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Abstract

Robust real-world image enhancement from multi-exposure
low dynamic range (LDR) images is a challenging task due
to the unexpected inconsistency among the input images,
such as the large motion or various exposures. In this paper,
we propose a novel end-to-end image enhancement network
to solve this problem. After extracting contextual informa-
tion from the LDR images, we design a novel matching vol-
ume to align them by considering the motion and exposure
differences among the input images. A stacked hourglass
with dilated convolution is further utilized to aggregate the
matched feature maps to the final enhanced image. In addi-
tion, we design a weakly-supervised pairwise loss function
to evaluate the color consistency in the enhanced image,
which further boosts the performance. We show the effec-
tiveness of our methods on high dynamic ranging imaging
(HDR) and End-to-End image signal processing (E2E-ISP)
tasks. Experimental results demonstrate that our model
achieves state-of-the-art enhancement performance.

1. Introduction
Image enhancement from low dynamic range (LDR) images
with multi-exposure is a practical and challenging problem.
Most of the cameras only produce photos with a limited dy-
namic range. It is necessary to generate the images with
high dynamic range (HDR) to satisfy the human vision.
With the wide usage of digital overlap (DOL) camera in
cellphones, this problem becomes one of the essential func-
tions in the image signal processing (ISP) pipeline. To solve
this problem, traditional methods select a reference image
and use the rest images to compensate the missing details
caused by over or under-exposure. Recently, deep convolu-
tional neural networks (CNNs) have been deployed as they
demonstrate significant accuracy improvements.

There are two major challenges of this task. The first
challenge is the motion of foreground objects. The prior
arts refer to some alignment procedure such as optical flow
based image warping. Unfortunately, in the poor lighting
scenes such as low-light indoor or night scenes, it is very

Figure 1. Challenges of real-world image enhancement with multi-
exposure images. Top - HDR when input images have large ex-
posure difference. Bottom - E2E-ISP when input images have
poor lighting condition. Our method handles these scenarios bet-
ter compared to prior arts.

difficult to calculate an accurate motion. This results in
some error in the enhanced image, as shown in the bot-
tom row of Fig. 1. The second challenge is the various
exposures among the input images, which makes the algo-
rithm very difficult to compensate the missing content. The
prior solutions focus on a limited exposure such as +2/+4. If
the network is applied on a totally different exposure (e.g.,
> +8, which is used in real-world night capturing), the re-
sults will not be good, as given in the top row of Fig. 1,
where the information of the over-exposed area is missed in
the HDR output.

In this paper, we propose an image enhancement network
EMVNet with a novel matching volume (MV). After ex-
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tracting features from the input images, a matching volume
is applied on the extracted feature maps to check the consis-
tency among the input images. During this procedure, the
motion and exposure difference will be measured, with the
guidance of an over-exposed area mask from the input im-
ages. As a result, the network can compensate motion and
understand the exposure difference from the inputs. Then
a stacked hourglass with dilated convolution is utilized to
aggregate the output feature maps to generate the final en-
hanced image. We train our EMVNet with a novel pairwise
weakly-supervised loss to improve the color consistency in
the enhancement output. This further improves the accuracy
and the robustness. We utilize the Generative Adversarial
Network (GAN) with relativistic discriminator in our end-
to-end training. We demonstrate the effectiveness of our
method by two tasks, the HDR imaging, and the End-to-
End image signal processing (E2E-ISP) which uses single
neural network to replace the whole mobile ISP pipeline.
The results show that our method outperforms existing ap-
proaches with more consistent color and better details in
both tasks.

The contributions of this paper are highlighted as follows

• Our proposed matching volume can handle the motion
and exposure difference at the same time, which allows
us to do ‘blind image enhancement’ without knowing
the exposure difference among the input images.

• Our proposed weakly-supervised loss function is able
to boost the enhancement accuracy, which produces
images with more reliable color.

• Our proposed EMVNet is flexible and generalized well
on various image enhancement applications, such as
HDR with two or three input images in both RGB and
raw domains, or E2E-ISP where the inputs are raw
LDR images, and the output is demosaiced RGB im-
age. To our knowledge, this is the first end-to-end net-
work for mobile ISP with multi-exposure inputs.

