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Abstract

There has been a growing interest in solving Visual
Question Answering (VQA) tasks that require the model
to reason beyond the content present in the image. In
this work, we focus on questions that require common-
sense reasoning. In contrast to previous methods which
inject knowledge from static knowledge bases, we in-
vestigate the incorporation of contextualized knowledge
using Commonsense Transformer (COMET), an existing
knowledge model trained on human-curated knowledge
bases. We propose a method to generate, select, and en-
code external commonsense knowledge alongside visual
and textual cues in a new pre-trained Vision-Language-
Commonsense transformer model, VLC-BERT. Through
our evaluation on the knowledge-intensive OK-VQA and A-
OKVQA datasets, we show that VLC-BERT is capable of
outperforming existing models that utilize static knowledge
bases. Furthermore, through a detailed analysis, we ex-
plain which questions benefit, and which don’t, from con-
textualized commonsense knowledge from COMET. Code:
https://github.com/adityal O/VLC-BERT

1. Introduction

Recent progress in multimodal vision-language learning
has been fueled by large-scale annotated datasets for Visual
Question Answering (VQA) [1,6,12,37,49], in which mod-
els are presented with questions about an image. To answer
questions correctly, models are required to perform scene
understanding and learn meaningful connections between
the two modalities. In recent years, transformer-based vi-
sion and language (VL) models [8, 21, 44], pre-trained on
large-scale multimodal corpora, have reached impressive
accuracies on standard VQA datasets.

VQA often necessitates not only visual comprehension
of the scene depicted by the image (e.g., “A plate with meat,
potatoes and bread”) but also making inferences about plau-

“Denotes equal contribution

Figure 1: OK-VQA [29]: Where might one buy this?

sible stories behind the image (e.g., “The plate is likely
found at a restaurant”). Humans make such inferences
based on prior experience and commonsense knowledge
(e.g., “This is likely a lunch or dinner at a restaurant, peo-
ple may be enjoying themselves...”). Most existing meth-
ods rely on world knowledge implicitly encoded by lan-
guage models, which often lacks in both accuracy and cov-
erage [32]. This is primarily due to the fact that com-
monsense knowledge is extremely broad, and frequently as-
sumed. Commonsense knowledge learned from text suffers
from reporting bias [11]: over-representation of exceptional
facts (e.g., “people die in accidents™) in text corpora, at the
expense of rarely discussed trivial facts known to everyone
(e.g., “people eat”).

Several visual question answering benchmarks were pro-
posed, in which the questions require either factual [29,45]
or commonsense knowledge [36, 49] beyond the visual
scene comprehension. This prompted the development of
neurosymbolic methods combining transformer-based rep-
resentations with knowledge bases (KBs) [9,28,47]. How-
ever, retrieving relevant facts directly from a KB is chal-
lenging due to lack of coverage, and because KB facts are
only appropriate in certain contexts.

In this work, we propose VLC-BERT (Vision-Language-
Commonsense BERT), a model designed to incorporate
contextualized commonsense knowledge into a Vision-
Language transformer built on VL-BERT [41]. As an al-
ternative to the retrieval paradigm often used in knowledge-
based VQA, our model generates contextualized common-
sense inferences on the question phrase combined with im-
age object tags using COMET [2, 15], a language model
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trained on commonsense knowledge graphs. We augment
sentence transformers [31] to rank, filter and embed the
commonsense inferences. We incorporate the filtered in-
ferences into VLC-BERT using an attention-driven fusion
mechanism that learns to focus on the most important infer-
ences for each question. Commonsense knowledge may not
be necessary for answering every question, as some ques-
tions are either purely visual, factual, or straight-forward.
To eliminate injecting noisy knowledge in such cases, we
employ weak supervision to help us discriminate between
situations when commonsense knowledge may or may not
be valuable.

