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Abstract

Learning disentangled representations is an important

topic in machine learning with a wide range of applica-

tions. Disentangled latent variables represent interpretable

semantic information and reflect separate factors of vari-

ation in data. Although generative models can learn la-

tent representations as well, most existing models ignore the

structural information among latent variables. In this pa-

per, we propose a novel approach to learn the disentangled

latent structural representations from data using decompos-

able variational auto-encoders. We design a novel message

passing prior for the latent representations to capture the

interactions among different data components. Different

from many previous methods that ignore data component

or object interaction, our approach simultaneously learns

component representation and encodes component relation-

ships. We have applied our model to tasks of data segmenta-

tion and latent representation learning among different data

components. Experiments on several benchmarks demon-

strate the utility of the proposed method.

1. Introduction
Disentangled representation learning, which aims to

learn factorized representations that disentangle the latent
explanatory factors in data, is a fundamental but challenging
problem in machine learning and artificial intelligence. In-
terpretable disentangled representations have demonstrated
their power in unsupervised learning and semi-supervised
learning [2, 12, 8, 3, 22].

Most existing methods for disentangled representation
learning [18, 25, 4, 5, 41] are based on Variational Auto-
Encoders (VAEs) [26] or Generative Adversarial Networks
(GAN) [11, 31]. These works’ commonality is that disen-
tangled representations are extracted from a single entity
or object in one data sample. However, in real-world sce-
narios, there are often multiple objects with complex in-
teractions among them. Modelling object interactions has

demonstrated its benefit in applications such as image seg-
mentation [38] and video frame prediction [19]. In the lit-
erature of scene segmentation, there are a few attempts to
leverage generative representation learning models at mul-
tiple objects level [13, 14, 36, 9]. Nevertheless, very few
of them consider the structural interaction among multiple
objects or sample portions.

The major challenge to learn representations from im-
ages with multiple objects lies in an unsupervised setting
and complicated interaction patterns. Moreover, learning
complicated object interactions in real-word requires a pow-
erful and flexible prior for latent variables that can adap-
tively encode complicated structural relations. In this pa-
per, we propose a bi-level variational auto-encoder based
framework that can seamlessly integrate data segmentation,
representation learning, and relation learning.

In our bi-level model, the latent representation vector for
each object or component in a scene is divided into two sec-
tions, a local section and a global section. Firstly, the local
section controls the individual properties that are indepen-
dent of the other objects. The global section, shared by all
the objects in a scene, encodes the object relationships as
well as the global latent factors. The inference and interac-
tion between different objects are handled with a flow-based
model, in which a structural message passing prior of latent
representation allows us to estimate correlation interaction
between two components.

We have applied our models to different datasets and ob-
tain significant improvement in scene segmentation, scene
generation and object representation learning by modelling
the interactions among different components. Compared to
existing methods, our approach can capture more relations
between objects. Furthermore, we provide the theoretical
properties of our proposed bi-level VAE, such as relation
identification and the Evidence Lower Bound (ELBO).

Overall, the contributions of our work are multi-folds: i)
we develop a unified bi-level VAE framework with a latent
structural message passing prior to seamlessly integrate data
segmentation, representation learning, and relation learn-
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ing, and ii) we provide a solid derivation of ELBO for the
proposed bi-level VAE framework and comprehensive the-
oretical analysis for the latent structural prior as well as re-
lation recovery and latent representation learning, and iii)
We conduct extensive empirical evaluation of our approach
on the tasks of latent representation learning and component
segmentation. Experiments show that segmentation, gener-
ation, and disentangled representation of different compo-
nents can be improved with the inference mechanism from
our bi-level VAE with the novel prior.

2. Related Work
2.1. VAE Based Disentanglement

Variants of VAEs have achieved SOTA performance for
unsupervised disentanglement learning. One can assume a
specific prior p(z) on the latent space and parameterize the
conditional probability p(x|z) with a deep neural network.
The distribution p(z|x) is approximated using a variational
distribution q(z|x). The objective function for VAE is

min
�,✓

Ep(x)

⇥
� Eq�(z|x)[log p✓(x|z)] +DKL(q�(z|x)||p(z))

⇤

which is also the negative Evidence Lower Bound (ELBO).
It is also possible to introduce various properties of the final
presentation by modifying the KL term. [18] proposed the
�-VAE, introducing a hyper-parameter � for the KL reg-
ularizer of vanilla VAEs. When � > 1, �-VAE penalizes
the mutual information between latent representation and
data sample. There are several different approaches to learn
disentangled data representation [25, 4]. Independent com-
ponent analysis (ICA) has been extended to nonlinear cases
to achieve disentanglement of variables [20, 21, 24].

