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Abstract

The majority of uncertainty quantification methods for
deep object detectors are based on the network output, such
as sampling strategies like Monte-Carlo dropout or deep
ensembles with straight-forward transfers to object detec-
tion. Here, we study gradient-based uncertainty features
for object detection. We show that they contain information
orthogonal to that of common, output-based uncertainty ap-
proximation methods. Meta classification and meta regres-
sion are used to produce confidence estimates using gra-
dient features and other methods which are applicable to
numerous object detection architectures. Our results show
that gradient uncertainty itself performs on par with state-
of-the-art methods across different detectors and datasets.
We find that combined meta classifiers outperform stan-
dalone models. This suggests that sampling strategies may
be supplemented by gradient-based uncertainty to obtain
improved confidences, contributing to the probabilistic reli-
ability of object detectors in down-stream applications.

1. Introduction

Deep artificial neural networks (DNNs) designed for tasks
such as object detection or semantic segmentation provide a
probabilistic prediction on given feature data such as cam-
era images. Modern deep object detection architectures
[28, 43, 44, 26, 1] predict bounding boxes for instances of
a set of learned classes on an input image. The so-called
objectness or confidence score indicates the probability of
the existence of an object for each predicted bounding box.
Throughout this work, we will refer to this quantity which
the DNN learns by the term “score”. For applications of
deep object detectors such as automated surgery or driving,
the reliability of this component is crucial. See, for exam-
ple the detection in the top panel of fig. 1 where each box
is colored from red (low score) to green (high score). Apart

Score ŝ

Gradient confidence τ̂

Figure 1. Object detection in a street scene. Top coloration: Score
ŝ; bottom coloration: instance-wise gradient-based confidence τ̂
obtained by our method. Dashed boxes here indicate the discard-
ing at any confidence threshold in [0.3, 0.85]. The top image con-
tains FNs which are not separable from correctly discarded boxes
based on the score (lower threshold would lead to FPs). In the bot-
tom image, those ŝ-FNs are assigned higher confidences and there
is a large range of thresholds with no FPs.

from the accurate, green boxes, boxes with a score below
0.3 (dashed) contain true and false predictions which cannot
be reliably separated in terms of their score. In addition, it
is well-known that DNNs tend to give mis-calibrated scores
[52, 12, 13] that are oftentimes over-confident and may also
lead to unreliable predictions. Over-confident predictions
might render an autonomous driving system inoperable by
perceiving non-existent instances (false positives / FP). Per-
haps even more detrimental, under-confidence may lead to
overlooked (false negative / FN) predictions possibly en-
dangering humans outside autonomous vehicles like pedes-
trians and cyclists, as well as the passengers.
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Apart from modifying and improving the detection ar-
chitecture or the loss function, there exist methods to esti-
mate prediction confidence which are more involved than
the score in order to remedy these issues [36, 30, 48]. We
use the term “confidence” more broadly than “score” to re-
fer to quantities which represent the estimated probability
of a detection being correct. Such a quantity should reflect
the model’s overall level of competency when confronted
with a given input and is intimately linked to prediction un-
certainty. Uncertainty for statistical models, in particular
DNNs, can broadly be divided into two types [18] depend-
ing on their primary source [9, 20]. Whereas aleatoric un-
certainty is mainly founded in the stochastic nature of the
data generating process, epistemic uncertainty stems from
the probabilistic nature of sampling data for training, as
well, as the choice of model and the training algorithm. The
latter is technically reducible by obtaining additional train-
ing data and is the central subject of our method.

Due to the instance-based nature of deep object detec-
tion, modern ways of capturing epistemic uncertainty are
mainly based on the instance-wise DNN output. From a
theoretical point of view, Bayesian DNNs [5, 33] repre-
sent an attractive framework for capturing epistemic uncer-
tainty for DNNs by modeling their weights as random vari-
ables. Practically, this approach introduces a large com-
putational overhead making its application infeasible for
object detection. Therefore, in variational inference ap-
proaches, weights are sampled from predefined distribu-
tions to address this. These famously include methods like
Monte-Carlo (MC) dropout [50, 10] generating prediction
variance by performing several forward passes under active
dropout. The same idea underlies deep ensemble sampling
[25] where separately trained models with the same archi-
tecture produce variational forward passes. Other methods
based on the classification output can also be applied to ob-
ject detection such as softmax entropy or energy methods.