Our evaluations on the challenging OK-VQA [29] and
A-OKVQA [36] datasets confirm that leveraging common-
sense is consistently useful for knowledge-intensive visual
question answering tasks. We analyze the successful pre-
dictions and show how the commonsense inferences help
answering difficult questions.

2. Related Work
2.1. Vision-Language Transformer Models

Pre-trained Vision-Language models based on BERT [8]
have shown impressive performances on downstream mul-
timodal tasks such as Visual Question Answering. ViL-
BERT [25] and LXMERT [42] use a two-stream architec-
ture to first encode language and vision modalities indepen-
dently, and then apply a cross-modality encoder to align
textual and visual tokens. VL-BERT [41], OSCAR [22]
and OSCAR+ [50] use a single-stream architecture to di-
rectly learn inter-modality interactions. Large-scale pre-
training is commonly done using the Conceptual Captions
[38] dataset, with objectives that are designed to encourage
interaction between modalities, such as predicting masked
tokens or image regions [22, 25, 41, 42], and using con-
trastive loss between modalities [22]. As a result, such
models inherently capture some commonsense knowledge
through their pre-training regime. While these models per-
form impressively on downstream tasks such as VQA [1],
they typically perform worse on questions requiring rea-
soning about knowledge beyond the image content or in-
volving multiple reasoning hops. In our work, we introduce
VLC-BERT, a multimodal transformer model based on VL-
BERT that explicitly incorporates external knowledge to al-
leviate this issue.

2.2. Knowledge-based Visual Question Answering

In recent years, several VQA datasets were designed
specifically to require reasoning about external knowledge
beyond the image, whether using factual and web infor-
mation (FVQA [45], WebQA [5], a provided text pas-
sage (VLQA [34]), commonsense-driven reasoning (VCR
[49]), or external commonsense knowledge (OK-VQA [29],

A-OKVQA [36]). This motivated a line of work on
knowledge-enhanced VL transformer models. External
knowledge is typically retrieved from a structured knowl-
edge base like ConceptNet [40], in the form of a subgraph,
and integrated into the VL transformer as an additional in-
put [9,20,28,47]. Alternative sources of knowledge include
image captions [33], Google Search results [26], and tex-
tual and visual knowledge from Wikipedia, and Google Im-
ages [47]. In contrast to most of the preceding work, PICa
[48] and Knowledge Augmented Transformer (KAT) [13]
attempt to use GPT-3 [3] in a few-shot setting on the VQA
task, by building prompts containing the caption and ob-
ject tags generated using the image, followed by the ques-
tion statement, asking the model to produce an answer.
In our proposed model, we focus on a specific subset of
the knowledge-intensive datasets that require commonsense
knowledge. Our approach, that uses COMET [15], for in-
corporating commonsense knowledge is distinctly different,
far simpler and more cost-effective.

2.3. Knowledge incorporation in NLP

Structured large-scale knowledge bases (KBs) like Con-
ceptNet [40] and ATOMIC [35] are widely used in NLP
tasks to provide additional commonsense knowledge to
models. ConceptNet contains 3.4M assertions focusing on
concept and entity relations (such as RelatedTo, Synonym,
IsA, MadeOf). ATOMIC contains 1.33M triplets focusing
on event-centric social commonsense about causes, effects,
mental states of the event participants. Several approaches
were proposed for incorporating symbolic knowledge from
these KBs into downstream NLP tasks such as encoding
subgraphs of relevant knowledge [9, 23] and pre-training
on commonsense knowledge bases or tasks [51]. Despite
the performance improvements, incorporating knowledge
directly from KBs suffers from two limitations: lack of
coverage and lack of consideration for context. Com-
monsense Transformer, COMET [15], attempts to allevi-
ate these issues by fine-tuning pre-trained language models
on KBs. COMET can generate inferences for the various
KB relations dynamically for new inputs. It has been suc-
cessfully used for generating knowledge in language tasks
[4,27,39,43]. Inspired by the success of these models, we
chose to use COMET [15] to generate relevant contextual
expansions rather than directly retrieving knowledge from
KBs. To the best of our knowledge, we are the first to in-
corporate commonsense knowledge using COMET in VQA
tasks. Newer COMET variants [30,46] are less applicable
to OK-VQA and A-OKVQA as they focus more on event
commonsense than entities.

