilization methods might fail in those cases.

Collecting large-scale stable and unstable video pairs

Camera
Stable path
Unstable path

Beach Mountain

Evening

Daytime

Night

City Raining

Figure 1. We present a new large-scale video stabilization bench-
mark dubbed Sim2RealVS. An in-game simulator is utilized to
generate synchronized stable and unstable views by two cameras
at the same position without parallaxes. The red trajectory repre-
sents the stable camera path, and the green trajectory represents
the synchronized unstable camera path. A diverse range of scenes
and environments is demonstrated.

synchronously is challenging in the real world. In fact, we
cannot place two physical cameras at the same position to
collect synchronized views, and the camera position devi-
ations will cause undesired parallaxes. Even though the
works [36, 29] have attempted to capture video pairs us-
ing special hardware, their collected datasets still have the
aforementioned issues. Besides, the amount of their col-
lected data is small for deep learning based methods.

To overcome the aforementioned shortcomings, we
present a new large-scale benchmark dubbed Sim2RealVS.
involving diverse scenes and jittering effects via an in-
game simulator Grand Theft AutoV (GTA5), as shown in
Figure 1. Particularly, in GTA5 we can put two simu-
lated cameras at the same position without parallaxes. Our
Sim2RealVS benchmark has several advantages: (i) it cov-
ers diverse scenes with various weather conditions and jit-
tering effects. In some scenarios, such as under extreme
weather or underwater, it is even dangerous for humans to
capture data. (ii) it has the largest scale of training data and
provides view-synchronized ground-truth stable references.

In order to verify the potential benefits brought by our
Sim2RealVS benchmark, we propose a simple yet strong
baseline method, namely Motion-Trajectory Smoothing
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Table 1. Summary of existing benchmarks for video stabilization.

Benchmark Year Scale. (#) GT Availability Parallax between Unstable/ GT views Jittering effects

Liu et al. [15] 2009 32 ✗ - real
Grundmann et al. [8] 2011 - ✗ - real

Liu et al. [16] 2011 109 ✗ - real
Goldstein and Fattal [6] 2012 42 ✗ - real

Liu et al. [20] 2013 174 ✗ - real
Koh et al. [12] 2015 162 ✗ - real

Yu and Ramamoorthi [33] 2018 33 ✗ - real
Zhang et al. [36] 2018 45 ✓ parallax caused by the camera position bias real

Ito and Izquierdo [11] 2019 421 ✓ no parallaxes generated
Wang et al. [29] 2019 60 ✓ parallax caused by the camera position bias real

Ours 2021 1327 ✓ no parallaxes simulated

Network (MTSNet). MTSNet aims to estimate accurate
motions at sparse locations and then remove the uninten-
tional motions from the trajectories. Specifically, MTSNet
consists of a Motion Correction and Completion (MCC)
step, a Global Trajectory Smoothing (GTS) step, and a
frame warping step.

Firstly, our proposed MCC samples motions at grid ver-
tices from dense optical flow in order to preserve the rigid-
ity of stabilized frames. Considering optical flow at ver-
tices might not be robust, especially in some textureless
areas, we design a self-supervised motion correction net-
work to correct and complete the motions of the sampled
vertices by estimating an offset adjustment for each vertex
motion. Secondly, the completed motions at vertices are
temporally assembled into trajectories. Then, in GTS, we
design a Trajectory Smoothing Transformer (TST) to stabi-
lize the wobbly trajectories by regressing their stable ground
truth and constraining motion similarity among neighboring
frames. To be specific, we enforce the motion magnitudes
and tendency of the smoothed trajectories to be similar to
the ground-truth ones by our proposed motion magnitude
similarity loss and motion tendency similarity loss. Finally,
stabilized grid vertices are calculated by propagating the
smoothed motion trajectories to the original vertices. Then,
different affine transformations are applied to all the grid-
cells independently to produce the stabilized frames.