2. Related work
2.1. HDR

Traditional HDR algorithms aim to merge several LDR im-
ages captured from multiple exposures [4][5]. These meth-
ods choose one of the input LDR image as the reference
image and align the rest images with the reference one. The
missing information of the reference image will be compen-
sated by fusion with hand-crafted features, which limit the
accuracy and robustness. Recently, deep learning is widely
used. Some researchers focus on reconstructing HDR im-
age from a single LDR image. Eilertsen et al. [3] utilized a
U-shape network and gathered a large dataset while simulat-
ing sensor saturation for a range of cameras. Lee et al. [12]
created HDR images based on the estimated multi-exposure

stack using the conditional generative adversarial network
structure. Liu et al. [15] modeled the HDR-to-LDR image
formation pipeline as the (1) dynamic range clipping, (2)
non-linear mapping from a camera response function, and
(3) quantization. They proposed to learn three specialized
CNNs to reverse these steps.

Single image HDR reconstruction methods do not per-
form well in the wild due to unexpected illumination and
motion. HDR with multiple exposure images is more practi-
cal. Recent methods consider HDR reconstruction as an im-
age translation problem from the LDR domain to the HDR
domain. Wu et al. [23] estimated the homography trans-
formation and utilized a translation network to hallucinate
plausible HDR details in the presence of total occlusion,
saturation and under-exposure. Yan et al. [24] proposed to
use attention modules to guide the merging according to the
reference image. Yan et al. [25] fused all inputs and map
the fusion results into a low-dimensional deep feature space
and then fed the resultant features into a global non-local
module which reconstructs each pixel by weighted averag-
ing all the other pixels. Niu et al. [18] proposed HDR-
GAN, with a reference-based residual merging block for
aligning large object motions in the feature domain, and a
deep HDR supervision scheme for eliminating artifacts of
the reconstructed HDR images. Liu et al. [16] presented
an attention-guided deformable convolutional network AD-
Net. They adopted a spatial attention module to adaptively
select the most appropriate regions of LDR images for fu-
sion. Huang et al. [7] combined the neuron random field
(NERF) with the HDR problem, and utilized the classic vol-
ume rendering technique to project the output radiance, col-
ors, and densities into HDR and LDR images.

The above methods propose various solutions to deal
with the mis-alignment. But one major problem is that
the accuracy strongly relies on the alignment module of the
LDR images. If the exposure difference is very large (e.g.,
in low-light night scenes), existing methods either cannot
guarantee to align the LDR images or fail to produce ade-
quately faithful information for the missing image contents.
In contrast, our EMVNet considers the motion and expo-
sure difference at the same time, which can generate more
reliable information used in the following aggregation pro-
cedure. Our method is more robust in real-world scenarios.

2.2. End-to-end ISP

Recently, more and more researchers start working on End-
to-End image signal processing (E2E-ISP) [8], where a sin-
gle neural network is adopted to convert the input raw image
into RGB image. Ignatov et al. [9] proposed PyNet for such
Raw-to-RGB reconstruction by using a U-shape network
with multi-scale encoder-decoder architecture. This method
is improved by Kim et al. [11] with the usage of additional
channel attention block to improve the performance and re-
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Figure 2. Overall framework of our EMVNet. It consists of three
parts, feature extraction, feature matching, and aggregation. A side
path ‘reference generation’ from the input images is utilized to
assist the feature matching.

duce the training time. Although these methods work well
in a few standard scenarios such as daytime images with
good illumination, their performance on low-light scene is
limited. In addition, these methods are designed for single
input image. In a practical scenario where mobile ISP with
dol camera produces images with multiple exposures, these
methods don’t work well since they cannot handle the mo-
tion and exposure mis-alignment. To our best knowledge,
our method is the first one who proposes an end-to-end net-
work to handle the ISP with multi-exposure input images.

3. Our methods

Our overall framework is displayed in Fig. 2. Giving n in-
put LDR images X1, X2, ..., Xn with different exposures,
our EMVNet outputs a single enhanced image Y . The fea-
ture extraction module is first applied on each of the input
image to extract the key information. Then the matching
volume is applied to check the consistency between these
features and handle the variations of motion and exposure.
The aggregation module will aggregate the output feature
maps of the matching volume and convert them into the de-
sired enhancement output.