3. Method

We briefly outline the overall architecture of our model
and then delve deeper into its individual components. Fig-
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Figure 2: Architecture of VLC-BERT: Given an image, VLC-BERT generates commonsense inferences for the question-
object phrase using COMET. These inferences are relevance ranked, and top ones are selected and fed along with image
regions into a VL-Transformer in order to produce an answer. We utilize semantic similarity between @) and C' to select the

final K inferences that go into VLC-BERT.

ure 2a illustrates the VLC-BERT pipeline. Given an im-
age with corresponding image regions I precomputed using
Fast RCNN [10] and a question () related to the image, we
generate commonsense inferences C' on the events and enti-
ties in the question phrase and two object tags O, and select
the set of commonsense inferences which is the most use-
ful for answering the question, C' = {C4, Cy, ..., Ci } (§3.1).
Finally, we embed @, I and C, as input to VLC-BERT and
train it to predict an answer A to Q) (§3.2).

3.1. Structured knowledge generation and selection
3.1.1 Knowledge Generation

To generate commonsense knowledge, we employ the most
recent version of COMET [15] initialized using BART [19]
in a zero-shot setting. COMET is trained to complete 50
relation types from both ConceptNet [40] (such as AtLoca-
tion, Madeof) and ATOMIC [35] (such as xNeed, xWants),
thus capturing concept as well as event oriented knowledge.
We generate inferences based on 30 relation types most rel-
evant to our work and supported by COMET.! Consider the
example shown in Figure 2b. For the given question, “What
is the purpose of the umbrella?” we first process each ques-
tion using AllenNLP’s constituency parser [17] and convert
it into a declarative sentence, since COMET was mainly
trained on declarative sentences. In the example shown,
“What is the purpose of the umbrella?” is rephrased as
“The purpose of the umbrellas is”. We then adopt a state-
of-the-art object detection model, YOLOvVS [16], to trans-
late the corresponding image into object tags that COMET
can understand. We select the top two most confident ob-
ject tags and combine it with the question phrase to obtain a
question-object(QO) phrase, “The purpose of the umbrella

'We include the full list of relation types in the supplementary material.

is, with dog and chair”. We restrict the number of the object
tags used in COMET’s input to two because the addition of
multiple tags make the inferences more conflated and noisy.
In this manner, we can obtain inferences that can provide
additional knowledge about both the visual and language
inputs to VLC-BERT.

We use beam search to decode the top 5 inferences for
each relation type, ranked according to the model’s con-
fidence. Overall, we get 30 x 5 = 150 inferences for
each input phrase. Finally, we convert each inference to
a sentence in natural language using relation-specific tem-
plates as defined in [7]. In the shown example, the assertion
< umbrella, Located At, store > is expressed as “You are
likely to find umbrella at store”. In order to remove re-
dundant sentences of the same relation type, we measure
the lexical overlap by measuring the percentage of common
words between two given sentences. We exclude the sen-
tences which have more than 70% overlap with previously
constructed sentences of the same relation.

3.1.2 Knowledge Selection

Due to the high cost of computation, and the noise asso-
ciated with feeding such a large number of text tokens,
feeding up to 150 COMET inferences into the VL Trans-
former model is impractical. In order to rank and select the
inferences, we employ semantic search based on sentence
transformers (SBERT) [31], which are pre-trained on tasks
that retrieve candidate answers to a search query. In this
method, the question and the inferences are embedded
into the same vector space using SBERT [31] and cosine
similarity between the question and the inference embed-
dings is used to rank the inferences. We prune the set
of inference sentences C' by picking K = 5 inferences
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which are expected to be the most useful for answering the
question Q).

