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Abstract

In this work, we present for the first time a method for
detecting label errors in image datasets with semantic seg-
mentation, i.e., pixel-wise class labels. Annotation acquisi-
tion for semantic segmentation datasets is time-consuming
and requires plenty of human labor. In particular, review
processes are time consuming and label errors can easily be
overlooked by humans. The consequences are biased bench-
marks and in extreme cases also performance degradation
of deep neural networks (DNNs) trained on such datasets.
DNNs for semantic segmentation yield pixel-wise predictions,
which makes detection of label errors via uncertainty quan-
tification a complex task. Uncertainty is particularly pro-
nounced at the transitions between connected components
of the prediction. By lifting the consideration of uncertainty
to the level of predicted components, we enable the usage of
DNNs together with component-level uncertainty quantifica-
tion for the detection of label errors. We present a principled
approach to benchmark the task of label error detection by
dropping labels from the Cityscapes dataset as well as from a
dataset extracted from the CARLA driving simulator, where
in the latter case we have the labels under control. Our
experiments show that our approach is able to detect the
vast majority of label errors while controlling the number
of false label error detections. Furthermore, we apply our
method to semantic segmentation datasets frequently used
by the computer vision community and present a collection
of label errors along with sample statistics.

1. Introduction

In many applications, such as automated driving and med-
ical imaging, large amounts of data are collected and labeled
with the long-term goal of obtaining a strong predictor for
such labels via artificial intelligence, in particular via deep
learning [13, 19, 21, 24, 25, 29]. Acquisition of so-called
semantic segmentation ground truth, i.e., the pixel-wise an-
notation within a chosen set of classes on which we focus in

this work, involves huge amounts of human labor. A German
study states an effort of about 1.5 working hours per high
definition street scene image [33]. Typically, industrial and
scientific labelling processes consist of an iterative cycle of
data labeling and quality assessment. Since the long-term
goal of acquiring enough data to train e.g. deep neural net-
works (DNNs) to close to ground truth performance requires
a huge amount of data, partial automation of the labeling
cycle is desirable. Two research directions aiming at this
goal are active learning, which aims at labeling only those
data points that leverage the model performance a lot (see
e.g. [6, 22, 34]), and the automated detection of label errors
(see [9, 28]). Currently, in active learning for semantic seg-
mentation, a moderate number of methods exists. This is also
due to the fact that active learning comes with an increased
computational cost as a DNN has to be trained several times
over the course of the active learning iterations [6, 22]. Typ-
ically, these methods assume that perfect ground truth can
be obtained by an oracle/teacher in each active learning it-
eration. In practice this is not the case and annotations are
subject to multiple review loops. In that regard, current
methods mostly study how noisy labels affect the model
performance [16, 44], with the insight that DNNs can deal
with a certain amount of label noise quite well. Methods
for modeling label uncertainty in medical image segmenta-
tion, semantic street scene segmentation and everyday scene
segmentation were proposed in [18, 23, 38, 42, 45].

For image classification tasks, the detection of label errors
was studied in [28]. Importantly, it was pointed out that label
errors harm the stability of machine learning benchmarks
[27]. This stresses the importance of being able to detect
label errors, which will help to improve model benchmarks
and speed up dataset review processes.

In this work, we study for the first time the task of detect-
ing label errors in semantic segmentation in settings of low
inter- and intra-observer variability. While DNNs provide
predictions on pixel level, we assess DNN predictions on the
level of connected components belonging to a given class
by utilizing [31]. Note that this is crucial since a connected
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component has uncertain labels at its boundary, which makes
label error detection on pixel level a complex task. For each
connected component, we estimate the probability of that
prediction being correct. If a connected component has a
high estimated probability of being correct, while it is sig-
naled to be false positive w.r.t. ground truth, we consider
that component as a potential label error. We study the per-
formance of our label error detection method on synthetic
image data from the driving simulator CARLA [10] and
on Cityscapes [8]. CARLA gives us a guarantee of being
per se free of label errors such that we can provide a clean
evaluation. To this end, we remove objects from the ground
truth and study whether our method is able to identify these
components as overlooked by the ground truth. Cityscapes
provides high quality ground truth with only a small amount
of label errors. The ground truth is available in terms of
polygons such that we can drop connected components as
well. In both cases it turns out that our method is able to
detect most of the dropped labels while keeping the amount
of false positive label errors under control. We believe that
our method offers huge potential to make labeling processes
more efficient. Our contribution can be summarized as fol-
lows:

• We present for the first time a method that detects label
errors in semantic segmentation.