3.1. Feature extraction

We use the residual-in-residual dense block (RRDB) [22]
as the basic unit of the feature extraction. Each dense block
consists of 5 convolutional layers. The first 4 convolutional
layers are followed by a Relu activation, and there is no
Relu activation after the 5th convolutional layer. Dense
connections are added between these 5 convolutional lay-
ers. The dense block is further inserted into the residual-in-
residual architecture to construct the RRDB. We organize
several RRDB blocks into a sequential order as the final
feature extractor. Same feature extractor will be applied on
each of the input image X1, X2, ..., Xn to generate the fea-
ture maps F1, F2, ..., Fn.

3.2. Matching volume

In some computer vision tasks with multiple input images
such as disparity estimation [2] or optical flow estimation
[21], a commonly-used way is designing a cost volume to
match the feature maps generated by each of the input im-
age. Inspired by this architecture, we propose a matching
volume (MV) for the image enhancement task. Our match-
ing volume takes the deep features extracted by the RRDB
from the n inputs images F1, F2, ..., Fn as input, and out-
puts a single feature map FMV . The key idea of MV can
be described as ‘given a specific motion vector and a spe-
cific exposure difference, what is the correlation between
the reference image and other input images’. The design
of MV is given in Fig. 3. Let M ∈ {M1, ...,MNm} be a
specific motion vector, and E ∈ {E1, ..., ENe} be a specific
exposure difference compared to the reference frame Iref ,
where NM and NE are the number of motion and exposure
difference we consider in the MV. We first align the feature
maps F1, ..., Fn with motion E and exposure M by

F ′
i,M,E =

{
C(Fi,M,E) 1 ≤ i ≤ n, i ̸= ref.

Fi i = ref
(1)

where C is the alignment function. We compare these
aligned feature maps F ′

i,M,E , i = 1, ..., n with the feature
map of the reference frame Fref to generate a correlation
Oi,M,E , i = 1, ..., n. Such ‘comparison’ is a concatenation
of the features generated by the following three operations:

• Feature concatenation: {F ′
i,M,E , Fref}

• Feature difference: |F ′
i,M,E − Fref |

• Cross correlation: < F ′
i,M,E , Fref >

The final output of MV FMV is a concatenation of
these correlations Oi,M,E , i = 1, ..., n. Assume the out-
put feature map size of the feature extraction module is
Fi ∈ RC×H×W , i = 1, ..., n. the size of the corresponding
correlation Oi,M,E will be Oi,M,E ∈ R4C×H×W . Since
there will be NM different motion and NE different expo-
sures evaluated in the matching volume, with n input im-
ages, the final size of the output feature map of the matching
volume will be FMV ∈ R4C×(NM×NE×n)×H×W .

The alignment function C(Fi,M,E) consists of two
steps. The first step is warping the feature map Fi with the
motion M . The second step is multiplying the exposure E
onto the warped feature maps. In the ideal scenario, if there
is no over-exposed area, E ∗ W (Fi) would be exactly the
same as Fref , where W is the warping operator 1. Unfor-
tunately, in most of the real-world LDR images, there will
always be some over-exposed areas. So we add a side path
from the input images to extract the following information:

1The sensor noise and lens shading are ignored in this assumption
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Figure 3. Our proposed matching volume (MV).

• Which of the input image is better to be used as the
reference image Iref . This can be achieved either
by some prior knowledge or blind image evaluation
method [13].

• The over-exposed area mask. It can be generated by
thresholding each channel of the input images. This
mask will be utilized as a weight mask in the alignment
function C(Fi,M,E). When multiplying the expo-
sure E onto the feature maps, if a pixel is saturated in
the input image, the corresponding multiplication will
be thresholded as well.

There are two major differences of our matching volume
compared to existing cost volume used in disparity estima-
tion or optical flow estimation. First, existing cost volume
considers the motion only, while our MV considers the ex-
posure differences among the input images as well. Second,
our MV allows multiple input images, which is more flexi-
ble than the fixed 2 input images in the cost volume.