Our work is different from vanilla VAE and its variants
in that ours has a bi-level structure with a novel structural
message passing prior to simultaneously realize data seg-
mentation, representation learning, and relation learning.

2.2. Scene Segmentation
Recently, researchers integrated deep generative mod-

els with unsupervised scene segmentation methods [2, 12,
13, 8]. The most similar works to ours are [12], [2],
and [8]. In [12], the authors proposed an approach to learn
the representation of individual objects and scene segmen-
tation simultaneously. By integrating iterative amortized
inference [28] and VAE [26], the method is a fully un-
supervised approach to learn visual concepts. They also
showed how the complete system can be trained end-to-end
by simply maximizing its Evidence Lower Bound (ELBO).
MONet [2] employed a recurrent attention network to dis-
criminate different objects instead of using complicated
amortized inference. The scene is segmented by leverag-
ing the weighted objective with attention masks. Besides

the encoding of components, Genesis [8] improves perfor-
mance by jointly learning the representations of both com-
ponents and masks. The major difference between our work
and [12, 2, 8] is that the interactions among objects in a
scene are modeled with a latent message passing prior.

3. Latent Relational Learning with Mes-
sage Passing Prior

We first introduce the proposed message passing prior,
including forward message passing (encoding) and back-
ward message passing (decoding) [29, 32, 33, 30]. Then we
give details about the proposed bi-level VAE framework.
Note that “components” represent objects in an image or
different portions in a data sample and we will use the two
terms interchangeably.

Figure 1. Diagram of message passing prior, including forward
(encoding) and backward (decoding) with flow functions f =
{f1, f2, ..., fK}. Given observation y = [y1,y2, ...,yK ], we can
infer the latent variable h with forward message passing (encod-
ing), and obtain the reconstruction of y, by, with backward message
passing (decoding). Here hk = fk(yk), h = 1

K

PK
k=1 hk, and

reconstruction bhk = h, byk = f�1
k (h).

We introduce the proposed aggregation prior model in
Figure 1. Let y = [y1,y2, ...,yK ] be the observed data, and
yk is from data component k, and h is the latent variable.
We use Y to represent the distribution of y. Relationship
between yk, k = 1, ...,K and h is modeled with invertible
flow-based networks [6, 32, 29]. Flow function fk speci-
fies a parametric invertible transformation from the distri-
bution of yk to the latent variable hk, i.e., fk : Rl

! R
l

is invertible. Here l is the dimension of hk and yk. With
hk = fk(yk), by change-of-variables we obtain

log p(yk) = log p(hk) + log

✓�� det
�@fk(yk)

@yk

���
◆
.

As shown in Figure 1, the relation between h and yk, k =
1, ...,K is given as encoding (with f = [f1, f2, ..., fK ])
and decoding (with f = [f�1

1 , f
�1
2 , ..., f

�1
K ]) procedures.

h encodes y by aggregating outputs of all fks, i.e., h =
f(y) = 1

K

PK
k=1 fk

�
yk

�
. We hope that the aggregated la-

tent variable h is a concise representation so that the model
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can fully reconstruct all components of the data, i.e., en-
sures that bhk = hk = h, and byk = yk = f

�1
k (h). Here bhk

and byk are reconstructions of hk and yk, respectively.
3.1. Latent Variable Aggregation

We assume each entry of hk, k = 1, ...,K follows Nor-
mal distribution, i.e., hk ⇠ N(µk,�

2). We set variance �
2

as a fixed value across all ks. With h = 1
K

PK
k=1 hk, the

prior distribution for each entry of h is a Normal distribu-
tion, N(µ, �2). Both h and hk can be other distributions,
e.g., Laplace distribution. Based on the encoder and de-
coder VAE scheme discussed previously, model parameters
of the aggregation model can be learned by maximizing the
evidence lower bound (ELBO),

log pf�1(y) � L(y; f) (1)

= Eqf (h|y)
⇥
log pf�1(y|h)

⇤
� KL

�
qf (h|y)||p(h)

�
.