Experimental results show that our MTSNet signifi-
cantly benefits from the proposed Sim2RealVS benchmark
in several aspects: (i) MTSNet trained on our Sim2RealVS
benchmark performs better on the synthetic testing videos
compared with the state-of-the-art methods, indicating our
baseline is powerful. (ii) Existing methods also achieve per-
formance gains after being trained on Sim2RealVS (we take
DUT [31] as an example in our experiments). (iii) MT-
SNet trained on the combined data of Sim2RealVS and a
real-world small-scale benchmark achieves superior perfor-
mance compared with existing methods on real-world test-
ing videos. This indicates that our Sim2RealVS benchmark
significantly facilitates video stabilization for real-world ap-

plications.
Our main contributions are summarized as below:

• We present the first large-scale Sim2RealVS bench-
mark with various shaky scenes to facilitate video sta-
bilization development and evaluation.

• We provide a simple yet effective baseline method,
dubbed MTSNet to demonstrate the significance of our
benchmark and improve the state-of-the-art video sta-
bilization performance.

2. Related Work
Benchmarks and Metrics: Video stabilization bench-
marks have undergone a long revolution. As summarized in
Table 1, traditional methods [15, 8, 16, 6, 20, 12, 33] usually
provide benchmarks with a limited scale and only for eval-
uation. Three objective metrics without stable references
are proposed in [20] to quantitatively evaluate the stabiliza-
tion performance. The first stabilization assessment metric
with stable references is proposed along with an evaluation
benchmark in [36]. With the development of deep learn-
ing, the need of training data has spawned the first training
benchmark [29] for video stabilization. However, it only
contains 60 stable and unstable video pairs, which are too
few to satisfy the learning needs. Besides, their video cap-
turing method introduces undesirable parallaxes. On the ba-
sis of the previous benchmark [29], the work [11] presents
a benchmark with stable references and evaluation frame-
work. However, their shaky effects are not caused by cam-
era motion but a result of applying random transformations
on the original videos. Thus, the shaky videos cannot mimic
real-world jitterings.
Traditional Video Stabilization: Traditional video sta-
bilization methods are typically designed to estimate the
warping field from unstable frames and then generate stable
frames. Liu et al. [15] render the stabilized frames by using
content-preserving warps. Grundmann et al. [8] propose an
L1 norm optimization to remove undesired camera motions.
Liu et al. [20] propose to use a bundle of camera paths to
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make motion estimation more robust. Later, Liu et al. [21]
firstly propose to smooth trajectories based on pixel profiles
rather than feature points, and then they make a series of im-
provements, including more sparse MeshFlow [18], a faster
version CodingFlow [17] and a photometric alignment [14].
These methods highly rely on the long stable tracks of local
features and might fail when the local features are missing
due to occlusion or local blurs.

Liu et al. [16] smooth the tracked features by enforcing
subspace constraints. Later, in [6], the epipolar geometry
is exploited to optimize stabilization via enhancing the long
feature tracks. Liu et al. [19] utilize a depth camera to solve
the stabilization with extra depth information. However, the
3D depth information may not always be attainable.
Deep Learning Based Video Stabilization: Benefiting
from deep learning techniques [24, 9, 3, 27, 5, 4, 23], video
stabilization performance significantly improves. Xu et
al. [30] propose to stabilize videos by generative adver-
sarial networks [7]. Wang et al. [29] present a bench-
mark with ground-truth stable references and design a CNN
model to learn to regress the vertex positions from stable su-
pervision. Yu and Ramamoorthi [34] leverage dense optical
flow to solve the stabilization problem. Zhao and Ling [37]
then propose to generate stable frames by learning pixel-
wise warping maps in a multi-stage manner. Yu and Ra-
mamoorthi [35] attempt to learn the stabilization directly
using optical flow [10]. Later, Xu et al. [31] first obtain
the motions at sparse keypoints by applying an optical flow
network PWCNet [25] and a CNN-based keypoint detector
RFNet [23], then propagate sparse motions to dense vertex
grids, and smooth trajectories using a learned kernel. Liu et
al. [22] propose a DNN-based fusion approach to stabilize
videos by aggregating neighboring frames. Xu et al. [32]
present an out-of-boundary view synthesis method to help
warp-based approaches achieve full frame stabilization. Lee
et al. [13] propose to solve stabilization by leveraging 3D
cues.