3.3. Cost aggregation

To generate the enhanced image , we consider aggregating
multi-scale contextual information from the output of the
matching volume FMV . We adopt a stacked hourglass ar-
chitecture, where 3 hourglasses are stacked in a sequential
order, as given in Fig. 4. Each hourglass consists of 6 layers,
the first three layers are 3D convolutional layers with stride
2, and the following three layers are 3D deconvolution lay-
ers with scale factor 2. Since image enhancement requires
global contextual information, we use dilated convolution
instead of standard convolution to further increase the re-
ceptive field. The dilation factors increase as the hourglass
goes deeper. We extract the intermediate outputs Y ′′, Y ′

from the first two hourglasses. These two outputs are used
during the training. During the testing, only the final output
Y is utilized.

Figure 4. Stacked hourglass for aggregation. All layers have 3D
convolution kernels. Blue layers are convolutional layers, and yel-
low layers are deconvolution layers.

4. Implementation
4.1. Weakly-supervised loss function

Learning with standard image content losses such as L1 or
L2 has some limitations. The network tries to reach the
smallest differences between the output and the ground-
truth, but fails to keep the intensity order between different
pixels or patches. For instance, if the ground truth inten-
sity of two pixels are [4,7], the network trained by L1 or
L2 losses might generate enhanced output with correspond-
ing intensities at [6,5]. The intensity order is twisted, which
makes the brighter region become a darker region. For 3-
channel RGB image, it might result in color distortion in
some areas, especially for the low-light images in the wild.

To solve this problem, we propose a pairwise weakly-
supervised loss function Ls with two different versions for
pixels and patches respectively. Given a pixel pair (i, j), the
pixel-wise loss function Ls,pix is given as

Ls,pix =

{
log(1 + ePij ) ifPij ≤ Spix

log(1 + e
√

Pij ) + Cpix ifPij > Spix

(2)
where Pij = −rij(log(Ii) − log(Ij)), Ii is the intensity
of pixel i in the enhanced image, and rij is an ordinal in-
tensity indicator, rij = 1 if pixel i is brighter than pixel j
in the ground-truth image, otherwise rij = −1. Spix is a
threshold setting as 0.25 based on the tuning results, Cpix

is a constant to make the loss functions continuous. Ls,pix

encourages the corresponding pixel pair in the output image
have same intensity order as the ground-truth image.

In real-world scenario, the LDR images suffer from the
unexpected noise. We further propose the patch-wise loss
function based on a patch pair {x, y, rxy}, where (x, y) are
rectangle-shape patches, and rxy is an ordinal indicator. x
and y have exact same size. rxy = 1/ − 1 depending on
whether the average intensity of x is larger than y, which is
similar to the pixel-wise version. We define the patch-wise
loss function Ls,pat as Eq. 3. We set Spat = 0.5 based on
the tuning results, and Cpat is also changed accordingly.

Ls,pat =

{
log(1 + ePij ) ifPij ≤ Spat

log(1 + e
√

Pij ) + Cpat ifPij > Spat

(3)
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The size of the patch pair varies from 5 × 5 to 15 × 15.
The patch pair and pixel pair are sampled randomly from
the non-over-exposed areas:

• Given a pixel pair (i, j), I∗i , I
∗
j ≤ 0.99 ∗ Imax, I∗i is

the intensity of pixel i in the ground-truth image

• Given a patch pair (x, y), for all pixels i ∈ x, j ∈ y,
I∗i , I

∗
j ≤ 0.99 ∗ Imax, I∗i is the intensity of pixel i in

the ground-truth image

4.2. GAN based learning

We follow the ESRGAN [22] framework with the usage of
relativistic discriminator. We use the EMVNet described in
Section 3 as the generator. During the training, our gen-
erator loss LG consists of the image content loss Lc, the
perceptual loss Lp, the adversarial loss La, and the weakly-
supervised loss Ls, as described in Eq. 4. The hyper-
parameters λ, η, α determine the contribution of different
components in the final loss function.