Given a batch of training samples, the ELBO value is com-
puted with the message passing procedures. We use h =
f(y) = 1

K

PK
k=1 fk

�
yk

�
as the sample generated from

qf (h|y). Given a h, we hope it can fully reconstruct the
input data. Thus the reconstruction term log pf�1(y|h) in
the ELBO (1) is computed with

log pf�1(y|h) = log pf�1(y|bh1...bhK) + log p(bh1...bhK |h)

=�
KX

k=1

⇢
1

2�2
y

����yk � f�1
k (h)

����2 + 1
2�2

����h� fk(yk)
����2

| {z }
By bhk=h

�
+ C

(2)
Here C = �lK ln(2⇡)�lK ln(�2

y). We use constant values
for both �

2
y and �

2, hence the value of C. We use hs from a
batch of training samples to approximate the KL term in (1).
It is easy to compute each flow function fk’s Jacobian ma-
trix, and thus the log-density values. We use the proposed
structure to estimate the relations among the components.

3.2. Graphical Interaction
Let yk,i be the ith entry of yk. We define a relation e

u,i
v,j

between yu,i and yv,j if there is a mapping or a function
links them. A relation set is a connected graph r = {e,v}

that consists of multiple relations, and here v represents the
set of variables involved in r, and e is the set of link func-
tions between variables in v. Let R be the set of all relation
sets regarding a data set Y . We have the following assump-
tions about Y and R.
Assumption 1: Y is continuously distributed. Data value of

Y is bounded, i.e., yu,i 2 [�M,M ], 81  u  K, 1  i 

l, and M is a constant value.

Assumption 2: Relation functions are continuous, mono-

tone, and invertible. Their inverse functions are also con-

tinuous
1
.

1The relation e and its inverse lie in a Hölder ball W�,1([�1, 1]d)
with smoothness � 2 N+, i.e. e, e�1 2 W�,1([�1, 1]d).

As relation set r is a connected graph, there is always a
path connecting any two variables. Let’s use g

⇤
u,i to repre-

sent the prediction function from other variables to yu,i in
a relation set r, and bgu,i is the estimation with the proposed
message passing model. With n as the number of training
samples from Y , we have the following theorem regarding
the estimation.

Theorem 1. Let the assumptions 1-2 hold, and |R| 

dim(h). Let bgu,i be the estimator that consists of deep cou-

pling layers with width W ⇣ n
d

2(�+d) log2 n, and depth

D ⇣ log n. For large enough n, with probability at least

1� exp(�n
d

�+d log8 n),

a)kbgu,i � g
⇤
u,ik

2
L2(Y )  C ·

�
� n

�
�+d log8 n+ log logn

n

 

and

b) En

⇥
(bgu,i�g

⇤
u,i)

2
⇤
 C ·

�
�n

�
�+d log8 n+ log logn

n

 
.

Here C > 0 is a constant independent of n.

Theorem 1 says that the interactions among different
components can be approximately recovered under condi-
tions. Under the assumption that variables from different
relation sets are independent with other, the regularization
of the KL term in (1) will guide the model to learn latent
variables that control different relation sets. Minimizing the
KL term is to force each entry of the root latent variable h

in (1) to become more independent with each other, and it is
because that different entries of the prior distribution p(h)
we employed are independent with each other.

3.3. Identifiability of Latent Representation with
Unsupervised Component Segmentation

With the invertible flow-based model, we can fit the pro-
posed model to the nonlinear ICA framework [24, 15, 21].
For component k, suppose the distribution regarding hk is
a factorial member of the exponential family with m suf-
ficient statistics, conditioned on uk. Here uk is additional
observed variable. The general form of the distribution can
be written as

phk(hk|uk) = ⇧
l
i=1

Qi(hk,i)

Zi(uk)
exp

 mX

j=1

Ti,j(hk,i)�i,j(uk)

�
.

(3)
Here Qi is the base measure, Zi is the normalizing constant,
Ti,j are the component of the sufficient statistic and �i,j

the corresponding parameters, depending on uk. The vari-
able yk is the output of an arbitrarily complex, inevitable,
and deterministic transformation from the latent space to
the data space, i.e., yk = f

�1
k (hk). Let T = [T1, ...,Tl],

� = [�1, ...,�l], and ⇥ = {✓ := (T,�, f
�1
k )}. With pa-

rameter ✓ = (T,�, f
�1
k ),

p✓(yk,hk|uk) = pf�1
k

(yk|hk)pT,�(hk|uk). (4)
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Let b⇥ be the set of parameters obtained with some learning
algorithm, i.e., b⇥ = {b✓ := (bT, b�, gk)}. We use gk to repre-
sent the learned approximation of f�1

k , and yk = gk(hk).
Following [24, 15], we define identifiable equivalence rela-
tions on ⇥. We do not have explicit additional observable
variable uk for component k. But we have K � 1 signals
from other components relate to it. With the statements in
Theorem 1, suppose we can fully recover the relations in-
volving component k, and can obtain sufficient label sup-
port from other components, then the model is identifiable.