In general, deep learning based video stabilization re-
search requires a large-scale benchmark for training and
testing. Moreover, the generalization ability in video sta-
bilization has not been investigated. Transferring the sta-
bilization knowledge from synthetic data to real-world sce-
narios also needs to be studied. All these issues motivate us
to design a large-scale benchmark for training and evaluat-
ing video stabilization networks.

3. Proposed Sim2RealVS Benchmark
In the video stabilization task, it is very difficult to col-

lect large-scale stable and unstable video pairs simultane-
ously due to camera parallaxes. To tackle this issue, we
opt to utilize easy-collected synthetic data from the video
game GTA5. By employing the in-game simulator, we
present a Sim2RealVS benchmark including various scenes

and shaky effects. The visualization of some sample scenes
is shown in Figure 1. More videos are demonstrated in sup-
plementary materials.

3.1. Choices on Scenes and Environments

Our Sim2RealVS benchmark has diverse scenes and en-
vironmental conditions. A wide range of scenes covers city
streets, mountain roads, parks, beach streets, and etc. En-
vironmental conditions are diverse in time (i.e., morning,
noon, afternoon, evening and midnight), weather (i.e. clear,
rainy, cloudy, snowy and thundering) and the density of the
pedestrians and cars.

In particular, we provide some extreme condition sce-
narios where the collection might be dangerous for humans
in the real world. These extreme scenarios include diving,
speedboat, parachute, roller coaster, and aerial views. How-
ever, these camera trajectories obtained from the simulator
already have shaky effects in order to follow physics. Thus,
we only utilize these for evaluation.

3.2. Collecting Stable and Unstable Video Pairs

Collecting synchronized views with two cameras at the
same time will produce undesired parallaxes because two
physical cameras cannot be placed at exactly the same po-
sition in the real world. In contrast, it is easy to reduce
parallaxes if the two cameras are virtual and placed without
position deviations. A convenient tool G2D [2] has been
proposed for capturing scenes from GTA5 using a virtual
camera with six degrees of freedom (6DoF).

Based on G2D, we further develop a simulator that en-
ables two cameras to capture stable and unstable video pairs
synchronously. Specifically, we first set up a path in the
simulator and then let the protagonist walk according to the
path. We record the 6DoF camera poses at all the times-
tamps and save them as stable trajectories. Various shaky
effects are generated by applying different degrees of ran-
dom perturbations to the stable trajectories, achieving di-
verse shaking effects. Here, the perturbations are synthe-
sized by random noise and low-pass filtering, where random
noise (i.e., jittering magnitudes and frequencies) can cover
the range of real-world jittering, and low-pass filtering is
employed to make perturbations realistic.

Our collecting approach effectively eliminates the im-
pact of parallax. When scene objects are close to cameras,
where the camera baselines cannot be neglected, such as
indoor scenes or camera mounted on robotics, parallaxes
will lead to inaccurate motion transfer from stable videos
to shaky counterparts, and a method may produce under-
stabilized results. In contrast, our Sim2RealVS benchmark
does not have this limitation as the parallax is zero during
the entire collecting procedure.
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Figure 2. The pipeline of our MTSNet contains three main steps: (i) Motion Estimation. (ii) Global Trajectory Smoothing. (iii) Frame
warping. In (i) motion estimation, we utilize the optical flow with a confidence map from PDCNet [27] to estimate a coarse grid motion.
Next, we devise a Motion Correction and Completion (MCC) module to estimate an offset adjustment, obtaining the refined grid motion.
MCC consists of a stack of down-sampling blocks, a spatial attention block, and a stack of up-sampling blocks. In (ii) global trajectory
smoothing, we design a Trajectory Smoothing Transformer (TST) to smooth the wobbly trajectories by regressing their stable ground-truth
reference and constraining motion similarity among neighboring frames. In (iii) frame warping, grid vertex positions are re-projected
according to the stabilized trajectories and then conduct homography to each grid-cell to generate stabilized frames.