LG = Lp + λLa + ηLc + αLs, (4)

The image content loss is based on standard L1 loss. In
Section 3.3, we mentioned that the stacked hourglass will
output three enhanced images Y ′′, Y ′, Y . The image con-
tent loss Lc is formulated as

Lc = L1(Y, Y
∗) + 0.5 ∗ L1(Y

′′, Y ∗) + 0.75 ∗ L1(Y
′, Y ∗)

(5)
where Y ∗ is the ground-truth. The perceptual loss Lp calcu-
lates a feature map distance between the final output Y and
Y ∗ with the usage of a pre-trained 19-layer VGG network.
Considering the EMVNet output Y as ‘fake image’, and the
ground-truth Y ∗ as the ‘real image’, the adversarial loss La

is based on the relativistic GAN discriminator [22] and is
defined as

La = −EY ∗ [log (1−D(Y ∗, Y )]− EY [log (D(Y ∗, Y )].
(6)

The weakly-supervised loss Ls can either be Ls,pix or
Ls,pat alone, or a combination of both to achieve the best
accuracy. In each iteration, we randomly generate a pixel
pair or patch pair, and calculate the weakly-supervised loss
given in Eq. 3 or Eq. 2.

4.3. Implementation for HDR

For HDR, 12 RRDB blocks are concatenated as the fea-
ture extraction module. All convolutional layers in RRDB
have 32 3 × 3 convolutional filters. In the match-
ing volume, we consider 6 different exposures E ∈

{−4,−2,+2,+4,+8,+16}2 with NE = 6, and the motion
vector ranges from {0, 0} to {36, 36}. Since it would be
time consuming to cover all candidates in such a large mo-
tion range, we sample the motion every 3 pixels to make the
NM = 36× 36/3/3 = 144. Ablation study in section 5.4.1
shows that this will not reduce the accuracy much. The ag-
gregation module consists of three hourglasses given in Fig.
4, where all the convolutional layers have same 32 3×3×3
3D convolutional filters, but with different dilation factors,
and different strides for downsampling or upsampling.

We utilize VGG-19 as the discriminator. Since VGG-19
is pre-trained on RGB domain, for raw HDR task, we add a
simple demosaicing module before feeding the output HDR
raw image into the discriminator. The pixel pairs and patch
pairs for the weakly-supervised learning are randomly sam-
pled from each of the channel (e.g.,R/G/B for RGB HDR, or
R/G/G/B for raw HDR). We start the training with a learn-
ing rate 0.0001 and decrease it by 0.5 every 200K iterations
with a batch size 8. The weights of the loss functions are
set as λ = 0.001, α = 0.25, η = 0.001. Ablation study
of these hyper-parameters are given in Section 3.2 of the
supplementary material.

4.4. E2E-ISP

For E2E-ISP EMVNet, we use 16 RRDB blocks for fea-
ture extraction. E2E-ISP’s aggregation is more complicated
since it needs considering the demosaicing. So we set the
hourglasses in the aggregation module as 64 filters for each
of the convolutional layers, and change the channel of out-
put layer from 4 to 3. Additional sub-pixel convolutional
layers are added before each of the output enhanced image
Y ′′, Y ′, Y respectively. The pixel pairs and patch pairs for
the weakly supervised learning are randomly sampled from
each of the R/G/B channel. The training hyper-parameters
are mostly the same as the HDR training. But the weights of
the loss functions are set as λ = 0.005, α = 0.6, η = 0.001.

5. Experiments

5.1. Datasets

5.1.1 HDR

First, we utilize the commonly-used Kalantari’s dataset [10]
for the task of HDR in RGB domain. This dataset contains
74 image sets for training and 15 image sets for testing.
For each training image set, three different LDR images are
captured with exposure biases {−2, 0, 2} or {−3, 0, 3} in
TIFF format. We also give the results on another RGB-
HDR dataset, the NTIRE 2022 HDR dataset [19] in Section
1 of the supplementary material.

2We don’t consider exposure -8 and -16 since these two ratios mainly
occur in the night scenes. In such scenarios, the short exposure image will
be selected as reference image because it has less motion blur.
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Next, we check the performance of EMVNet on raw
HDR task, which is more practical on mobile devices. For
training, we generate synthetic data based on Google HDR+
dataset [6]. This dataset consists of 3,640 bursts with raw
burst inputs in DNG format, as well as the merged results
for each of the burst. Since all photos in a burst are generally
captured with the same exposure time, we generate the syn-
thetic LDR inputs based on their raw burst inputs following
[14], and use the merged result as the HDR ground-truth.
To simulate the real-world HDR with dol camera, we use
two inputs and randomly sample the exposure differences
between +2 and +16. We generate the long/short exposure
images from different frames of each burst to simulate the
motion. 2,000 long/short exposure image pairs are used as
our training set, and another 400 image pairs are used as the
validation set.