We use y�k to represent components other than com-
ponent k, and uk(y�k) is the additional variable recovered
from the relations with other components. In the limit of
infinite data and good convergence, the estimating model
will give the same conditional likelihood to all data points
as the true generating model: pT,�,f�1

k

�
yk|uk(y�k)

�
=

pbT,b�,gk

�
yk|uk(y�k)

�
. We define the domain of f

�1
k as

H = H1 ⇥ ...⇥Hl. We have the follow theorem regarding
the identifiability of the model.

Theorem 2. Assume we observe data distributed according

to the generative model given by (3) and (4), we further

have the following assumptions,

(a) The sufficient statistics Tij(h) are differentiable al-

most everywhere and their derivatives
dTi,j

dh are nonzero

almost surely for all h 2 Hi and all 1  i  l and

1  j  m.

(b) The relations involving component k can be ap-

proximately fully recovered and can be represented with

uk(y�k).

(c) There exist lm+ 1 distinct conditions u
(0)
k , ..., u

(lm)
k

from y�k such that the matrix

L = [�(u(1)
k )� �(u(0)

k ), ...,�(u(lm)
k )� �(u(0)

k )]

of size lm ⇥ lm is invertible. Then the model parameters

(T,�, f
�1
k ) are ⇠A identifiable.

The proof of Theorem 2 and analysis can be found in
the supplemental file. Real-world datasets are usually more
complicated with non-stationary component locations. We
try to develop a bi-level latent model that is more flexible by
integrating the proposed aggregation prior model, attention
mechanism, and component segmentation as discussed in
the following sections.

4. Bi-level Latent Structure for Compo-
nent Segmentation

We aim to develop a generative model that can identify
the hierarchical representation and relations of components
in datasets. In this section, we first introduce a decomposed
latent representation scheme, and then show that the pro-
posed message passing aggregation prior can be seamlessly
integrated with some existing models.

4.1. Global Latent Variable for Component Inter-
action

Generative models learn a generator that maps the la-
tent space Z to a manifold X embedded in the sample input
space. Assume there are K conditional independent com-
ponents for the samples of a dataset. Let x = [x1, ...,xK ]
be the output variable of the generator, and z = [z1, ..., zK ]
is the latent variable of the generator. xk is the kth com-
ponent, and zk is the corresponding latent variable that con-
tains all the latent information of component k. Each zk has
two sections, zck and z

g
k, i.e., zk = [zck, z

g
k]. z

c
k controls the

properties of component k that are independent with other
components, and z

g
k controls the properties relating to other

components. We use z
0 to denote the latent vector encodes

the global properties information across all components re-
garding each data sample x. We first assume the compo-
nents are conditional independent with each other given the
latent variable, i.e., xi ? xk|z, if i 6= k.

We also have the following independent assump-
tion about the components and latent variables, xi ?

zk|z
0
, if i 6= k, and zi ? zk|z

0
, if i 6= k. It is easy to show

that the distribution of the generated samples are following

p(x1...xK |z) = p(x1...xK |z
0
z) = p(x1...xK |z

0
z1...zK)

=
KY

k=1

p(xk|z
0
z1...zK) =

KY

k=1

p(xk|z
0
zk) =

KY

k=1

p(xk|z
0
z
c
k).

In the last step, zgks are deterministic given z
0, thus they can

be omitted.
We employ a hierarchy structure for the latent variables.

As shown in Figure 2, z1, ..., zK are the first layer latent
representation, and z

0 is the second layer. As mentioned
previously, z0 encodes the global properties of the gener-
ated samples, and the correlations or interactions between
different components. zgk is the global information decoded
from z

0 regarding component k. We can use the human
face as an illustration example. Here different components

Figure 2. Hierarchy structure for latent variables. Left: zgks link to
the global latent variable z0 with the message passing prior. Right:
Global latent variable z0 is shared by K components. mk is the
mask of component xk. D is the dimension number of the input
data samples.
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Figure 3. Network structure for MPPG. a is the attention network,
e is the encoder, d is the decoder, and fk is the flow inference
network for component k, and r is the recurrent network for latent
variable zm. bzgk and bxk are the reconstructions of zgk and xk,
respectively. zmk is the latent variable of mask k. The input scope
for kth component is defined by sk = sk�1 � (1�mk�1).