A number of other, strong uncertainty quantification
methods that do not only rely on the classification output
has also been developed for image classification architec-
tures [4, 34, 40, 42]. However, the transfer of such meth-
ods to object detection frameworks can pose serious chal-
lenges, if at all possible, due to architectural restrictions.
For example, the usage of a learning gradient evaluated at
the network’s own prediction was proposed [40] to contain
epistemic uncertainty information for image classification
and investigated for out-of-distribution (OoD) data. The
method has also been applied natural language understand-
ing [54] where gradient features and deep ensemble uncer-
tainty were aggregated to obtain well-calibrated confidence
measures on OoD data. The epistemic content of gradient
uncertainty has further been explored in [17] in the classifi-
cation setting by observing shifts in the data distribution.

We propose a way to compute gradient features for the

prediction of deep object detectors. We show that they per-
form on par with state-of-the-art uncertainty quantification
methods and that they contain information that can not be
obtained from output- or sampling-based methods. In par-
ticular, we summarize our main contributions as follows:

• We introduce a way of generating gradient-based un-
certainty features for modern object detection archi-
tectures, allowing to generate uncertainty information
from hidden network layers.

• We investigate the performance of gradient features in
terms of meta classification (FP detection), calibration
and meta regression (prediction of intersection over
union IoU with the ground truth) and compare them
to other means to quantify/approximate epistemic un-
certainty and investigate mutual redundancy as well as
detection performance through gradient uncertainty.

• We explicitly investigate the FP/FN-tradeoff for pedes-
trian detection based on the score and meta classifiers.

• We provide a theoretical treatment of the computa-
tional complexity of gradient features in comparison
with MC dropout and deep ensembles and show that
their FLOP count is similar at worst. Explicit runtime
measurements are performed for verification.

An implementation of our method is publicly available at
https://github.com/tobiasriedlinger/gradient-metrics-od. A
video illustration of our method is publicly available at
https://youtu.be/L4oVNQAGiBc.

2. Related work
Epistemic uncertainty for deep object detection.
Sampling-based uncertainty quantification such as MC
dropout and deep ensembles have been investigated in
the context of object detection by several authors in the
past. They are straight-forward to implement into any
architecture and yield output variance for all bounding box
features. Harakeh et al. [14] employed MC dropout and
Bayesian inference as a replacement of Non-Maximum
Suppression (NMS) to get a joint estimation of epistemic
and aleatoric uncertainty. Similarly, epistemic uncertainty
measures were obtained by Kraus and Dietmayer [23] from
MC dropout. Miller et al. [36] investigated MC dropout as a
means to improve object detection performance in open-set
conditions. Different merging strategies for samples from
MC dropout were investigated by Miller et al. [35] and
compared with the influence of merging boxes in deep
ensembles [37]. Lyu et al. [30] aggregated deep ensemble
samples as if produced from a single detector to obtain
improved detection performance. A variety of uncertainty
measures generated from proposal box variance pre-NMS
called MetaDetect was investigated by Schubert et al.
[48]. In generating advanced scores and IoU estimates,
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it was reported that the obtained information is largely
redundant with MC dropout uncertainty features. All of
the above methods are based on the network output and
generate variance by aggregating prediction proposals in
some manner. Moreover, a large amount of uncertainty
quantification methods based on classification outputs can
be directly applied to object detection [16, 29]. Little is
known about other methods developed for image classifi-
cation that are not directly transferable to object detection
due to architectural constraints (e.g., activation-based [4]
or gradient-based [40] uncertainty). The central difficulty
lies in the fact that different predicted instances depend
on shared latent features or DNN weights such that the
base method can only estimate uncertainty for the entire
prediction (all instances) instead of individual estimates per
instance. We show that gradient uncertainty information
can be extracted from hidden layers in object detectors, seek
to determine how they compare to output-based methods
and show that they contain orthogonal information.
Meta classification and meta regression. The term meta
classification refers to the discrimination of TPs from FPs
on the basis of uncertainty features which was first explored
by Hendrycks and Gimpel [16] to detect OoD samples
based on the maximum softmax probability. Since then, the
approach has been applied to natural language processing
[54], semantic segmentation [2, 31, 46, 45, 47], instance
segmentation in videos [32] and object detection [48, 22]
to detect FP predictions on the basis of uncertainty features
accessible during inference. Moreover, meta regression (the
estimation of IoU based on uncertainty in the same manner)
was also investigated [31, 32, 46, 47, 48] showing large cor-
relations between estimates and the true localization qual-
ity. Chan et al. [2] have shown that meta classification can
be used to improve network accuracy, an idea that so-far
has not been achieved for object detection. Previous stud-
ies have overlooked class-restricted meta classification per-
formance, e.g., when restricting to safety-relevant instance
classes. Moreover, in order to base downstream applica-
tions on meta classification outputs, resulting confidences
need to be statistically reliable, i.e., calibrated which has
also escaped previous research.