For testing, we collect a real-world mobile raw image
test set named RWMR dataset, where the image sequences
are captured by OPPO Reno 5 pro+ cellphone in dol mode.
The captured raw images cover a variety of illumination lev-
els we would see in our daily life, including indoor, outdoor,
daytime and night scenes. 120 sequences are collected, and
each sequence consists of 20 to 30 frames.

5.1.2 E2E-ISP

For E2E-ISP, we use HDR+ dataset and same train-
ing/testing split as the raw HDR task. For each of the
merged burst, HDR+ dataset also provides the high-quality
JPEG image processed by Google’s ISP. So we train our
EMVNet using the synthetic long/short exposure raw image
pairs as the input, and use the high-quality JPEG image as
ground-truth. Since some of JPEG images are not aligned
with the merged burst (e.g., rotated or scaled), we manually
remove these images from the 2,000 training images. Our
final training set consists of 1,740 long/short raw-JPEG im-
age pairs, and the validation set consists of 317 pairs. Al-
though the HDR+ dataset provides the lens shading map,
we don’t use them because we are trying to learn an end-
to-end model which is expected to handle the lens shading
implicitly.

5.1.3 Evaluation metric

Similar to prior arts in image enhancement, we use the con-
ventional fidelity-based Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity index (SSIM) for quantitative
feedback. We also perform a user study on the final output
images with the Mean Opinion Score (MOS) in the follow-
ing manner. 16 test candidates were shown a side-by-side
comparison of a sample prediction of a certain method and
the corresponding reference ground-truth. They were then
asked to evaluate the quality of the output image w.r.t. the

Table 1. Experimental results on Kalantari’s dataset [10]. Bold
font indicates the best over the columns. For MOS, the smaller the
better. For other metrics, the larger the better.

Method PSNR/SSIMµ PSNR/SSIMl HV2 MOS
Sen [20] 40.80/0.9808 38.11/ 0.9721 59.38 -

Kalantari [10] 42.67/0.9888 41.23/0.9846 65.05 -
Wu [23] 41.65/0.9860 40.88/0.9858 64.90 -
Yan [24] 43.67/0.9900 41.14/0.9702 64.61 1.80
Niu [18] 43.92/0.9905 41.57/0.9865 65.45 1.81
Liu [16] 44.37/0.9917 41.88/0.9892 66.02 1.72

Our EMVNet 44.63/0.9932 42.12/0.9910 66.16 1.63

Figure 5. Example outputs on Kalantari’s dataset [10].

reference image using the 5-level scale defined as: 0 - ‘Per-
fect’, 1 - ‘Almost Perfect’, 2 - ‘Slightly Worse’, 3 - ‘Worse’,
4 - ‘Terrible’. The images shown to the participants of the
study were composed of zoomed crops. The human study
was performed for the top 4 methods of each task according
to PSNR ranking.

5.2. Experimental results of HDR

Table 1 gives the experimental results of our network,
compared to prior arts when training/testing on Kalantari’s
dataset [10]. The subscript of µ indicates that the methods
are calculated in the tone mapped domain following the µ-
law, and the subscript l denotes that the PSNR/SSIM are
calculated in the linear HDR domain. The HDR-VDP-2
(HV2) [17] assesses the visibility and quality of the HDR
images in different luminance conditions. During the HDR-
VDP-2’s calculation, we set the diagonal display size to
24 inches, and the viewing distance to 0.5 meter. We can
see that our method outperforms all other methods, on all
quantitative and qualitative evaluation metrics. Better MOS
score indicates that EMVNet generates more perceptually
friendly images in human vision. Our EMVNet is capable
of recovering better details from the LDR images, as shown
in Fig. 5.

Next, we use the HDR+ dataset to check the performance
on the raw HDR task. We train our EMVNet, as well as
prior arts [24][18][16] on the same HDR+ images, and re-

1720



Table 2. Comparison to the state-of-the-art methods on the valida-
tion images of HDR+ dataset. For raw HDR, we calculate the
PSNR/SSIM in the linear raw domain using the merged bursts
as the ground-truth. For E2E-ISP, we calculate the PSNR/SSIM
in the RGB domain using the ISP processed JPEG images as the
ground-truth. Bold font indicates the best over the columns. All
the approaches are trained on the same training set. For MOS, the
smaller the better.