represent different parts of the face, such as eyes, hair, fa-
cial skin, mouth, etc. The common latent factor z0 includes
factors such as age or emotion that controls the overall ap-
pearance of the face. We aim to develop a framework that
can encode each component’s individual features as well as
the global latent factors for the whole scene. The struc-
ture of the proposed prior provides sufficient capacity to
capture the relationships among different components. It
can capture the structural configurations even in scenarios
that some component or objects are absent. The detailed
structure relationships among components are represented
with the correlations of the input entries of different flow
branches.

4.2. Bi-level Latent Model Structure

The proposed message passing prior is to encode and de-
code each component and capture the global latent factor as
well. To derive a simple model, we use one single VAE
framework for encoding and decoding of all components.
The sequence of masks for each component can be gener-
ated with the approaches in MONet [2] or Genesis [8]. The
method in Genesis leverages the latent represent of masks
to improve performance.

We use MPPM to represent the model that follows the
MONet attention structure but enhanced with the proposed
message passing prior. Similarly, MPPG is the model that
employs latent representation for masks (Genesis) and also
uses message passing prior to integrate components. Fig-
ure 3 presents the integrated model structure of Genesis
with the proposed message passing prior. In component k,

with image x and scope sk as the input, the attention net-
work a yields the mask mk to indicate whether each pixel of
x belonging to component k or not. Here sk is the attention
leftover from components 1 to k � 1, i.e., sk = [

k�1
i=1 mi,

and s1 = 1. Figure 3 shows that the scope for component
k is calculated by sk = sk�1 � (1 � mk�1), and we havePK

k=1 mk = 1. � denotes element-wise multiplication.
The encoder e encodes the image and the mask (x,mk)

into the latent variables zk = z
c
kz

g
k. We use the message

passing prior proposed in the previous section as the sec-
ond layer auto-encoder to encode all zgks into z

0 and then
decode back as bzgks. Then we feed each (zck,bz

g
k) to the

decoder d to generate the image reconstruction bxk. The
model performs image segmentation by leveraging a mix-
ture model that takes masks as the distribution weights of
different components.The message passing prior can curb
the model’s degree of freedom and can capture the inter-
action between different segments or components as well.
Notations for the bi-level model are given by a table in the
supplement.

4.3. ELBO of Bi-level Latent Model
The proposed prior and the latent decomposition scheme

can be applied to many generative models for segmenta-
tion [12, 2, 8]. Let z

m
k be the latent representation of

mask k. Genesis [8] has the following assumption about
latent variables: p(zm1:K) = p(zm1 )

QK
k=2 p(z

m
k |z

m
1:k�1) and

p(zc1:K |z
m
1:K) =

QK
k=1 p(z

c
k|z

m
k ).

They have the sequential dependent assumption about la-
tent represents of masks, and the components’ latent repre-
sentation also relates to masks’. Message passing prior can
incorporate different assumptions on the latent representa-
tion. We provide a general ELBO for bi-level latent model:

LELBO(x) = Eq(zc,zg,zm|x)
⇥
log p✓(x)|z

c
, z

g
, z

m
⇤

(5)
� KL(q(zc, zm|x)kp(zc, zm)) +H(zg|x)

+ Eq(zg|x)
⇥
log p(zg|z0)

⇤
� KL(q(z0|zg)kp(z0)).

We use MPPG as an example to show how to gener-
alize (5) to a specific latent model. MPPG has the la-
tent variable z

m
k for mask k, and z

m
k dependent on z

m
k�1,

1 < k  K. Meanwhile, component k’s latent variables zck
and z

g
k dependent on the mask’s latent variable,

pr(z
m) = pr(z

m
1 )

KY

k=2

pr(z
m
k |z

m
1:k�1), (6)

p(zc|zm) =
KY

k=1

p(zck|z
m
k ), p(zg|zm, z

0) =
KY

k=1

p(zgk|z
m
k , z

0),

p(zc, zm) = pr(z
m)p(zc|zm).
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Here pr(·) means a distribution is parameterized by a
neural network or a function r. The global latent vari-
able z

g not only depends on z
m but also z

0. The data
distribution is a mixture model of K different compo-
nents, p(x|zc, zg, zm) =

PK
k=1 mk(zmk )pd(xk|z

c
k, z

g
k).