• Utilizing [31] we detect label errors on the level of
connected components.

• We introduce a principled benchmark for the detection
of label errors based on [10] and [8].

• We apply our method to additional datasets [1, 12, 47]
and provide examples of label errors that we found. By
manually assessing samples of that data we evaluate the
precision of our method on those datasets.

For all of those four real-world datasets we studied, we
achieved a precision between 47.5% and 67.5% of correctly
predicted label errors. We show that our method is able
to find both overlooked and class-wise flipped labels while
keeping the amount of prediction to review considerably low.

2. Related Work
The impact of label errors on DNNs is an active field

of research. Dataset labels in the context of classification
have been shown to be imperfect [27], which also holds
true for semantic segmentation. Particularly, in medical
images, regions of interest are often difficult to find due to vi-
sual ambiguity and inter- and intra-observer variability. For
CT scans, the authors of [16] observed model performance
degradation when the label error noise increases. Hence, a
number of works focus on modelling label uncertainty and
develop more robust segmentation models [18,23,38,42,45].

Up to now, to the best of our knowledge the detection of
incorrectly labeled ground truth connected components in se-
mantic segmentation has not been tackled. Major challenges
are the inter- and intra-observer variability in applications
like medical imaging, but also the fact that segmentation
networks operate on pixel level.

In the context of image classification, learning meth-
ods that are robust to label noise have been introduced
in [14, 15, 17, 20, 28, 30, 39, 41, 43], and also the problem
of label error detection has been considered in [28]. The
authors of [28] model class-conditional but image/instance-
independent label noise in order to model label uncertainty
and consider the task of label error detection. Indeed, the
authors find numerous label errors in typical benchmark
datasets like MNIST (image classification) or Amazon Re-
views (sentiment classification). In [27], it is also pointed out
that label errors in test sets destabilize prominent machine
learning benchmarks such as MNIST, CIFAR10, CIFAR100,
ImageNet, IMDB and Amazon Reviews. Another work [5]
uses a cross validation approach that turns out to filter sam-
ples with noisy labels. However, for this filtering technique
only the overall label quality is considered as a benchmark.
In that work, label errors are not detected on an image level.

Our work for the first time tackles the task of label error
detection in semantic segmentation, introducing a principled
benchmark for the given task. An advanced post-processing
method for DNN predictions lifts the problem of label error
detection to the level of connected components and on that
level yields calibrated estimate of the probability that a pre-
dicted connected component is indeed a correct prediction.

3. Label Error Detection Method

Estimating the probability of a prediction being correct.
We denote a given image by x ∈ [0, 1]n with a label y ∈
{0, . . . , c}n being a ground truth segmentation mask over c
classes created by human labor. We assume to have access
to a trained neural network f that provides for each image
pixel z an estimated probability distribution fz(y|x) over the
c classes. Given an image x, let ŷ = argmaxif·(i|x) denote
the predicted segmentation mask and K̂ = K̂(x) the set of
connected components of ŷ. Analogously, let K = K(x)
denote the set of connected components in the ground truth
y. For two pixels z, z′ of the same predicted class, if z′ is in
the 8-pixel neighborhood of z, then they both belong to the
same predicted connected component k̂ ∈ K̂. We proceed
analogously for k ∈ K.