3. Gradient-based epistemic uncertainty
In instance-based recognition tasks, such as object detection
or instance segmentation, the prediction

ŷ = (ŷ1, . . . , ŷNx) (1)

consists of a list of instances (e.g., bounding boxes). The
length of ŷ usually depends on the corresponding in-
put x and on hyperparameters (e.g., confidence / overlap
thresholds). Uncertainty information which is not gener-
ated directly from instance-wise data such as activation-

or gradient-based information can at best yield statements
about the entirety of ŷ but not immediately about any in-
dividual instance ŷj . This issue is especially apparent for
uncertainty generated from deep features which potentially
all contribute to an instance ŷj . Here, we introduce an ap-
proach to generate gradient-based uncertainty features for
the instance-based setting. To this end, we sketch how gra-
dient uncertainty is generated for classification tasks.

Generically, given an input x, a classification network
predicts a class distribution ŷ(x,w) = (p̂1, . . . , p̂C) of
fixed length C given a set of weights w. During training,
the latter is compared to the ground truth label y belong-
ing to x by means of some loss function L(·, ·), which is
minimized by optimizing w, e.g., by standard stochastic
gradient descent. The w-step is proportional to the gradi-
ent g(x,w, y) := ∇wL(ŷ(x,w), y) which can also be re-
garded as a measure of learning stress imposed upon w.
Gradient uncertainty features are generated by substituting
the non-accessible ground truth y with the network’s class
prediction y := argmaxc{p̂c}Cc=1 and disregarding the de-
pendence of the latter on w. In the following we will iden-
tify y with its one-hot encoding. Scalar values are obtained
by computing some magnitude of

g(x,w, y) = ∇wL(ŷ(x,w), y). (2)

To this end, in our experiments we employ the maps

{min(·),max(·),mean(·), std(·), || · ||1, || · ||2}. (3)

We discuss the latter choice in our supplementary material
and first illuminate some points about eq. (2).
Intuition and discussion of (2). First of all, eq. (2) can be
regarded as the self-learning gradient of the network. It,
therefore, expresses the learning stress on w under the con-
dition that the class prediction y were given as the ground
truth label. The collapse of the (e.g., softmax) prediction ŷ
to y implies that (2) does not generally vanish in the classifi-
cation setting. However, this consideration poses a problem
for (bounding box) regression which we will address in the
next paragraph. We also note that it is possible to generate
fine-grained features by restricting w in eq. (2) to sub-sets
of weights wℓ, e.g. individual layers, convolutional filters
or singular weights (computing partial gradients of L).

Using eq. (2) as a measure of uncertainty may be un-
derstood by regarding true and false predictions. A well-
performing network which has y already close to the true la-
bel y tends to experience little stress when trained on (y,x)
with the usual learning gradient. This reflects confidence in
the prediction y and the difference between eq. (2) and the
true gradient is then small. In the case of false predictions
y ̸= y, the true learning gradient enforces large adjustments
in w. The self-learning gradient eq. (2) behaves differently
in that it is large for non-peaked / uncertain (high entropy)
predictions ŷ and small for highly peaked distributions.
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The following consideration establishes a link to empir-
ical findings. Assuming that we draw data (y,x) ∼ p from
a fixed distribution p, we regard g(x) := g(x,w, y). A
simple computation (cf. appendix E) shows that

E(y,x)[||g(x)|| |y = y(x)] < E(y,x)[||g(x)|| |y ̸= y(x)] (4)

holds, if and only if Cov(||g(x)||, ε(x)) > 0, where ε(x) =∑
c̸=y(x) p(c|x) is the model’s conditional error rate. Such

an actual positive correlation between ||g(x)|| and the lo-
cal error rate has been established independently in experi-
ments before[40, 51]. Note further, that for precise models
where g(x) ≈ g(x,w, y), this relation is indicative of epis-
temic uncertainty as the model will adapt more strongly to
instances where ε(x) is (still) large.
Extension to object detectors. We first clarify the afore-
mentioned complications in generating uncertainty infor-
mation for object detection. Generally, the prediction (1)
is the filtering result of a larger, often fixed number N̂out of
output bounding boxes ỹ(x,w). Given a ground truth list y
of bounding boxes, the loss function usually has the form

L = L(ỹ(x,w), y), (5)

such that all N̂out output bounding boxes potentially con-
tribute to g(x,w, y). Again, when filtering ỹ to a smaller
number of predicted boxes ŷ and converting them to ground
truth format y, we can compute the self-learning gradient
g(x,w, y). This quantity, however, does not refer to any
individual prediction ŷj , but rather to all boxes in y simul-
taneously. We take two steps to obtain meaningful gradient
information for one particular box ŷj from this approach.