Augmented-SBERT. We augment the SBERT used
for semantic search by starting with a pre-trained SBERT
model and continuing to train it for 2 epochs on question-
inference instances from the training set of our datasets. To
achieve this, we label the inferences for each question with
similarity scores based on the proportion of overlap with
the human-annotated answers. Since SBERT is trained on
corpora that are distinct from our task, the augmentation
ensures that the model understands the nature of query-
inference pairings in our tasks. The augmented SBERT
especially helps with narrowing down the right relations
to the question. For instance, the question in shown in
Figure 2b benefits most from the relations that talk about
what the umbrella (UsedFor) is used for or capable of
(CapableOf.)

3.2. VLC-BERT

We use a single-stream multimodal transformer encoder,
VL-BERT [41], as the basis of VLC-BERT. VL-BERT is
pre-trained on large-scale vision-language and language-
only datasets with a goal of aligning the visual and linguistic
features and building robust multimodal representations for
downstream tasks. It is trained on the vision-language Con-
ceptual Captions dataset [38], to predict regions-of-interests
(Rols) from language cues, and on the language-only Book-
Corpus [52] and English Wikipedia corpora, with a masked
language modeling objective. Figure 3 shows the VLC-
BERT Transformer architecture. In the following para-
graphs, we share how the input sequence is constructed and
how the predicted answer is selected.

3.2.1 Inputs

Like VL-BERT, VLC-BERT accepts word token embed-
dings for language inputs and Rol token embeddings from
the image for vision inputs. The architecture of VLC-BERT
Transformer is shown in Figure 3. We use the [cLs] in the
beginning of the sequence, [END] to mark the end of the se-
quence, and the separator token [sEP] between different in-
puts. We feed the question () as a sequence of word tokens
and the image regions I as sequences of Rols. A [MAsK] to-
ken is used to represent the unknown answer. In addition,
we introduce a commonsense fusion token, F', to the input
sequence, to incorporate our commonsense inferences.

A straightforward way to leverage the commonsense in-
ferences C' = {C1, (s, ...,Ci} is to embed each word to-
ken in every inference sentence as an input token. How-
ever, this would lead to a very long input sequence, where
the majority of inputs consist of inferences, thus potentially
drawing the model’s attention away from the other inputs.

To overcome the challenge, we summarize the information
contained in each inference sentence C; into a single to-
ken representation Ci, by embedding the inference using
SBERT [31]:

C; = SBERT(C}) (1)
Next, in order to obtain a fused representation of the &
commonsense inferences, we attend to the corresponding
SBERT embeddings, [C_’;(j'k] against the SBERT embed-
ding of the question, § = SBERT(Q). The intuition be-
hind this approach is that the model learns to assign a higher
score to the most important inference to the question. The
key (K 4), query (Q 4) and value (V) are assigned as shown
below,

—

Kys=@Q ()
Qa,Vy = append([d...dk], Cj) 3)
F = MHA(K4,Qa,Va) )

where MHA 1is the standard multi-head attention [44],
that delivers a single vector incorporating all relevant
commonsense knowledge required to answer the question.
Note that we append the question embedding C} to list of
commonsense inference embeddings for () and V' because
there may be cases where none of the inferences are useful
to answer the question. In such a case, the model may
choose to ignore the inferences by attending to the question
embedding @ instead.

Weak Supervision. In order to train the MHA
block effectively, we employ weak supervision on the
attention weights. For a small subset of the questions in the
training set, we obtain label attention weights by following
these steps: (1) we initialize a vector A of length £ 4+ 1
where all values are 0.05, (2) for each C;, if C; contains a
word in the ground-truth answer list, then we set the /L to
0.8, (3) if none of the C' inferences contain answer words,
we assign a weight of 0.8 to Ak+1 so that the question
has the largest weight, and (4) we normalize A so that
its values sum up to 1. We then apply cross-entropy loss
between the predicted attention weights from MHA and
our label attention weights fl and sum this with the answer
prediction loss.