4. Proposed Baseline: MTSNet

We introduce a Motion-Trajectory Smoothing Net-
work (MTSNet) as a strong baseline, which significantly
benefits from our Sim2RealVS benchmark. MTSNet in-
volves three steps to stabilize videos: (i) estimating video
motions, (ii) removing unintentional motions, and (iii)
warping frames based on smoothed motions. Particularly,
we present a Motion Correction and Completion (MCC)
network for accurate motion estimation, and a Trajectory
Smoothing Transformer (TST) for global trajectory smooth-
ing. The pipeline of MTSNet is illustrated in Figure 2.

4.1. Local Motion Estimation

To preserve the rigidity of frame transformation and
avoid distortions, existing methods [20, 18, 31, 29] adopt
grid-based representation to control frame warping. Simi-
larly, we divide each video frame into grid-cells of size (i.e.
M × N ). Instead of propagating keypoint-based motions
to grid vertices as in [20, 18, 31], we directly estimate mo-
tion for grid vertices. We can obtain motions from optical
flow at grid vertices but it might be unreliable in some ar-
eas, such as textureless regions. Therefore, we present a
Motion Correction and Completion (MCC) module to cor-

rect inconsistent motions and complete missing motions at
grid vertices.

4.1.1 Motion Correction and Completion (MCC)

We utilize PDCNet [27] to estimate optical flow for each
video frame. PDCNet is a state-of-the-art dense matching
network that provides not only optical flow estimation but
also a confidence map of the estimated flow. It is applicable
even for large appearance and view-point changes, which
are common in unstable videos.

We denote the unstable input video as a set of consec-
utive image frames Iu = {itu}, t ∈ {1, 2, ..., T}, itu ∈
R3×H×W , where T indicates the number of frames, and
H and W are the height and width of frames, respectively.
The optical flow otu ∈ R2×H×W 1 and its confidence map
ctu ∈ R1×H×W estimated by PDCNet (denoted by P) are
expressed as:

{(otu, ctu)}T−1
t=1 = P(Iu). (1)

As aforementioned, we divide each frame by an M × N

1The subscripts u, s represent unstable and stable videos, respectively.
Otherwise, a variable can represent both cases without confusion.
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grid and sample motions at the grid vertices:

mt
u(i, j) = otu

(
iH

M
,
jW

N

)
, i ∈ {1, ...,M}, j ∈ {1, ..., N},

(2)
where the sampled grid motion field mt

u ∈ R2×M×N is
then refined by MCC to produce locally consistent motion
estimation. Specifically, MCC learns to regress a motion
offset for each vertex:

∆rtu = NMCC(m
t
u), (3)

m̂t
u = mt

u +∆rtu, (4)

where NMCC denotes the MCC module, and m̂t
u ∈

R2×M×N is the refined motion field. As shown in Fig-
ure 2, the network architecture of MCC consists of a stack
of down-sampling blocks, a spatial attention block, and a
stack of up-sampling blocks.

4.1.2 Training Loss

As indicated in Eqs. (3) and (4), our MCC takes mt
u as input

and outputs ∆rtu for each vertex. Since the motions mt
u are

at grid vertices which might be noisy, we employ the aver-
age motion of a local patch as the ground-truth motions to
adjust mt

u. Specifically, we average local motions estimated
by optical flow and the confidence map, and downsample
them to the grid size. Then, the flow offset for grid vertices
is written as:

ot, ct = B(ot, (M,N)),B(ct, (M,N)),

∆ot = ot −mt,
(5)

where B(·, (M,N)) represents an averaging operation,
downsampling an image to the size (M,N) with bilinear
interpolation, ot,∆ot ∈ R2×M×N , ct ∈ R1×M×N .The off-
set ∆ot is used as supervision for Eq. (3).