Firstly, we restrict the ground truth slot to only contain
the length-one list yj , regarding it as the hypothetical label.
This alone is insufficient since other, correctly predicted in-
stances in ỹ(x,w) would lead to a penalization and “over-
correcting” gradient g(x,w, yj), given yj as label. This
gradient’s optimization goal is, figuratively speaking, to for-
get to predict everything but ŷj when presented with x.
Note that we cannot simply compute ∇wL(ŷj(x,w), yj)
since regression losses, such as for bounding box regres-
sion, are frequently norm-based (e.g. Lp-losses) such that
the respective loss and gradient would both vanish. There-
fore, we secondly mask ỹ such that the result is likely to
only contain output boxes meaning to predict the same in-
stance as yj . Our conditions for this mask are sufficient
score, sufficient overlap with yj and same indicated class
as yj (the predictions which would be suppressed by yj in
NMS). We call the subset of ỹ that satisfies these conditions
candidate boxes for yj , denoted cand[yj ]. We, thus, pro-
pose the candidate-restriced self-learning gradient

gcand(x,w, ŷj) := ∇wL
(
cand[ŷj ](x,w), yj

)
(6)

of ŷj for computing instance-wise uncertainty. This ap-
proach is in line with the motivation for the classification

setting and extends it when computing (6) for the multi-
criterial loss function in object detection.
Computational complexity. Sampling-based epistemic
uncertainty quantification methods such as MC dropout and
deep ensembles tend to generate a significant computational
overhead as several forward passes are required. Here, we
provide a theoretical result on the count of floating point
operations (FLOP) of gradient uncertainty features which is
supported with a proof and additional detail in appendix D.
In our experiments, we use the gradients computed over
the last one, resp. two layers of each network architecture
(of different architectural branches, as well, if applicable).
For layer t, we assume stride-1, (2st + 1) × (2st + 1)-
convolutional layers acting on features maps of spatial size
wt×ht. These assumptions hold for all architectures in our
experiments. We denote the number of input channels by
kt−1 and of output channels by kt.

Theorem 1 The number of FLOP required to compute the
last layer (t = T ) gradient in eq. (6) is O(kThw +
kT kT−1(2sT + 1)4). Similarly, for earlier layers t, we
haveO(kt+1kt+ktkt−1), provided that we have previously
computed the gradient for the consecutive layer t+ 1. Per-
forming variational inference only on the last layer requires
O(kT kT−1hw) FLOP per sample.

Theorem 1 provides that even for MC dropout only before
the last layer, or the use of efficient deep sub-ensembles [53]
sharing the entire architecture but the last layer, gradient
features require fewer or at worst similar FLOP counts. Ear-
lier sampling, especially entire deep ensembles, have even
higher FLOP counts than these variants. Note, that comput-
ing gradient features have somewhat larger computational
latency since the full forward pass needs to be computed
before gradients can be computed. Moreover, while sam-
pling strategies can in principle be implemented to run all
sample forward passes in parallel, the computation of gra-
dients can run in parallel for predicted boxes per image. We
compare explicit time measurements for different methods
in section 5 and provide a proof of theorem 1 in appendix D.

4. Meta classification and meta regression
We evaluate the efficacy of gradient scores in terms of meta
classification and meta regression. These two approaches
allow for the aggregation of potentially large feature vec-
tors to obtain uncertainty estimates for a respective predic-
tion (e.g., a bounding box). The aim of meta classification
is to detect FP predictions by generating confidence esti-
mates while meta regression directly estimates the predic-
tion quality (e.g., IoU ). This, in turn, allows for the unified
comparison of different uncertainty quantification methods
and combinations thereof by regarding meta classifiers and
meta regression models based on different features. More-
over, we are able to investigate the degree of mutual redun-
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Input Image x

Object
Detector (w)

{φ1, . . . ,φNx}
Features φi

e.g. softmax/MC dropout std of ŷi,
||gcand(x,w, ŷj)||2 or others (cf. table 2)

Detection {ŷ1, . . . , ŷNx}

Meta Regression
{ι̂1, . . . , ι̂Nx}

(predicted IoU )

Meta Classification
{τ̂ 1, . . . , τ̂Nx}

(TP confidence)

fDι

fDτ

Figure 2. Meta classification and meta regression pipeline: An uncertainty feature vector φj is assigned to each detected box ŷj . During
training, we fit fD

τ and fD
ι to map φj to τ j (TP/FP) and max. IoU ιj of ŷj , resp. At inference, fD

τ and fD
ι yield confidence and IoU

estimates τ̂ j and ι̂j for ŷj based on φj .

dancy of different sources of uncertainty. In the following,
we summarize this method for bounding box detection and
illustrate the scheme in fig. 2.