Finally, a positional encoding is added to all input to-
kens following the method described in VL-BERT. In addi-
tion, a different segment type encoding is applied to the four
segments in the input sequence: the question segment, the
commonsense segment, the masked answer segment, and
the image region segment.

3.2.2 Answer Selection

We use the encoded [Mask] token to represent the answer,
thereby making VQA a masked language modelling task
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Figure 3: VLC-BERT Transformer is a single-stream Transformer that can attend across language, vision, and common-
sense representations. We use the MHA block to fuse commonsense inferences into a useful commonsense representation.

with visual cues. To predict the final answer, we apply
a classifier over the entire answer vocabulary, as done in
VL-BERT. During training, we follow VL-BERT and use a
cross-entropy loss over picking the correct answer from an
answer vocabulary.

4. Datasets

We perform experiments on the OK-VQA [29] and
A-OKVQA [36] datasets. In order to utilize the existing
VL-BERT model effectively, we pre-train VLC-BERT on
the larger VQA 2.0 [12].

OK-VQA. In the Outside-Knowledge VQA dataset,
questions require external knowledge in addition to the
information in the images. The dataset is composed of
14,031 images and 14,055 questions, and the crowsourced
questions are divided into ten knowledge -categories:
Vehicles and Transportation; Brands, Companies and
Products; Objects, Materials and Clothing; Sports and
Recreation; Cooking and Food; Geography, History,
Language and Culture; People and Everyday Life, Plants
and Animals; Science and Technology; and Weather and
Climate. OK-VQA only contains open-ended questions
with five human-provided answers. Since OK-VQA does
not have a validation set, we dedicate 1,000 of the 9,009
training questions for validation.

A-OKVQA. A-OKVQA [36] is the augmented suc-
cessor to OK-VQA and consists of 25K questions that
require a combination of commonsense, visual, and physi-
cal knowledge. In contrast to other knowledge-based visual
question answering datasets, the questions in A-OKVQA
are conceptually diverse, involving knowledge that is
not contained in the image, and cannot be resolved by a

simple knowledge base query. A-OKVQA is split into
training, validation, and test sets based on images used
from the COCO 2017 [24] dataset. Moreover, all questions
in the dataset have human annotated direct answers as
well as multiple-choice options, but we focus on the
direct answers. The A-OKVQA test set is blind, requir-
ing us to submit to the leaderboard to obtain a test accuracy.

VQA 2.0. The Visual Question Answering (v2.0)
dataset contains 1.1 million crowdsourced questions about
204,721 images from the COCO dataset [24]. Each ques-
tion is annotated with 10 ground truth answers obtained
using Amazon Mechanical Turk. A majority of the ques-
tions in this dataset do not require external commonsense
knowledge.

4.1. Evaluation Metric

Both datasets use the same accuracy-based evaluation
metric. Each question has a set of 10 ground truth
answers provided by different annotators. Accuracy is
calculated as the percentage of predicted answers that

were proposed by at least 3 human annotators: acc
I’Illn( # humans ga:;/e the answer, 1).2

5. Implementation Details

The implementation of our model builds on VL-BERT
[41]. To that end, we follow the fine-tuning steps provided
in the official codebase of the VL-BERT model for VQA
2.0, and modify it to support the OK-VQA and A-OKVQA
datasets. We maintain the recommended hyperparameter
values, and train the BER1'g o5E size of the model, with a
hidden feature dimension of 768. The model is trained for

2Following the same evaluation, each of the 5 answers in OK-VQA is
used twice
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Table 1: Accuracy of our model against other models for OK-VQA and A-OKVQA datasets. Our model improves upon
existing knowledge base based models due to the contextualized commonsense inferences from COMET, which is trained
on ConceptNet and ATOMIC. We compare favourably against the highlighted models that utilize external knowledge bases.

Note: P.T. stands for Pre-Training.