Here mk(zmk ) is the attention network a in Figure 3, and
pd(xk|z

c
k, z

g
k) is parameterized with the decoder d in Fig-

ure 3. The approximate posteriors reads

q(zc, zg, zm|x) = qr(z
m
|x)qe(z

c
|z

m
,x)qe(z

g
|z

m
,x)

(7)

qr(z
m
|x) = ⇧

K
k=1qr(z

m
k |z

m
1:k�1,x),

qe(z
c
|z

m
,x) = ⇧

K
k=1qe(z

c
k|z

m
k ,x),

qe(z
g
|z

m
,x) = ⇧

K
k=1qe(z

g
k|z

m
k ,x),

q(zc, zm|x) = qr(z
m
|x)qe(z

c
|z

m
,x).

The posterior qr(zm|x) is modeled with a RNN (blue
blocks in Figure 3 with label r). The posteriors of zc and
z
g , qe(zc|zm,x) and qe(zg|zm,x), are parameterized with

the encoder e network. As shown in the figure, both of
them also dependents on z

m. For the bi-level auto-encoder,
(x,mk) is the first layer’s input, and (zck, z

g
k) is the first

layer’s latent variable. Meanwhile, zgk is also the second
layer’s input, and z

0 is the second layer’s latent variable.
bxk and bzgk are the reconstructions regarding the first level
and second level inputs, respectively.

As shown in the graphical representation of MPPG (Fig-
ure 3), with z

0 MPPG can aggregate the information from
all components simultaneously. The second level auto-
encoder is parameterized with the proposed message pass-
ing prior model f = {f1, f2, ..., fK}, i.e., pf�1(zg|z0) =
⇧

K
k=1pf�1

k
(zgk|z

0), and the posterior of z0, qf (z0|zg), is the
encoding process of the model f . The ELBO of MPPG is

log p(x) � LELBO(x; a, d, e, f, r) (8)

=Eqe,r(zc,zg,zm|x)
⇥
log pd(x|z

c
, z

g
, z

m)
⇤

� KL(qe,r(zc, zm|x)kp(zc, zm)) +H(zg|zm,x)

+ Eqf (z0|zg)[log pf�1(zg|z0)]� KL(qf (z0|zg)kp(z0)).

The difference between (8) and the generalized
ELBO (5) is the entropy term, H(zg|zm,x). It is due to
the assumptions of Genesis. The terms in the ELBO (8) can
be computed based on the discussion of Equations (6-7).
The last two terms in (8) correspond to the ELBO defined
in (1) of the message passing prior.

5. Experiments
We compare the proposed models (MPPM and MPPG)

with baselines, MONet [2] and Genesis [8], using both syn-
thetic and real-world datasets. The synthetic data is simu-
lated under a multi-object setting, from which we demon-

strate that the proposed prior can help learning the corre-
lations between objects. We further validate our model on
several real-world benchmarks.

5.1. Performance Metric
We primarily focus on the study of disentanglement and

segmentation and compare our model to existing methods.

Disentanglement. Disentanglement evaluation metrics
have been proposed by [18, 25, 7, 4]. For the experiments
in this manuscript, we utilize the protocol proposed in [7],
which is a regression-based approach to divide the latent
space data into training, evaluation, and testing. The dis-
entanglement score is obtained based on the performance
of the learned regression model. The metric [7] is one of
the common methods to measure disentanglement learning,
and they are computed based on available ground-truth la-
tent structure to evaluate representation according to disen-
tanglement, completeness, and informativeness.
Segmentation. Following [12], we employ the adjusted
rand index (ARI) to evaluate the segmentation. The ground
truth mask and predicted mask are converted to binary val-
ues, and the similarity of a pair of masks is based on the
number of the same entry values. An ARI score can be
computed with the pair-wise similarity matrix.
Image Generation. FID [17] score is widely used to eval-
uate generative models, e.g., VAEs. In this paper, we utilize
it to measure the quality of image synthesis.

In the result Tables, " means a larger value gives a better
result, and # indicates a smaller value is with a better result.

5.2. Simulated Multi-Object Dataset
Now we investigate the proposed model with multiple-

object images. The images are generated with three types of
objects, green squares, red circles, and blue diamonds. The
dataset has 50,000 samples for training and 2,000 samples
for testing. The sample images are shown in the first row
of both Figure 4-a) and Figure 4-b). We use the LASSO
regressor with ↵ = 0.2 for the disentanglement score for
this experiment. We try to incorporate object relations into
the dataset to evaluate the performance of different models.