We regard an object detector generating a list of Nx de-
tections along with a vector φj for each predicted bound-
ing box ŷj . This vector φj ∈ Rn of n “features” may
contain gradient scores, but also, e.g., bounding box fea-
tures, MC dropout or deep ensemble features or combina-
tions thereof (e.g., by concatenation of dropout and ensem-
ble feature vectors). On training data D, we compute boxes
ŷ and corresponding featuresφ = (φ1, . . . ,φNx). We eval-
uate each predicted instance ŷj corresponding to the fea-
tures φj in terms of their maximal IoU , denoted ιj ∈ [0, 1]
with the respective ground truth and determine FP/TP la-
bels τ j ∈ {0, 1}. A meta classifier is a lightweight clas-
sification model fτ : Rn → (0, 1) giving probabilities for
the classification of φj (vicariously for the uncertainty of
ŷj) as TP which we fit on D. Similarly, a meta regression
model fι : Rn → R is fit to the maximum IoU ιj of ŷj

with the ground truth of x. The models fDτ and fDι can be
regarded as post-processing modules which generate confi-
dence measures given an input to an object detector leading
to features φj . At inference time, we then obtain box-wise
classification probabilities τ̂k = fDτ (φk) and IoU predic-
tions ι̂k = fDι (φk). We then determine the predictive power
of fDτ and fDι in terms of their area under receiver operating
characteristic (AuROC ) or average precision (AP ) metrics
and the determination coefficient (R2), respectively.

MetaFusion (object detection post-processing). As a di-
rect application of uncertainty quantification, we investigate
an approach inspired by [2]. We implement meta classifi-
cation into the object detection pipeline by assigning each
output box in ỹ its meta classification probability as predic-
tion confidence as shown in fig. 1. State-of-the-art object
detectors use score thresholding in addition to NMS which

Table 1. Number of layers and losses utilized and resulting num-
bers of gradients per box. Multiplication in # layers denotes paral-
lel output strands of the resp. DNN (no additional gradients).

Architecture # layers # Losses # gradients

YOLOv3 2× 3 3 6
Faster R-CNN 2× 4 4 8
RetinaNet 2× 2 2 4
Cascade R-CNN 2× 8 8 16

we compare with confidence filtering based on meta clas-
sification. Since for most competitive uncertainty baselines
in our experiments, computation for the entire pre-filtering
network output ỹ is expensive, we implement a small score
threshold which still allows for a large amount of predicted
boxes (of ∼ 150 bounding boxes per image). This way,
well-performing meta classifiers (which accurately detect
FPs) together with an increase in detection sensitivity offer
a way to “trade” uncertainty information for detection per-
formance. In most object detection pipelines, score thresh-
olding is carried out before NMS. We choose to interchange
them here as they commute for the baseline approach. The
resulting predictions are compared for a range of confidence
thresholds in terms of mean Average Precision (mAP [8]).

5. Experiments
In this section, we report our numerical methods and ex-
perimental findings. We investigate meta classification and
meta regression on three object detection datasets, namely
Pascal VOC [8], MS COCO [27] and KITTI [11]. We in-
vestigate for gradient-based meta classification and meta re-
gression for only 2-norm scalars, denoted GS||·||2 (refer to
section 3) as well as the larger model for all maps listed in
eq. (3), denoted GSfull. GSfull is always computed for the
last two network layers (unless specified otherwise) of each
architectural branch and for each contribution to the loss
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function L separately, i.e., for classification, bounding box
regression and, if applicable, objectness score. We list the
resulting counts and number of gradients per investigated
architecture in table 1. As meta classifiers and meta re-
gressors, we use gradient boosting models which have been
shown[54, 48, 32] to perform well as such. Whenever we
indicate means and standard deviations, we obtained those
by 10-fold image-wise cross validation (cv) for the train-
ing split D of the meta classifier / meta regression model.
Evaluation is done on the complement of D.
Comparison with output-based uncertainty. We compare
gradient-based uncertainty with various uncertainty base-
lines in terms of meta classification (table 2) and meta re-
gression (table 3) for a YOLOv3 model with standard Dark-
net53 backbone [43]. As class probability baselines, we
consider objectness score, softmax entropy, energy score
[29] and the full softmax distribution per box. Since the
full softmax baseline fits a model directly to all class proba-
bilities (as opposed to relying on hand-crafted functions), it
can be considered an enveloping model to both, entropy and
energy score. Moreover, we consider other output baselines
in MC dropout (MC), deep ensembles (E) and MetaDetect
(MD). Since MetaDetect involves the entire network out-
put of a bounding box, it leads to meta classifiers fitted on
more variables than class probability baselines. It is, thus,
an enveloping model of the full softmax baseline and, there-
fore, all classification baselines. The results in table 2 indi-
cate that GSfull is roughly in the same AuROC range as
sampling-based uncertainty methods, while being consis-
tently among the two best methods in terms of AP . The
smaller gradient-based model GS||·||2 is consistently better
than the full softmax baseline, by up to 3.14 AuROC per-
centage points (ppts) and up to 5.60 AP ppts. We also find
that GSfull tends to rank lower in terms of AuROC . Note
also, that MetaDetect is roughly on par with the sampling
approaches MC and E throughout. While the latter methods
aim at capturing epistemic uncertainty they constitute ap-
proximations and are, not necessarily mutually redundant.