Raw HDR E2E-ISP
Method PSNR/SSIM MOS PSNR/SSIM MOS
Yan [24] 36.06/0.9586 2.28 - -
Niu [18] 36.29/0.9645 2.08 - -
Liu [16] 36.55/0.9690 2.13 - -

PyNet [9] - - 35.28/0.9498 2.42
PyNet-CA [11] - - 35.35/0.9479 2.48

Ours 37.38/0.9824 1.83 36.89/0.9612 2.13

port the PSNR/SSIM/MOS on the validation images in the
second and third columns of Table 2. It can be seen that
our method achieves 0.8 dB higher PSNR and 0.01 higher
SSIM compared to other HDR methods. The MOS score 3

of our method is significantly better than prior arts with a
0.24 gap. This proves that our EMVNet works better than
prior arts on raw HDR in human vision.

Moreover, we use the images of RWMR dataset to check
the raw HDR on real-world captured images. In Fig. 6, we
show a few examples where all input LDR and output HDR
images are demosaiced with a simple 4-way interpolation
function from OpenCV, and further enhanced with gamma
2.2, otherwise the image will be too dark to visualize. It
can be seen that our method is able to provide the HDR out-
puts with more details and less artifacts, especially on the
extreme low-light scenarios where the exposure differences
between the inputs are large. In contrast, the prior arts bring
some unpleasant artifacts into the output HDR images.

5.3. Experimental results on E2E-ISP

We first give the accuracy comparison of E2E-ISP on the
validation images of the HDR+ dataset in the fourth and
fifth columns of Table 2. All methods are re-trained on same
training set. The input layers of the prior arts [9][11] are
modified to accept multi-input images. We find that our
method outperforms the state-of-the-art E2E-ISP methods
PyNet and PyNet-CA with a large margin in all metrics. The
reason is that these two networks are designed for single
input image, so that they don’t have specific consideration
for the motion and exposure differences caused by multi-
inputs. Our network benefits from the proposed matching
volume, which can generate more reliable color.

We further test these methods on the RWMR raw images
captured by dol camera, and give the visualizations of some
output RGB images in Fig. 7. It is notable that our results
show higher contrast, more neutral color, and better details

3In consideration of the workload of human evaluation, we randomly
select 50 images from the 400 validation images. Different methods use
the same set of 50 images.

Figure 6. Example outputs of HDR based on raw images of
RWMR dataset captured by dol camera. All images are visualized
by OpenCV demosaicing with additional gamma 2.2 enhanced.

compared to the prior arts. There is no motion ghost (see
the person hand of the right image) as well. This demon-
strates the potential of applying our method on real-world
scenarios. More example outputs and analysis can be found
in Section 2 of our supplementary document.

5.4. Ablation study

5.4.1 Different designs of matching volume

Here we give the ablation study of of using different MVs
by the raw HDR task on HDR+ dataset. In Table 3, it can
be seen the accuracy of all the DNNs with matching volume
outperform the one w/o matching volume (row 2). W/o con-
sidering either the motion or the exposure (row 3-4) in the
matching volume, the PSNR/SSIM drop significantly. This
makes sense since the motion and exposure are the key mis-
alignment among the input images. This result is consistent
to [27], which shows that considering color and motion dif-
ferences at the same time for can improve the enhancement
quality for image impainting . We also notice that if the
MV is not guided by the over-exposed area mask (row 5),
the accuracy also decreases. This reflects that adding penal-
ties on the pixels corresponding to the over-exposed area
can give the network more insights. We also provide the re-
sults of using a MV where the motion is not downsampled,
labels as ‘yes(dense)’ in the 6th row, compared to our cur-
rent implementation where the motion vector is x3 sampled
(row 7). We observe that with the usage of dense motion,
the PSNR/SSIM is slightly improved. But since the compu-
tational cost is increased a lot, we still stick to the current
version with sub-sampled motion.
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Figure 7. Example outputs of E2E-ISP task on raw images of RWMR dataset captured by dol camera.