Similarly to what is best practice in object detection, we
call a connected component of the ground truth a true pos-
itive if it overlaps with a predicted connected component
of the same class to a chosen degree. To this end, we use
an adjusted version of the intersection over union (IoU)
from [2, 31] which is a map sIoU : K → [0, 1]. For k ∈ K,
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Figure 1. An overview of our approach to find label errors. In the first step, a neural net (e.g. some encoder-decode architecture) generates
an annotation masks which we compare with the known ground truth. For each false positive (FP) connected component we measure the
uncertainty of the neural net with [31]. If the uncertainty for this component is low, i.e. the net is confident in its prediction, our method
predicts the FP as label error.

it is defined as

sIoU(k) :=
|k ∩ pr(k)|

|(k ∪ pr(k)) \A(k̂)|
,

with pr(k) =
⋃

k̂∈K̂,k̂∩k ̸=∅

k̂
(1)

and A(k) = {z ∈ k′ : k′ ∈ K \ {k}}. The adjustment
A(k) excludes pixels from the union that are contained in
another ground truth component k′ ∈ K of the same class,
which, however, is not equal to k. This can happen when a
predicted component intersects with multiple ground truth
components. That case is punished less by the sIoU than by
the ordinary IoU, we refer to [2, 31] for further details.

Given a threshold τ ∈ [0, 1), we call a ground truth
component k ∈ K true positive (TPo where o refers to
the “original” task of the DNN) if sIoU(k) > τ , and false
negative (FNo) otherwise.

For the remaining error, i.e., a false positive (FPo) con-
nected component k̂ ∈ K̂ of the prediction, we compute a
quantity similar to the precision:

π(k̂) :=
|k̂ ∩ g(k̂)|

|k̂|
with g(k̂) =

⋃
k∈K,k̂∩k ̸=∅

k . (2)

We call a predicted component k̂ ∈ K̂ FPo if π(k̂) ≤ τ .
We utilize a so-called meta classifier that was introduced

in [31] and further extended in [3, 26, 32]. It was shown
empirically in [7] that meta classification yields calibrated
confidences on component level. Such a meta classifier com-
putes a fixed number of nf hand-crafted features for each
predicted component k̂ ∈ K̂ yielding a structured dataset M
of nf columns and ncomp =

∑
x |K̂(x)| rows, where ncomp

is the number of predicted components in a given number
of images where the latter were not seen by the network f
during training (e.g. from a validation set). The hand-crafted
features include metrics quantifying morphological features
of the connected components as well as softmax uncertainty
measures aggregated (average pooled) over the predicted
components. For details we refer to the cited works. The

meta classifier then performs a classification of TPo vs. FPo

by means of the hand-crafted features. We utilize this meta
classifier m : M → [0, 1] that yields an estimated probabil-
ity for k̂ being TPo, i.e., an estimate m(k̂) ≈ P (TPo). Due
to the estimate m(k̂) being calibrated, we can expect that it
is reflective of the model’s accuracy, i.e., when considering
estimated probabilities in a chosen range, say 90%–95%,
one can expect the accuracy to be in the same range.

Detection of label errors. Our label error detection
method is visualized in fig. 1. It utilizes a state-of-the-art
semantic segmentation DNN (e.g. a Deeplab architecture)
that is trained on a given training set. Then, we consider
any sample of data not seen during training and want to
detect label errors. To this end, we infer predictions from
the DNN and then compare the predicted components with
the ground truth components. If a component k̂ is FPo, this
can mean that 1) the network is indeed producing a false
positive and the ground truth is likely to be correct, or 2)
the ground truth is incorrect and the DNN could be correct.
At this point we consider the estimate m(k̂) ≈ P (TPo). If
our calibrated meta classifier yields a estimate m(k̂) close
to 1, the network’s prediction is likely to be correct. Hence,
any predicted component k̂ being FPo but having high
m(k̂) ≈ P (TPo) is considered as a candidate for review
as it probably has been overlooked (or its label has been
flipped) during labeling. Otherwise, we consider the predic-
tion as not being suspicious.