In addition, we compare the largest sampling and output
based model in MC+E+MD and add the gradient features
GSfull to find out about the degree of redundancy between
the approximated epistemic uncertainty in MC+E+MD and
our method. We note significant boosts to the already well-
performing model MC+E+MD across all metrics. Table 3
suggests that gradient uncertainty is especially informative
for meta regression with GSfull being consistently among
the best two models and achieving R2 scores of up to 85.4
on the KITTI dataset. Adding GSfull to MC+E+MD always
leads to a gain of more than one R2 ppt indicating non-
redundancy of gradient- and sampling-based features.
Object detection architectures. We investigate the appli-
cability and viability of gradient uncertainty for a variety of
different architectures. In addition to the YOLOv3 model,
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Figure 3. Reliability plots of the Score (left) and meta classifiers
for MD (center) and GSfull (right) on the VOC dataset (YOLOv3)
with calibration errors (mean ± std). The gray diagonal shows
optimal calibration.

we investigate two more standard object detectors in Faster
R-CNN [44] and RetinaNet [26] both with a ResNet50
backbone [15]. Moreover, we investigate a stronger object
detector in Cascade R-CNN [1] with a large ResNeSt200
[57] backbone which at the time of writing was ranked
among the top 10 on the official COCO Detection Leader-
board. With a COCO detection AP of 49.03, this is in
the state-of-the-art range for pure, non-hybrid-task object
detectors. In table 4, we list meta classification AuROC
and meta regression R2 for the score, MetaDetect (repre-
senting output-based methods), GSfull and the combined
model GSfull+MD. We see GSfull again being on par with
MD, in the majority of cases even surpassing it by up to
2.01 AuROC ppts and up to 11.52 R2 ppts. When added
to MD, we find again boosts in both performance metrics,
especially in R2. On the COCO dataset, the high perfor-
mance model Cascade R-CNN delivers a remarkably strong
Score baseline completely redundant with MD and surpass-
ing GSfull on its own. However, here we also find an im-
provement of 0.68 ppts by adding gradient information.
Calibration. We evaluate the meta classifier confidences
obtained above in terms of their calibration errors when di-
vided into 10 confidence bins. Reliability plots are shown
in fig. 3 for the Score, MD and GSfull together with cor-
responding expected (ECE [38]) and average (ACE [39])
calibration errors. The Score is clearly over-confident in the
upper confidence range and both meta classifiers are well-
calibrated. Both calibration errors of the latter are about one
order of magnitude smaller than for the Score.
Pedestrian detection. The statistical improvement seen
in table 2 may not hold for non-majority classes within a
dataset which are regularly safety-relevant. We investigate
meta classification of the “Pedestrian” class in KITTI and
explicitly study the FP/FN trade-off. This can be accom-
plished by sweeping the confidence threshold between 0
and 1 and counting the resulting FPs and FNs. We choose
increments of 10−2 for meta classifiers and 10−4 for the
scores as to not interpolate too roughly in the range of very
small score values where a significant number of predic-
tions cluster. The resulting curves are depicted in fig. 4.
For applications in safety-critical environments, not all er-
rors need to be equally important. We may, for example,
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Table 2. Meta classification performance in terms of AuROC and AP per confidence model over 10-fold cv (mean± std).
YOLOv3 Pascal VOC COCO KITTI