The averaged confidence map indicates in which local
areas the estimated motions are more reliable. Therefore,
we aim to use the reliable motions to supervise the offset
flow learning in Eqs. (3) and (4). Thus, we employ a high
threshold λ to remove unconfident areas from {ot}, and the
motion correction loss is formulated as:

Lmotion =

T−1∑
t=1

MN∑
v=1

∑
ct(v)>λ

∥∆ot(v) −∆rt(v)∥22,

(ot, ct) ∈ {(otu, ctu)} ∪ {(ots, cts)},
∆rt ∈ {∆rtu} ∪ {∆rts}.

(6)

Although the motion correction loss is only applied to ver-
tices with high confidence, MCC is agnostic to high confi-
dent vertices. It leverages neighboring motion information
to correct or complete motions of vertices. In this way, ac-
curate motions can be propagated to inaccurate ones. Note

that MCC is trained in a self-supervised manner, and it can
be applied to rectifying motions of stable videos.

We also apply a shape-preserving loss [29, 31, 15] to
constrain the shapes of transformed grids:

Lshape =

T−1∑
t=1

(M−1)(N−1)∑
v=1

∥pv+1 +A(pv+1 − pv)− pv+2∥22,

A =

[
0 1
−1 0

]
,

(7)
where pv, pv+1, pv+2 denote the triangle of deformed ver-
tices clockwise. The matrix A conducts a 90-degree rota-
tion. The final objective of MCC is defined as:

LMCC = βLmotion + Lshape, (8)

where β is a weight to balance the two terms.

4.2. Global Trajectory Smoothing

After obtaining the vertex motions, we aggregate the
temporal trajectory for each grid vertex. As illustrated in
Figure 2, an unstable trajectory usually contains uninten-
tional motions while a stable one is much smoother. Here,
we consider the trajectory smoothing task as a sequence to
sequence learning problem whose input is an unstable tra-
jectory, and output is a stabilized version, and thus propose
a Trajectory Smoothing Transformer (TST).

4.2.1 Trajectory Smoothing Transformer (TST)

Denote the unstable trajectory at a specific vertex as Jv
u =

{x̂t,v
u }Tt=1, where x̂t,v

u is the the offset of vertex v at times-
tamp t, calculated as the accumulated sum of motions:
x̂t,v
u =

∑t
i=1 m̂

i
u(v). Similarly, a ground-truth stable tra-

jectory is expressed by:

Jv
s = {x̂t,v

s }Tt=1 = {
t∑

i=1

m̂i
s(v)}Tt=1,

{Jv
s }MN

v=1 , {Jv
u}MN

v=1 ∈ RT×MN×2.

(9)

We apply a linear embedding E ∈ R2×E to input trajec-
tories Ju = {Jv

u}MN
v=1 and obtain the trajectory features ξ.

Then, ξ are fed into h parallel self-attention layers [28]:

headi = softmax(
ξξT√
dk

)ξ,

MultiHead(ξ) = Concat(head1, ...,headh),

(10)

where 1√
dk

is a scaling factor. Then another linear trans-
formation is applied to the encoded features to obtain the
stabilized trajectories, denoted as Jest ∈ RT×MN×2.
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Figure 3. We design two losses to constrain the estimated trajec-
tory by leveraging stable trajectory reference: (i) Motion Magni-
tude Similarity and (ii) Motion Tendency Similarity.

4.2.2 Training Loss

Similar to the works [31, 21, 20, 18], we constrain the
smoothed trajectory by minimizing motion differences in
a temporal neighborhood:

Lneighbor =

MN∑
v=1

T∑
t=1

∑
q∈[t−3,t+3]

∥Jv
est(t)− Jv

est(q)∥22.

(11)
However, this neighborhood smoothness loss can effec-
tively remove large jittering artifacts, but is ineffective to
remove medium and small shaky effects.

Benefiting from our Sim2RealVS benchmark, stable tra-
jectories are available and we can use them to supervise
TST learning, which cannot be conducted in prior arts.
Therefore, we propose to constrain smoothed trajectories in
two aspects with respect to the stable counterparts: motion
magnitude similarity and motion tendency similarity.