Note that, in principle P (TPo) can also be replaced by
any uncertainty estimate that, however, must operate on the
level of predicted components. On trend, the method will
improve with stronger DNNs and stronger meta classifiers /
uncertainty estimates, which also highlights the generic na-
ture of our approach. As already mentioned, our approach is
concerned with finding label errors in data that was not used
during training. Though, our method can be easily applied
to entire datasets by training in a k-fold cross-validation
fashion.
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4. Datasets and Benchmarks for Label Error
Detection in Semantic Segmentation

In a best case scenario, an evaluation protocol for label er-
ror detection methods has access to a perfectly clean ground
truth (which does not exist in practice) where there are no
label errors included, and another perturbed ground truth
where there are labels missing or incorrect. A proper defi-
nition of label error itself is already difficult and subject to
uncertainty.

Definition of label error. In this work, we consider a label
error as a connected component of a given class that, given
the context of the input image, should be contained in the
ground truth, but is not contained therein.

It may happen that a spurious connected component is
inserted into a ground truth, not corresponding to anything
visible in the image. Such cases, however, are rare in the
datasets we examined.

Benchmark definition. In our benchmark we focus on
label errors that occur due to miss-outs rather than by acci-
dentally selecting a wrong class. Note that creating such a
benchmark poses a more complex task than flipping class
labels. Furthermore, this is also a typical error mode that can
appear due to ambiguity of visual features, size of the object
and fatigue of the person performing the labeling. In our
benchmark that focuses on street scenes, we remove labels
from the ground truth of two chosen datasets. The labels
we remove belong to the classes person, rider/bicycle, vehi-
cles, traffic lights and road signs. In both datasets we work
with high definition images and therefore drop connected
components from the ground truth with pixel counts ranging
between 500 and 10,000. Objects with less than 500 pixels
can be considered as irrelevant, objects greater than 10000
seem unlikely to be overlooked. We drop labels according
to a Bernoulli experiment using a maximum perturbation
probability p̂ that is tied to the component size. More pre-
cisely, the applied perturbation probability p of a component
attains its maximum of p̂ at a component size of 500 pix-
els and decreases to zero linearly until the component size
reaches 10000 pixels. This approach can be described by the
equation:

p(k) = 1{500≤|k|≤10000}
p̂(10000− |k|)

9500
, (3)

where k ∈ K denotes a connected component from the
ground truth.

Dataset. For our benchmark we employ a synthetic dataset
generated with the CARLA driving simulator [11] (ver-
sion 0.9.11) and the real world dataset Cityscapes [8]. For
CARLA we have the ground truth under control in a sense

that there are no label errors per se. However, the ground
truth is unrealistically detailed in comparison to annotation
created by a human. Also DNNs are not able to produce such
fine grained annotations. Hence we smooth the labels such
that objects closer to the ego vehicle diffuse over objects
farther away. For more details on this see appendix A.

The Cityscapes dataset is a high quality dataset that, at
least upon visual inspection, contains a rather small number
of label errors. We report numbers on this in section 5.
Hence, we also create a benchmark by synthetically inducing
label errors by dropping polygons from the ground truth, for
further details see appendix A.

Evaluation protocol. In order to understand the connec-
tion of network performance and label error detection per-
formance, we state the underlying network’s performance
in terms of mean intersection over union (mIoU). The
mIoU is the mean over all classes of the intersection over
union (IoU) where the latter for each class is computed as
tp/(tp + fp + fn) where tp denotes the number of true posi-
tive pixels, fp the number of false positive pixels and fn the
number of false negative pixels of the given class within a
given test set.

For benchmark purposes, assume the existence of a clean
ground truth without label errors. For a given image, the set
of clean ground truth connected components is denoted by
Kc. Let Kℓ denote the label error ground truth that registers
all label errors in terms of connected components. Given an-
other set of connected components K ′ that constitutes label
error proposals, let m′ : K ′ → [0, 1] be some probabilistic
label error detection method. For a given decision threshold
t let K̂ℓ(t) := {k̂ ∈ K ′ : m′(k̂) ≥ t} denote the set of all
connected components predicted by m′.