AuROC AP AuROC AP AuROC AP

Score 90.68± 0.06 69.56± 0.12 82.97± 0.04 62.31± 0.05 96.53± 0.05 96.87± 0.03
Entropy 91.30± 0.02 61.94± 0.06 76.52± 0.02 42.52± 0.04 94.79± 0.06 94.83± 0.05
Energy Score [29] 92.59± 0.02 64.65± 0.06 75.39± 0.02 39.72± 0.06 95.66± 0.02 95.33± 0.03
Full Softmax 93.81± 0.06 72.08± 0.15 82.91± 0.06 58.65± 0.10 97.07± 0.03 96.85± 0.03
MC Dropout [50] (MC, NMC = 30) 96.72± 0.02 78.15± 0.09 89.04± 0.02 64.94± 0.11 97.60± 0.07 97.17± 0.10
Ensemble[25] (E, Nens = 5) 96.87± 0.02 77.86± 0.11 88.97± 0.02 64.05± 0.12 97.98± 0.03 97.69± 0.04
MetaDetect [48] (MD) 95.78± 0.05 78.64± 0.08 87.16± 0.04 69.41± 0.07 98.23± 0.02 98.06± 0.02
Grad. Score||·||2 (GS||·||2 ; ours) 94.76± 0.03 74.86± 0.10 86.05± 0.04 64.25± 0.06 97.31± 0.05 96.86± 0.10
Grad. Scorefull (GSfull; ours) 95.80± 0.04 78.57± 0.11 88.07± 0.03 69.62± 0.07 98.04± 0.03 97.81± 0.06

MC+E+MD 97.66± 0.02 85.13± 0.12 91.14± 0.02 73.82± 0.05 98.56± 0.03 98.45± 0.03
GSfull+MC+E+MD 97.95± 0.02 86.69± 0.09 91.65± 0.03 74.88± 0.07 98.74± 0.02 98.62± 0.01

Table 3. Meta regression performance in terms of R2 per confi-
dence model over 10-fold cv (mean± std).

YOLOv3 Pascal VOC COCO KITTI

Score 48.29± 0.04 32.60± 0.02 78.86± 0.05
Entropy 43.24± 0.03 21.10± 0.04 69.33± 0.04
Energy Score 47.18± 0.03 17.94± 0.02 71.53± 0.10
Full Softmax 53.86± 0.11 36.95± 0.13 78.92± 0.11
MC 61.63± 0.15 43.85± 0.09 82.10± 0.11
E 61.48± 0.07 43.53± 0.13 84.18± 0.12
MD 60.36± 0.14 44.22± 0.11 85.88± 0.10
GS||·||2 (ours) 58.05± 0.13 38.77± 0.04 81.21± 0.05
GSfull (ours) 62.50± 0.11 44.90± 0.09 85.40± 0.11

MC+E+MD 69.38± 0.11 54.07± 0.08 87.78± 0.11
GSfull+MC+E+MD 72.26± 0.08 56.14± 0.11 88.80± 0.07
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Figure 4. Meta classification for the class “Pedestrian”. Curves
obtained by sweeping the threshold on score / meta classification
probability. Note the FP gaps for ≤ 100 FNs.
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Figure 5. Score baseline and MetaFusion mAP . Error bands we
draw around meta classifiers indicate cv-std.

demand a good trade-off at a given FN count which is usu-
ally desired to be especially small. Our present evaluation
split contains a total of 1152 pedestrian instances. Assume
that we allowed for a detector to miss around 100 pedes-
trians (∼ 10%), we see a reduction in FPs for some meta
classifiers. MD and GSfull are very roughly on par, leading
to a reduction of close to 100 FPs. The ensemble E turns
out to be about as effective as the entire output-based model
MC+E+MD, only falling behind above 150 FNs. This in-
dicates some degree of redundancy between output-based
methods. Adding GSfull to MC+E+MD, however, reduces
the number of FPs again by about 100 leading to an FP
difference of about 250 as compared to the Score baseline.
Observing the trend, the improvements become even more
effective for smaller numbers of FNs (small thresholds) but
diminish for larger numbers of above 200 FNs.
MetaFusion. In regarding fig. 2, meta classifiers natu-
rally fit as post processing modules on top of object de-
tection pipelines. Doing so does not generate new bound-
ing boxes, but modifies the confidence ranking as shown in
fig. 1 and may also lead to calibrated confidences. There-
fore, the score baseline and meta classifiers are not compa-
rable for fixed decision thresholds. We obtain a compari-
son of the resulting object detection performance by sweep-
ing the decision threshold with a step size of 0.05 (resp.
0.025 for Score). The mAP curves are shown in fig. 5. We
draw error bands showing cv-std for GSfull, MC+E+MD
and GSfull+MC+E+MD. Meta classification-based decision
rules are either on par (MC) with the score threshold or
consistently allow for an mAP improvement of at least 1
to 2 mAP ppts. In particular, MD performs well, gaining
around 2 ppts in the maximum mAP . When comparing
the addition of GSfull to MC+E+MD, we still find slim im-
provements for thresholds≥ 0.75. The score curve shows a
kink at a threshold of 0.05 and ends at the same maximum
mAP as GSfull while the confidence ranking is clearly im-
proved for MC+E+MD and GSfull+MC+E+MD. Note that
meta classification based on GSfull is less sensitive to the
choice of threshold than the score in the medium range. At
a threshold of 0.3 we have an mAP gap of about 1.4 ppts
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Table 4. Meta classification and meta regression performance in terms of AuROC and R2, respectively, for different object detection
architectures. Results (mean± std) obtained from 10-fold cv as above.