Method Knowledge Sources OK-VQA A-OKVQA Approx. Params
VILBERT [36] - - 25.85 116M
LXMERT [36] - - 25.89 -
BAN + AN [29] Wikipedia 25.61 - -
BAN + KG-AUG [20] Wikipedia + ConceptNet 26.71 - -
MUTAN + AN [29] Wikipedia 27.84 - -
ConceptBert [9] ConceptNet 33.66 - 118M
KRISP [28] Wikipedia + ConceptNet 32.31 27.1 116M
KRISP [28] Wikipedia + ConceptNet + VQA P.T. 38.9 - 116M
Visual Retriever-Reader [26] Google Search 39.2 - -
MAVEX [47] Wikipedia + ConceptNet + Google Images ~ 41.37 - -
GPV2 [18,36] Web Search (Web10k) + COCO P.T. - 40.7 220M
PICa-Base [48] GPT-3 433 - 175B
PICa-Full [48] GPT-3 48.0 - 175B
KAT [14] Wikidata + GPT-3 54.41 - 175B
VLC-BERT (Ours) VQA P.T. + COMET 43.14 38.05 118M

20 epochs on the OK-VQA and A-OKVQA datasets. For all
models, we use a batch size of 16 and gradient accumulation
step size of 4. We train the models presented in the main
result thrice and report the average test accuracy on the OK-
VQA dataset, and the best (leaderboard) test accuracy on
the A-OKVQA dataset.

Answer Vocabulary. Due to the large number of unique
answers to questions in visual question answering datasets,
it is infeasible to use all answers in the answer vocabulary.
For the OK-VQA dataset, following KRISP [28], we build
an answer vocabulary of 2,249 answers by selecting all
answers in the training set that appear at least 10 times.
This answer vocabulary ignores the empty space answer,
and includes an <unk> answer token. During training,
if a ground truth answer is not present in the answer
vocabulary, we assign it to the (<unk> ) token. For the
A-OKVQA dataset, we use the answer dictionary that is
already provided in the dataset [36].

VQA Pre-Training (VQA P.T). Following the idea
that pre-training is beneficial for Transformer models,
we initialize VLC-BERT with weights obtained after
fine-tuning VL-BERT on the VQA 2.0 dataset for 5
epochs. Note that KRISP [28] benefits from pre-training
on the VQA 2.0 dataset, and PICa [48] and KAT [14]
utilize GPT-3, a large-scale pre-trained model, for external
commonsense. Furthermore, because OK-VQA and
A-OKVQA are significantly smaller than VQA 2.0, this

Table 2: Ablation of various components in VLC-BERT,
evaluated on the A-OKVQA validation set. We observe that
all the components of our model play a critical role in em-
pirical performance.

VQA P.T. Aug. SBERT SBERT Attn. Val
VQA Pre-training

- - - - 36.24
v - - — 4346
Comm. Inference Representation
v v - - 4344
v v v -  43.64
v v v v 4495
Augmentation of SBERT
v - v v 4410
v v v v 4495

initialization favourably benefits the training process and
gives us a stronger baseline to work with.

6. Evaluation

In this section, we focus on evaluating VLC-BERT
on the OK-VQA and A-OKVQA datasets and comparing
against existing state-of-the-art models for VQA with exter-
nal commonsense knowledge. Table 1 highlights our per-
formance improvements on the test set for OK-VQA and
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A-OKVQA against other models. Later in this section, we
ablate on the components of our model.