We repeat the construction from section 3 replacing K̂ by
K̂ℓ(t) and K by Kℓ and proceed analogously to section 3
with the same threshold τ to define TP(t), FP(t) and FN(t)
in the context of label error detection. That is, a TP is a
correctly detected label error, an FP is an incorrect label
error detection (a false discovery) and an FN is an over-
looked label error. As additional evaluation metrics, we
consider precision prec(t) = TP(t)

TP(t)+FP(t) , recall rec(t) =
TP(t)

TP(t)+FN(t) , the F1-score F1(t) =
2TP(t)

2TP(t)+FP(t)+FN(t) and
for PRC(rec(t)) = prec(t) we define the average precision
AP =

∫ 1

0
PRC(r) dr. Whenever the threshold t is not of

interest or pre-specified, we will omit the argument t in the
above definitions.

Technically, the evaluation code we provide allows for
label error detection confidences of m to be provided on pixel
level as well. In that case, also the threshold t is applied to
the estimated probabilities (label error detection scores) on
pixel level.
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5. Numerical Experiments
Experiment Setup. For numerical experiments we use
a Deeplabv3+ [4] architecture with a WideResNet38 [40]
backbone, and Nvidia’s multi-scale attention approach [36]
in combination with an HRNet-OCR trunk [35] to make use
of current state-of-the-art networks in semantic segmentation.
Both networks are trained on our Cityscapes and CARLA
datasets on different perturbation levels corresponding to
label perturbation probability p̂ = 0, 0.1, 0.25 and 0.5. For
evaluation we consider two scenarios.

Experiment 1) we assume to have a chunk of very well
labeled data for training, i.e., the training data has p̂ = 0. Fur-
thermore, we assume that the rest has not been reviewed ex-
tensively, i.e., we test the label error performance for p̂ = 0.5.
Note that one choice of p̂ for evaluation in this scenario is
sufficient. Due to the independence of the Bernoulli trials,
we can expect that for a fixed network f and a fixed thresh-
old t, varying p̂ will scale TP and FN proportionally to
each other while FP remains constant (i.e., recall remains
constant while precision increases accordingly).

Experiment 2) we assume that all data labeled data is of
the same quality, i.e., we train the network on the original
data for a given value of p̂ and evaluate w.r.t. label error
detection for the same value of p̂. Also here the indepen-
dence of Bernoulli trials makes further cross evaluations for
choices of p̂ obsolete.

In case of Cityscapes, we train on the pre-defined official
training set and state results for the official validation set.
For CARLA we choose town 1–4 as training maps and town
5 for validation to avoid as much correlation in our split as
possible.

In addition to the evaluation on synthetically generated
label errors in the upcoming section 5.1, we provide findings
on real label errors in frequently used semantic segmenta-
tion datasets along with sample statistics on TP and FP in
section 5.2.

5.1. Experiments with Induced Label Errors

For the evaluation, we have fixed τ = 0.25 as sIoU
threshold for determining TPo, FPo and FNo. On the other
hand, we consider only predicted components that have no
intersection of same class with the ground truth annotation
mask. We report numbers for TP, FP and FN, precision
(prec) and recall (rec) for a choice of t that maximizes the
F1 score. In addition we compare our approach against two
naive baseline methods. Assuming that we are able to detect
every label error present in the datasets by comparing the
perturbed ground truth label mask and the input image, in
baseline method 1 we review every connected component
with a size of larger than 250 pixel of the perturbed label
mask to evaluate if a component is missing. In baseline
method 2 we review every false positive component FPo

produced by the DNN without any further probabilistic con-

siderations.

Results on CARLA. The CARLA dataset consists of 6000
images of size 1024× 2048 pixels with 17 different classes.
The first 4800 images were recorded in 4 different towns
provided by CARLA and are used for training. The fifth
town with 1200 image is used for the evaluation. We train
the attention net with the original image size while using
crops of size 800× 800 pixels to train the Deeplab network.
We use approximately half of the perturbed validation set to
train the meta classifier m to estimate P (TPo) and search
in the other half for label errors. This split remains the
same across all perturbation levels. For this dataset we have
154, 514, and 1151 label errors for p̂ = 0.1, 0.25, and 0.5,
respectively. The calculation of the mIoU is always done
w.r.t. an unperturbed version of the validation set.