Pascal VOC COCO KITTI

AuROC R2 AuROC R2 AuROC R2

Faster R-CNN

Score 89.77± 0.05 39.94± 0.02 83.82± 0.03 40.50± 0.01 96.53± 0.05 72.29± 0.02
MD 94.43± 0.02 47.92± 0.09 91.31± 0.02 44.41± 0.04 98.86± 0.02 79.92± 0.04
GSfull 95.88± 0.05 59.40± 0.03 91.38± 0.03 50.44± 0.04 99.20± 0.01 86.31± 0.07
GSfull + MD 96.77± 0.05 63.64± 0.08 92.30± 0.02 52.30± 0.04 99.37± 0.02 87.46± 0.05

RetinaNet

Score 87.53± 0.03 40.43± 0.01 84.95± 0.02 39.88± 0.02 95.91± 0.02 73.44± 0.02
MD 89.57± 0.04 50.27± 0.10 85.09± 0.01 42.45± 0.12 96.19± 0.02 77.53± 0.08
GSfull 91.58± 0.04 57.23± 0.07 85.59± 0.02 47.74± 0.06 97.26± 0.03 84.47± 0.04
GSfull + MD 92.99± 0.03 64.32± 0.07 87.15± 0.05 51.07± 0.09 97.61± 0.02 85.73± 0.09

Cascade R-CNN

Score 95.70± 0.04 57.90± 0.09 94.11± 0.01 56.31± 0.01 98.67± 0.02 83.31± 0.03
MD 96.32± 0.05 63.62± 0.12 94.10± 0.02 58.74± 0.08 99.18± 0.01 86.22± 0.08
GSfull 96.66± 0.05 63.94± 0.13 93.97± 0.01 57.80± 0.08 99.34± 0.01 87.39± 0.08
GSfull + MD 97.24± 0.05 69.78± 0.13 94.78± 0.02 62.13± 0.06 99.48± 0.01 89.59± 0.04

Table 5. Computation timing of different methods at εs = 10−4.
Method Parameters AuROC AP R2 FPS

Score — 96.53 96.53 78.86 43.48
MC N = 30, par. 97.60 97.17 82.10 31.45
E N = 5, seq. 97.98 97.69 84.18 9.17
GSfull 1 layer 98.04 97.81 84.35 34.77

which widens to 5.2 ppts at 0.6.
Runtime. We compare the runtime of our method with
MC dropout and deep ensembles for YOLOv3 running on a
Nvidia Quadro P6000 GPU at batch size 1. Table 5 shows
the average performance on the KITTI dataset and through-
put in frames per second (FPS). MC is batch-parallelized
within dropout layers, while E runs sequentially. GSfull is
parallelized over predicted boxes and backpropagation per-
formed explicitly by convolution (cf. section 4). We see
that at slightly better meta classification, last layer gradi-
ent scores achieve around 3 additional FPS over MC which
is in line with theorem 1. This is possible due to the ini-
tial score threshold on the prediction. Computing deeper
gradients amounts to performing one more transposed con-
volution per layer which does not obstruct parallelism.

6. Conclusion

Applications of modern DNNs in safety-critical environ-
ments demand high performance on the one hand, but also
reliable confidence estimation indicating where a model is
not competent. We have proposed and investigated a way
of implementing gradient-based uncertainty quantification
for deep object detection which complements output-based
methods well and is on par with established epistemic un-
certainty quantification methods. Experiments involving a
number of different architectures suggest that our method
can be applied to significant benefit across architectures,
even for high performance state-of-the-art models. We

showed that meta classification performance carries over
to object detection performance when employed as post-
processing and that meta classification naturally leads to
well-calibrated gradient confidences improving probabilis-
tic reliability. Equation (6) can in principle be augmented
to fit any DNN inferring and learning on an instance-based
logic (e.g., 3D bounding box detection, instance segmen-
tation). Industrial applications of our method may include
uncertainty-based querying in active learning or the prob-
abilistic detection of data annotation errors. We hope that
this work will inspire future progress in uncertainty quan-
tification, probabilistic object detection and related areas.
Limitations. While our experiments indicate that gradient-
based uncertainty can be used beneficially to estimate pre-
diction quality and confidence, a comparison of gradient
features in terms of OoD (or “open set condition”) detec-
tions would also be of great interest and in line with previ-
ous work on gradient uncertainty [40, 54, 17]. However, the
very definition of OoD in the instance-based setting itself is
still subject of contemporary research [36, 6, 19] and lacks
a widely established definition.
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