Table 3. Raw-HDR accuracy evaluation on HDR+ validation im-
ages with different matching volumes. ‘mask’ means that whether
the MV is guided by the over-exposed area mask. Bold font indi-
cates the best over the columns.

Motion Exposure Mask PSNR SSIM
EMVNet no no no 36.162 0.9613
EMVNet no yes yes 36.819 0.9708
EMVNet yes no yes 37.064 0.9730
EMVNet yes yes no 37.190 0.9798
EMVNet yes(dense) yes yes 37.414 0.9839
EMVNet yes yes yes 37.377 0.9824

Table 4. Accuracy evaluation on HDR+ validation images with dif-
ferent loss functions. Lc stands for image content loss, Lp stands
for perception loss, La is the GAN’s adversarial loss, Ls,pix stands
for pixel-wise weakly-supervised loss, Ls,pat stands for the patch-
wise weakly-supervised loss. Bold font indicates the best over the
columns.

Raw HDR E2E-ISP
loss PSNR SSIM PSNR SSIM

EMVNet Lc 36.966 0.9690 36.395 0.9523
EMVNet LcLp 36.999 0.9735 36.484 0.9552
EMVNet LcLpLa 37.021 0.9732 36.491 0.9566
EMVNet LcLpLaLs,pix 37.161 0.9796 36.639 0.9599
EMVNet LcLpLaLs,pat 37.276 0.9789 36.800 0.9604
EMVNet LcLpLaLs,pixLs,pat 37.377 0.9824 36.891 0.9612

5.4.2 Different loss functions

Next, we evaluate the accuracy of EMVNet with different
loss functions. We use the same EMVNet with both the
motion and exposure ratio enabled in the matching volume,
but train them with different loss functions. As given in
Table 4, comparing row 5 versus row 3 and row 4, we no-
tice that w/o using perceptive loss (Lp) or GAN’s learn-
ing (La), the accuracy drops slightly (< 0.06 dB). If we
train with either pixel-wise weakly-supervised loss (Ls,pix)
or patch-wise weakly-supervised loss (Ls,pat), the accuracy
improves up to 0.3 dB, as given in row 6 and row 7. Train-
ing with both of these two loss functions (as mentioned in
Section 4.2, randomly generate a pixel or patch pair in each
iteration) gives us the best accuracy, given in the last row.
We give some example outputs in Section 3.1 of the supple-
mentary material to show the effectiveness of training with
the proposed loss function.

5.4.3 Computational cost

We evaluate our method using 4K resolution raw images
(12M pixels), which is the typical application scenario in
mobile devices. On single A100 GPU, our EMVNet takes
1.51 seconds for HDR task, and 2.89 seconds for E2E-ISP.
In contrast, the state-of-the-art HDR methods ADNet [16]
takes 8.77 seconds due to the huge spatial attention matrix.
The state-of-the-art E2E-ISP methods PyNet [9] is slightly
slower than our method, which takes 3.22 seconds.

To further improve the efficiency, we reduce the number
of RRDBs to 6, and replace the standard convolutional lay-
ers by depth-wise convolutional layers in the feature extrac-
tion module. The number of the filters in all convolutional
layers (including those in the stacked hourglass) are reduced
to half. We add a pixel unshuffling layer at the beginning to
downsample the feature map x2, and a pixel shuffling layer
at the end to retrieve the resolution. The whole network
is fine-tuned by knowledge-distillation [1] in a step-to-step
way, while using the original EMVNet as the teacher net-
work. This can accelerate the network x30 (0.08 second on
4K resolution image), with a 0.26 dB accuracy lost. Such
loss is not very significant in human vision. Details can be
found in Section 3.4 of the supplementary material.

6. Conclusion

In this paper, we proposed an effective framework for image
enhancement with inputs of different exposures. Our pro-
posed EMVNet utilized the matching volume to measure
the variations among different input images. The motion
and exposure differences will be evaluated, and further ag-
gregated by the stacked hourglass with dilated convolutions.
Along with the usage of weakly-supervised learning, we
are able to retrieve the missing information while keeping
the confident color information. Our network works well
for multiple image enhancement tasks, including HDR, and
end-to-end ISP. Experimental results on real-device cap-
tured data show the effectiveness of our method.
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