First we consider the results of experiment 1 in which we
train the networks on an unperturbed / clean training set and
aim to find errors in perturbed validation sets with different
perturbation rates. With both networks we find most of the
label errors we induced in the validation set; see section 5.1.
With the Nvidia multiscale attention architecture, we find at
least 76.28% of all label errors for all rates p̂ while having
a precision of over 72%. The results for the Deeplab net
are lower compared to the Nvidia net. However, we also
find most of the label errors with approximately the same
precision. Compared to the baseline method we see that
our method provides a high improvement in the precision
while the decrease in recall is small. This observation is
particularly pronounced for the lowest perturbation rate of
p̂ = 0.1 where we gain for the attention net additional 49.33
percent points (pp) in the precision and only lose 3.87 pp
in the recall. For a higher rate the difference between our
method and the baseline is rather small using Nvidias’s ar-
chitecture. We attribute this to the synthetic nature of this
dataset and the fact that the networks are trained on clean
training sets.

The overall detection capabilities of our method are rated
by the AP scores obtained by varying the values of t. For the
attention net, these AP scores are stable for all rates p̂ where
the highest score is achieved for the highest perturbation
rate p̂ = 0.5. For the Deeplab net we can observe the
same improvement for larger rates p̂. Most importantly, our
method scales very well with the number of label errors in
the dataset, being functional in presence of a few label errors
as well as when facing many label errors.

For experiment 2 we trained the networks on perturbed
training sets and validated our method also on perturbed
validation sets with equal perturbation rate p̂. The obtained
results are of similar quality as for experiment 1. With the
attention net, for a rate of p̂ = 0.1 we find 87.1% of all label
errors and 75.49% for a rate of 0.25 while having a very
high precision of 91.22% and 71.19%. At a rate of p̂ = 0.5
our method still achieves descent results where, however, the
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mIoU TP FN FP AP Prec Rec F1

p̂ = 0.1

Nvidia Attn. Net 78.61 131 24 12 66.10 91.61 84.52 87.92
DeepLabV3+ 38 71.52 93 62 39 44.49 70.46 60.00 64.81
Base. 1 – 155 0 39667 – 00.39 100.00 00.78
Base. 2: Nvidia 78.61 137 18 187 – 42.28 88.39 57.20
Base. 2: Deeplab 71.52 108 47 794 – 11.97 69.68 20.44

p̂ = 0.25

Nvidia Attn. Net 78.61 401 113 154 67.87 72.25 78.02 75.02
DeepLabV3+ 38 71.52 278 236 103 54.87 72.97 54.09 62.12
Base. 1 – 514 0 39055 – 01.30 100.00 02.56
Base. 2: Nvidia 78.61 406 108 321 – 55.85 78.99 65.43
Base. 2: Deeplab 71.52 319 195 879 – 26.63 62.06 37.27

p̂ = 0.5

Nvidia Attn. Net 78.61 878 273 284 71.70 75.56 76.28 75.92
DeepLabV3+ 38 71.52 654 497 213 60.54 75.43 56.82 64.82
Base. 1 – 1151 0 37951 – 02.94 100.00 05.71
Base. 2: Nvidia 78.61 885 266 438 – 66.89 76.89 71.54
Base. 2: Deeplab 71.52 715 436 993 – 41.86 62.12 50.02

Table 1. Results for label error detection trained on clean and
validated on perturbed CARLA datasets.

recall decreases significantly compared to the lower rates.
This signals that we are not able to find all label errors at
once at higher rates p̂, but also indicates that an iterative
procedure of DNN training and label error cleaning might
be an interesting direction.