(a) MONet (b) MPPM

Figure 4. The original images, the reconstructed images, and mask
images from MONet (left) and our method MPPM (right) on the
simulated 2-object dataset. There are 8 sample images for each
method. MONet cannot distinguish between diamonds and cir-
cles. It is clear that the proposed method MPPM can robustly dis-
tinguish and segment different types of object.
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In the first set of experiments, we generate images that
contain two objects. The predefined generating logic is:
only object pairs {circle, circle}, {circle, square}, {square,
square}, and {square, diamond} appear in the same image,
and circles and diamonds can not appear in the same im-
age. The bottom row of Figure 4 compares the segmenta-
tion from MONet and the proposed method. Different com-
ponents learned by the algorithms are labeled with different
colors. We can see that our method clearly categorizes three
types of shapes into three different colored components as
indicated in the bottom-right plots of Figure 4. Whereas,
MONet puts circles and diamonds in the same component
(Figure 4 bottom-left). The result indicates that our model
can distinguish circles and diamonds as well as the designed
logic relationship, but MONet cannot do it.

We further investigate the model with more complicated
object relations that involve 3-object in an image. In this
set of generated images, each image has two or three ob-
jects. Similarly, the designed generating logic is: circles
and squares, squares, and diamonds can appear in one im-
age, and circles and diamonds are not allowed to appear in
the same image. We also notice that structured latent space
with total correlation (TC) [39] penalization can also im-
prove the disentanglement score of MONet.
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Figure 5. Disentanglement scores (D-Score ", ↵ = 0.2) over
epochs for different methods on 2-object (left) and 3-object (right)
datasets.

Figure 5 gives the disentanglement scores for different
models along with different epoch numbers. In Figure 5,
“MONet-S” means MONet with the structured latent vari-
ables introduced in the bi-level latent structure section 4.1.
“MONet-ST” means MONet with structured latent vari-
ables in addition to the total correlation (TC). The left plot
in Figure 5 show the disentanglement scores (D-Scores)
from different methods on the simulated 2-object dataset,
and the right plot gives the D-Socres on the 3-object dataset.
In the 3-object dataset, each image contains two or three
objects. Similar to the 2-object dataset, circles and squares,
squares, and diamonds can appear in one image. Circles
and diamonds are not allowed to appear in the same im-
age. These rules are the latent component relations of the
datasets.

As we can see from the left plot of Figure 5, the proposed
aggregation prior with message passing can effectively cap-
ture the latent factor structures and improve the disentangle-

ment score on the 2-object dataset. Figure 5 (right) shows
the disentanglement scores for different models on the sim-
ulated 3-object dataset. We see that with the help of the pro-
posed prior, the proposed method can effectively disentan-
gle structured latent factors on a more complicated dataset.

5.3. Multi-dSprites Dataset
We further evaluate the proposed prior using Multi-

dSprites dataset [23]. Each image consists of multiple oval,
heart, or square-shaped sprites (with some occlusions) set
against a uniformly colored background. Each scene im-
age has 1 to 4 sprites. We use all the available features for
disentanglement testing, which include positions (x and y),
shape, color (RGB values), orientation, and scale, visibil-
ity (a binary feature indicating which objects are not null).

Methods Disentangle "
MONet 0.623
MPPM (Ours) 0.636

1 2 3 4 5

Epochs

0.8

0.85

0.9

A
R

I

MPPM

MONet

Figure 6. Disentanglement and segmentation scores of both meth-
ods on Multi-dSprites dataset. Left: disentanglement scores (",
↵ = 0.2). Right: segmentation scores (ARI ") at different epochs.

The disentanglement score is computed with LASSO as
the regressor and ↵ = 0.2. The disentanglement perfor-
mance is given in the left of Figure 6 after 20 epochs with a
learning rate 10�4. We observe that the proposed method
can achieve superior disentanglement scores. The right
of Figure 6 gives the values of segmentation score (ARI)
over epochs. With adjustment information between com-
ponents, because of the message passing scheme, the pro-
posed model can consistently improve segmentation along
with more epochs. Our method improves the segmentation
along with the updating steps, and it produces more reason-
able object segmentation.