6.1. Main Results

Table 1 specifies which knowledge sources each model
leverages. In the top section, we consider models that uti-
lize knowledge bases such as ConceptNet and Wikipedia,
as well as models that utilize web search APIs to obtain
external knowledge. VLC-BERT incorporates COMET,
which is trained on ConceptNet and ATOMIC, and we
compare favourably against these models. Notably, VLC-
BERT achieves an accuracy of 43.14 on OK-VQA, out-
performing KRISP (Wikipedia + ConceptNet + VQA P.T.)
by over 4 points, and MAVEx (Wikipedia + ConceptNet
+ Google Images) by about 2 points. While our model
clearly outperforms previous methods that use knowledge
bases, it does not outperform models with large-scale pre-
training and large number of parameters such as GPT-3 [3]
and GPV2 [18], which incorporate implicit commmonsense
knowledge and require extensive resources to train. How-
ever, on OK-VQA, we achieve very similar results to PICa-
Base [48], despite not having access to GPT-3. We expect
that the use of a large pre-trained model like GPT-3 can fur-
ther boost the performance of VLC-BERT.

6.2. Ablation Tests

We perform comprehensive ablations on the validation
set of the A-OKVQA dataset, as represented in Table 2.3

VQA PT. We begin by training A-OKVQA on the
baseline VL-BERT model without VQA pre-training. This
gives us a score of 36.24. Next, obtain a new baseline for
our model with VQA pre-training, where we then initialize
VLC-BERT with pre-trained weights on the VQA 2.0
dataset, and further train it on the A-OKVQA dataset. This
results in a score of 43.46, over 7 points better, highlighting
the impact of pre-training with a large-scale dataset. This
model is a strong baseline for our VQA tasks.

Comm. Inference Representation. In the full model,
we use SBERT to summarize each commonsense inference
into a single vector, and use the multi-head attention block
to capture useful information from the list of inference
vectors. To test the effectiveness of our commonsense
inference representation method, we first ablate SBERT,
i.e., we incorporate all inferences as an additional text input
for VLC-BERT, feeding them token-by-token. This results
in an accuracy score of 43.44, which is slightly lower than
our baseline with VQA pre-training. Next, we use SBERT
to summarize inferences, and feed the SBERT embeddings
directly into VLC-BERT with only a linear projection layer
rather than the MHA block. This variant performs worse

3We present additional ablations in supplementary material Sec 2.3

Table 3: Evaluation on the subsets of OK-VQA test (OKj)
and A-OKVQA validation (A-OKj) sets, where factual, nu-
merical and visual questions are pruned. The performance
gain observed on the subsets shows a better picture of where
external commonsense is effective.

Method OK OK; A-OK A-OK;

Base 4229 474 4346 46.52
w/ COMET 43.14 48.21 4495 49.53

than the model with the MHA block by 1.25 points.

Augmented SBERT. In order to familiarize SBERT
with our question-inference pairs, we fine-tune SBERT on
the training set of A-OKVQA and OK-VQA (Sec 3.1.2).
We perform an ablation by evaluating our model on SBERT
that has never been exposed to the question-inference-pairs.
This results in a drop of 0.85 points in accuracy, which
shows that our augmentation of SBERT is effective.

7. Analysis
7.1. Commonsense subsets

Questions in OK-VQA and A-OKVQA datasets are di-
verse and require commonsense reasoning, visual under-
standing, as well as factual knowledge. While COMET
can generate contextualized commonsense knowledge, it
does not help with questions that require scene understand-
ing (e.g., “What is to the left of the computer?”), fac-
tual knowledge (e.g., “Where was this food invented?”), or
text/symbol recognition (e.g., “What does this sign say?”).
Moreover, averaging results on the entirety of OK-VQA and
A-OKVQA obfuscates the improvements brought about to a
subset of questions that truly require commonsense knowl-
edge. We propose subsets to assess the performance of our
model on questions that are more likely to require external
commonsense knowledge. We obtain the subsets by elimi-
nating questions that are mostly factual or visual, and hence
do not require commonsense, following these conditions:
(1) factual: The question or answer contains named entities
(e.g., “USA”); (2) numerical: The answers contain numbers
or number words (e.g., “twenty”) or the question has date or
time words (e.g., “century”); (3) visual: The question con-
tains directional words (e.g., “left of ) and words referring
to symbols (e.g., “mascot”).