The motion magnitude similarity loss is designed to min-
imize the geometric distance between the estimated trajec-
tory and the stable reference trajectory for all grid vertices:

Lmagnitude =

MN∑
v=1

T∑
t=1

∥Jv
est(t)− Jv

s (t)∥22. (12)

We observe that unintentional motions usually occur
when there is an undesired direction change in a trajectory,
resulting in the motion tendency disagreement with the sta-
ble reference, as shown in Figure 3. To alleviate this is-
sue, we design a motion tendency loss by enforcing the first
derivatives of unstable and stable trajectories to be similar:

Ltendency =
MN∑
v=1

T−1∑
t=1

L[Jv
est(t+ 1)− Jv

est(t), J
v
s (t+ 1)− Jv

s (t)],

L(x, y) =

{
0.5(x− y)2/σ, |x− y|< σ,

|x− y|−0.5σ, |x− y|≥ σ,

(13)
where L denotes the smooth L1 loss. σ is set to 1.0 empiri-
cally. The final objective of TST is expressed as:

LTST = γ1Lneighbor + γ2Lmagnitude + γ3Ltendency, (14)

where γ1, γ2, γ3 balance the magnitudes of these three
losses at the same level.

4.3. Frame Warping and Implementation Details

Frame warping. Once we obtain the smoothed trajec-
tories for all grid vertices, frame warping is applied to the
unstable video to generate a stabilized version. Specifically,
for each unstable frame, we first project all grid vertices
to the desired positions according to smoothed trajectories,
and then conduct different homographies to all grid-cells
independently to generate the stabilized frame.
Implementation details. For our synthetic benchmark, we
use 1180 unstable and stable video pairs from Sim2RealVS
for training, and 120 pairs of synthesized videos for testing.
For the real-world benchmark DeepStab [29], we use 50
pairs of videos for training, and 10 video pairs for testing.
The entire NUS dataset [20] with 174 unstable videos is
used for testing.

During training, we randomly sample 80 consecutive
frames in a video as input. Adam optimizer with the beta
(0.5, 0.999) and an initial learning rate (0.0002) is applied
to optimize MCC and TST, respectively. The spatial dimen-
sion numbers W,H,M,N are set to 768, 512, 48, 32, re-
spectively. We empirically set the loss weights β, γ1, γ2, γ3
to 4, 10, 10, 20 respectively for satisfying performance. We
train our MTSNet for 25 epochs. In the first 5 epochs, we
only optimize the MCC network, and then we optimize both
MCC and TST for the rest 20 epochs. The whole train-
ing process takes about 24 hours on a single NVIDIA Tesla
V100 GPU.

5. Experiments

5.1. Datasets and Metrics

Apart from our proposed Sim2RealVS benchmark, exist-
ing real-world benchmarks, i.e., NUS dataset [20] and the
DeepStab dataset [29], are utilized in our experiments. The
NUS dataset contains 174 unstable videos without stable
references. The DeepStab dataset includes 60 unstable and
stable video pairs.

Following [22, 31, 29, 20, 22, 32], we employ four met-
rics for evaluation: (i) Cropping ratio evaluates the remain-
ing area ratio after stabilization. (ii) Distortion value mea-
sures the anisotropic scaling of the homography between
unstable and stabilized video pairs. (iii) Stability score
measures the stability and smoothness of the stabilized re-
sults. (iv) Accumulated optical flow accumulates the opti-
cal flow (i.e. RAFT [26]) over the entire stabilized video.

5.2. Experimental Details

We evaluate our MTSNet and Sim2RealVS benchmark
in three steps: (i) We directly evaluate existing state-of-
the-art methods, commercial software and our MTSNet on
Sim2RealVS testing set. (ii) We fine-tune the pre-trained
model of DUT [31], one of the representative deep learning
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Table 2. Quantitative evaluations on our Sim2RealVS benchmark and existing real-world benchmarks. S denotes training on the
Sim2RealVS benchmark and D denotes training on the DeepStab benchmark.The bold number indicates the best and the underlined
number indicates the second best.