5.4. Tetrominoes Dataset
Each image in the Tetrominoes dataset [23] contains

three tetrominoes, sampled from 17 unique shapes or ori-
entations. We use four components for all the models, i.e.,
MONet, Genesis, MPPM , and MPPG. We randomly select
1,000 images to evaluate disengagement and use the rest
999,000 images to train the models. Firstly, the three rows
of images in Figure 7 are the original images, reconstructed
images, and masks generated from the attention network of
MPPM , respectively. Clearly, the proposed method can well
segment the objects. Secondly, Table 1 gives the disentan-
glement and FID scores for the four methods (↵ = 0.001
for disentanglement score). We can that with the help of
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Figure 7. The original images, reconstructed images, and the
masks generated from the proposed method for Tetrominoes
dataset.

Methods Disentangle " FID #

MONet 0.286 230.3
MPPM (Ours) 0.311 234.6
Genesis 0.302 144.1
MPPG (Ours) 0.362 128.9

Table 1. Disentanglement (↵ = 0.001) and FID scores of all mod-
els on Tetrominoes dataset.

the proposed prior, MPPM improves MONet on the disen-
tanglement task. MPPG can significantly improve both the
disentanglement and FID scores compared with Genesis.

5.5. CelebA Dataset
There are 202,599 images in the CelebA dataset. We use

randomly selected 192,599 images for training and the rest
10,000 for testing. There are around 40 attributes, including
gender, hair color, with glasses or not, etc. We use all the
attributes to assess the disentanglement of all models.

Methods Disentangle " FID #

MONet 0.500 349.9
MPPM (Ours) 0.510 180.8
Genesis 0.513 209.6
MPPG (Ours) 0.545 90.0

Table 2. Disentanglement (↵ = 0.01) and FID scores of all mod-
els on the CelebA dataset.

Table 2 gives the disentanglement score (↵ = 0.01) us-
ing data sample attributes as the ground truth label. FID
values are also listed for all four methods. Segmentation
scores are not provided in the table because of the absence
of ground truth segmentation labels in this dataset. From
Table 2, we can see that the proposed message passing prior
can significantly improve both the disentangled data repre-
sentation learning and image generation quality.

5.6. ShapeStacks Dataset
In ShapeStacks dataset, images contain simulated block

towers that consist of two to six blocks. The blocks have
different shapes, sizes, and colors. Each image comes with
annotations such as tower stability, the number of blocks,

Methods MONet MPPM Genesis MPPG

(Ours) (Ours)
ShapeStacks 328.4 306.3 235.4 196.7

Table 3. Fréchet Inception Distances (FID #) for different meth-
ods on ShapeStacks.

properties of the blocks, location of tower mass center, light
presets, camera viewpoints, etc. More details can be found
at [1]. Table 3 presents the FID scores for MONet, MPPM ,
Genesis, and MPPG. Results in the table show that, the
proposed message passing prior can consistently improve
the performance of existing methods on image generation.

5.7. Sensitivity Analysis on ↵

The disentanglement metric [7] used in this paper is sen-
sitive to the hyper-parameter ↵. To study how sensitive our
model is, we give the disentanglement scores of the models
at different ↵ values on Tetrominoes Dataset in Table 4.

Methods MONet MPPM Genesis MPPG

(Ours) (Ours)
↵ = 0.001 0.286 0.311 0.302 0.362
↵ = 0.010 0.410 0.412 0.402 0.460
↵ = 0.050 0.567 0.534 0.530 0.584
Table 4. Disentanglement scores (") at different ↵ values.

We use the same experimental setup as in the Tetromi-
noes section. Table 4 shows the same pattern that a larger
↵ values leads to larger disentanglement scores. However,
MPPG always provides the best disentanglement results at
all ↵ values. Moreover, MPPM also performs better than
MONet and Genesis at ↵ = 0.001 and ↵ = 0.01. The
results in Table 4 indicate that the message passing prior
improves the representation and feature learning from the
data. More results on above datasets are provided in the
supplemental file. These experimental results show that the
proposed model indeed can improve the data representation
learning and hence the generation and segmentation of dif-
ferent datasets.

6. Conclusions
We propose a novel bi-level framework to learn disen-

tangled structured latent factors. The flow-based structure
prior of latent presentation enables the model to learn inter-
actions among components via a message-passing scheme.
The framework can capture the inner interactions between
data components in the experiments and improves disentan-
glement, segmentation as well as data generation. Besides
the applications in this paper, there are potentially more sce-
narios where the proposed method is applicable. One future
work following the proposed method is physical interaction
extraction, which is an important common sense or prior
knowledge for humans to make actionable decisions.
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