In Table 3, we show that VLC-BERT with COMET
performs 3 points better on the A-OKVQA subset, and
maintains an 0.8 point improvement on the OK-VQA sub-
set. This substantiates our claim that utilizing our COMET
pipeline substantially increases VLC-BERT’s ability to an-
swer questions that require external knowledge.
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' Q: What is the object the man is on made from?
| Tags: skateboard, bench

! VLC-BERT base: Metal

VLC-BERT COMET: Wood

! Q: This was used to keep the house warm before
| central air? Tags: potted plant, couch .

! VLC-BERT base: Heat
| VLC-BERT COMET: Fire

Q: What is the person doing? Tags: kite,
| skateboard

! VLC-BERT base: Skateboard
VLC-BERT COMET: Fly kite

Commonsense Inferences (C):

The object is made of made from wood (0.52)
Before, the skateboard is made from wood happens (0.4)

The object is used for to skate on it (0.03)

Commonsense Inferences (C):

This can make a fire (0.27)

This is used for use as a blanket (0.2)

Sometimes, this causes hot (0.17)

Commonsense Inferences (C):

The person can ride the kite (0.25)

The person can fly kite (0.22)

The person is made of the kite to be flying (0.19)

You are likely to find the object in skate park (0.02)

Sometimes, this causes cold (0.15)

Before, the person needed to have a kite (0.18)

Sometimes, the object causes the object is made from (0.01)

This is made up of heating (0.1)

After, the person rides the kite happens (0.14)

(a)

(b)

()

Figure 4: Attention analysis: (a) is from A-OKVQA, and (b) and (c) are from OK-VQA. We observe that the weakly
supervised attention layer in VLC-BERT accurately picks useful commonsense inferences. In (c), we observe how object

tags are useful to guide COMET to produce contextualized knowledge.

7.2. Attention Analysis

In this section, we show qualitative examples to demon-
strate questions where VLC-BERT benefits from contex-
tualized commonsense knowledge from COMET. We also
show the corresponding attention weights, to show the ef-
fectiveness of the proposed weakly-supervised attention
mechanism. Fig 4a shows an example from A-OKVQA,
where COMET’s inferences on the question and the object
tags, weighted by the attention score, results in the correct
answer. Fig 4b shows an example from OK-VQA where
VLC-BERT COMET exhibits higher attention towards the
fire despite the object tags missing the fireplace. This is
an example where deriving inferences from the question
phrase is equally important as doing so with the object tags.
Fig 4c shows that inferences on the object tag kite drove
the model to answer correctly. The supplementary material
includes additional examples of improvements and failures.

8. Conclusions

We presented Vision-Language-Commonsense BERT
(VLC-BERT) for external knowledge-driven VQA tasks.
VLC-BERT outperforms previous models based on knowl-
edge bases on the OK-VQA and A-OKVQA datasets by in-
corporating contextualized commonsense knowledge from
COMET and combining it with visual and linguistic inputs.
Through our evaluation, we show the effectiveness of our
knowledge generation, selection, and incorporation strate-
gies, and the positive impact of VQA pre-training.

Our analysis of VLC-BERT highlighted a few limita-
tions of our model and the datasets we evaluate on. First,
some questions require a deeper understanding and linking

of multiple entities and events in the image, that object tags
lack, for deriving relevant commonsense inferences. Sec-
ond, condensing the commonsense inferences using SBERT
and MHA leads to a compressed representation that may
cause the model to lose some information. Finally, our
model is limited by COMET, and the knowledge bases it is
trained on, as we observe that large-scale models like GPT-3
outperform it.

We view our work as a first step in analyzing the poten-
tial of generative commonsense incorporation, and explor-
ing approaches to decide when commonsense is needed. In
the future, our goal is to work towards creating a version of
COMET that can utilize image context concerning multiple
entities and events. We also plan to investigate the potential
of multi-hop reasoning with COMET to bridge the question
and image-based expansions closer.
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