Model NUS benchmark [20] DeepStab benchmark [29] Sim2RealVS benchmark
C↑ D↑ S↑ A↓ C↑ D↑ S↑ A↓ C↑ D↑ S↑ A↓

Bundle [20] 0.84 0.93 0.84 0.78 0.76 0.91 0.84 0.56 - - - -
L1Stabilizer [8] 0.74 0.92 0.82 0.88 0.74 0.91 0.82 0.70 - - - -
DIFRINT [1] 1.00 0.97 0.82 0.87 1.00 0.96 0.83 0.78 1.00 0.82 0.84 0.88
StabNet [29] 0.68 0.82 0.81 1.02 0.64 0.86 0.83 0.80 0.84 0.74 0.74 1.04

DUT [31] 0.70 0.95 0.83 0.87 0.73 0.92 0.83 0.77 0.87 0.77 0.80 0.91
Yu and Ramamoorthi [35] 0.86 0.91 0.83 0.88 0.83 0.92 0.83 0.72 0.90 0.85 0.81 0.87

FuSta [22] 1.00 0.96 0.84 0.77 1.00 0.95 0.83 0.64 1.00 0.88 0.84 0.84
DUT+OVS [32] 1.00 0.94 0.85 - - - - - - - - -

Adobe Premiere 2020 Stabilizer 0.74 0.83 0.86 0.84 0.75 0.87 0.83 0.78 0.89 0.71 0.82 0.81

DUT [31] (S+D) 0.72 0.94 0.85 0.86 0.73 0.93 0.83 0.74 0.88 0.81 0.85 0.86
MTSNet (D) 0.81 0.92 0.83 0.84 0.75 0.92 0.83 0.76 0.88 0.80 0.79 0.87
MTSNet (S) 0.89 0.95 0.84 0.82 0.79 0.92 0.83 0.77 0.90 0.92 0.87 0.83

MTSNet (S + D) 0.89 0.97 0.85 0.78 0.78 0.95 0.85 0.60 0.90 0.93 0.89 0.79

Figure 4. Visual comparisons between MTSNet and existing state-of-the-art methods on Sim2RealVS benchmark, NUS benchmark [20]
and DeepStab [29] benchmark. We highly encourage readers to watch the videos in supplementary materials.

Table 3. Ablation study on the impacts of MCC module on
Sim2RealVS benchmark.

Motion Estimation C↑ D↑ S↑ A↓

simple sample 0.91 0.72 0.74 0.97
bilinear interpolation 0.91 0.74 0.77 0.95

adaptive average-pooling 0.90 0.77 0.78 0.93

MCC (w/o SA) 0.90 0.85 0.86 0.83
MCC (w/ SA) 0.93 0.87 0.86 0.83

based methods, on Sim2RealVS to demonstrate the contri-
bution of Sim2RealVS benchmark. (iii) We train MTSNet
on both Sim2RealVS and DeepStab benchmarks, and then
evaluate it on the real-world testing videos.

5.3. Quantitative and Qualitative Results

We compare our MTSNet with existing state-of-the-art
methods. The quantitative results in Table 2 indicate our
MTSNet achieves state-of-the-art performance on both syn-
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thetic and real-world data. Note that Fusta [22] achieves
very good performance, but its stabilization speed is slow,
i.e., around 8 seconds per frame. In contrast, our method
runs 80 ms per frame. The performance of using either real
or synthetic data is inferior to that of our final model, im-
plying the importance of our Sim2RealVS benchmark. For
qualitative analysis, we demonstrate visual comparisons to
state-of-the-art methods in Figure 4. It can be observed that
existing methods suffer from distortions (as highlighted by
the orange boxes) or severe shakes at distant objects (DUT).
In contrast, our MTSNet can generate more stable results
with fewer distortions on both synthetic and real-world data.
More visual comparisons on both synthetic and real-world
data are provided in supplementary materials.

5.4. Ablation Study

We dissect our proposed components (i.e., MCC and
GTS) in MTSNet to demonstrate their effectiveness. All
ablation studies are conducted on Sim2RealVS benchmark.

Impacts of MCC: As the first step in the MTSNet, MCC
aims to provide accurate vertex motions by leveraging op-
tical flow. We analyze the effectiveness of MCC by com-
paring with several learning-free approaches that can also
provide vertex motion estimation based on optical flow. We
replace the second smoothing step by a Jacob Solver, which
is learning-free and widely used in video stabilization meth-
ods [20, 18, 31], as the trajectory smoothing module, for fair
comparison. First, we provide the motions at grid vertices
by directly sampling optical flow without MCC (as illus-
trated in the first row of Table 3). Next, we further explore
the options of estimating average local motions with dif-
ferent averaging operations, i.e. bilinear interpolation and
average-pooling. Specifically, for the bilinear interpolation
approach, we downsample the optical flow to the resolution
of M×N , as the estimated vertex motions. For the average-
pooling approach, we apply an adaptive average pooling
kernel to calculate the mean motion of a local patch with
the stride of α = H

M . The results are illustrated in the sec-
ond and third rows of Table 3.

For the internal design of MCC, we study the impacts of
the self-attention of MCC. The comparison between the last
two rows in Table 3 indicates that MCC with self-attention
achieves better performance. This indicates that MCC is
able to explore the global motions of frames to correct in-
consistent ones. As shown in the last row of Table 3, our ap-
proach surpasses all the other configurations, verifying that
the MCC corrects and completes vertex motions accurately.

Impacts of the network architecture and losses in TST:
In GTS, we propose a TST with three different losses to re-
move unintentional motions. We first compare the TST with
a traditional Jacob Solver baseline (as shown in the first row

Table 4. Ablation study on the impacts of GTS module on
Sim2RealVS benchmark. N, M, T denote the neighborhood
smoothness loss, the motion magnitude similarity loss and the mo-
tion tendency similarity loss, respectively. * means the training
does not converge.

Trajectory Smoother C↑ D↑ S↑ A↓

Jacob Solver 0.93 0.87 0.86 0.83
MLP (N+M+T) 0.92 0.85 0.86 0.87

TST (N)* - - - -
TST (M)* - - - -
TST (T) 0.93 0.81 0.80 0.87

TST (N+M) 0.91 0.84 0.84 0.90
TST (N+T) 0.91 0.87 0.89 0.83

TST (N+M+T) 0.94 0.92 0.87 0.83

of Table 4) to demonstrate the superiority of a learnable tra-
jectory smoother. Here, the motion estimation module is
fixed, where the same MCC pretrained model is employed
for fair comparison. Then, we study the impacts of different
losses as shown in the 3rd-8th rows of Table 4. For the in-
ternal design of TST, we study the impacts of the different
network architectures, i.e. MLP with four hidden layers (the
second row of Table 4), as a comparison to Transformer. As
illustrated in the last row of Table 4, TST trained with the
three losses surpasses the others, indicating the effective-
ness of TST and our proposed trajectory smoothing losses.
In our experiments, we notice that without explicit supervi-
sion, TST fails to converge. This also implies the necessity
of our proposed Sim2RealVS benchmark.

6. Conclusion

In this paper, we presented the first large-scale syn-
thetic video stabilization benchmark, dubbed Sim2RealVS,
as well as a strong baseline, namely Motion-Trajectory
Smoothing Network (MTSNet). Benefiting from our syn-
thetic dataset, MTSNet can be easily trained in a fully-
supervised fashion and achieves state-of-the-art perfor-
mance. Moreover, we show that our benchmark also fa-
cilitates the development of other methods, further improv-
ing their performance and mitigating the data hungry is-
sue of deep learning based methods. We believe that our
Sim2RealVS benchmark will profoundly contribute to the
research field and propel the development of video stabi-
lization.
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