As for experiment 1 we observe that our method provides
a significantly higher precision while the decrease in the
recall is minor.

mIoU TP FN FP AP Prec Rec F1

p̂ = 0.1

Nvidia Attn. Net 79.16 135 20 13 62.57 91.22 87.10 89.11
DeepLabV3+ 38 70.58 82 73 66 42.35 55.41 52.90 54.13
Base. 1 – 155 0 39667 – 00.39 100.00 00.78
Base. 2: Nvidia 79.16 138 17 148 – 48.25 89.03 62.59
Base. 2: Deeplab 70.58 103 52 987 – 09.45 66.45 16.55

p̂ = 0.25

Nvidia Attn. Net 79.54 388 126 157 66.85 71.19 75.49 73.28
DeepLabV3+ 38 70.44 251 263 112 53.94 69.15 48.83 57.24
Base. 1 – 514 0 39055 – 01.39 100.00 02.56
Base. 2: Nvidia 79.54 395 119 225 – 63.71 76.85 69.66
Base. 2: Deeplab 70.44 272 242 709 – 27.73 52.92 36.39

p̂ = 0.5

Nvidia Attn. Net 77.42 631 520 378 62.28 62.54 54.82 58.43
DeepLabV3+ 38 70.25 583 568 334 55.74 63.58 50.65 56.38
Base. 1 – 1151 0 37951 – 02.94 100.00 05.71
Base. 2: Nvidia 77.42 632 519 431 – 59.45 54.91 57.09
Base. 2: Deeplab 70.25 643 508 801 – 44.53 55.86 49.56

Table 2. Results for label error detection trained and validated on
perturbed CARLA datasets.

Results on Cityscapes. Cityscapes contains 5000 high res-
olution images annotated into 19 classes. For the evaluation,
we train on the pre-defined training set which consists of
2975 images with a resolution of 1024 × 2048 pixels and
evaluate on the pre-defined validation set containing 500
images of the same resolution. In analogy to our CARLA
experiments, for the attention net we use the original image
size, i.e., we do not use random cropping. For Deeplab, we
use a crop size of 800× 800 pixels. Again, we use one half
of the validation set to train the meta classifier m and aim
at finding label errors in the other half, where this split is

identical for all perturbation rates p̂. The latter are chosen
in analogy to the CARLA experiments. In total we have
166, 381, and 746 label errors induced in Cityscapes for
p̂ = 0.1, 0.25, and 0.5, respectively.

Table 3 contains the results for experiment 1 in which
we train on clean data. In addition to the models trained by
ourselves, we also use current state-of-the-art (sota) weights
provided by [48] and [37]. For perturbation rates of p̂ = 0.1
and p̂ = 0.25 we find 43.57%− 57.83% of all label errors
with the attention net (sota and self trained) while we only
have to look at 2 to 3 candidates on average to find one label
error. In addition, the recall increases significantly to 60.72%
and 65.28% for a perturbation rate of p̂ = 0.5 for the Nvidia
architecture with self trained and sota weights. The precision
of our approach also increases for higher perturbation rates
and varies between 40.41% and 64.41% for the Deeplab net
and between 36.09% and 62.50% for Nvidia’s multiscale
attention net.

We note that for the Cityscapes dataset, the false positive
label errors (i.e., the label error predictions being identified
as FP according to our benchmark) also contain real label
errors which were not induced by us and are therefore actu-
ally to be counted as true positives. We study this finding
more precisely in section 5.2. Noteworthily, as the FP count
remains under control, this signals that the number of label
errors in Cityscapes can be expected to be rather moderate.

For combination of dataset and experiment, the baseline
method 2 (and obviously method 1 as well) provides overall
very low precision scores. In particular for p̂ = 0.1 we only
obtain precision scores between 2.90% and 8.18%. The
loss in recall is greater than for the CARLA dataset. The
fact that our method achieves a high recall at way higher
precision than the baselines demonstrates the significantly
higher efficiency of our method.

Section 5.1 summarizes our results on Cityscapes for
experiment 2 where we trained the network and the label
error detection on perturbed datasets. We still find most of
the label errors we induced. However, as one would assume,
training on unperturbed data causes a slight deterioration to
our method. With the attention net and perturbation rates
of p̂ = 0.1 as well as p̂ = 0.25, we find approximately
between 54% and 56% of all label errors while we only have
to review 2 to 3 candidates on average per label error. For a
perturbation rate of p̂ = 0.5, that ratio decreases to roughly 2
candidate reviews per label error. On the other hand, we can
again observe a drop in recall to 45.58%. Furthermore, as
already observed in our first two experiments with CALRA
data, the AP scores are improving for larger perturbation
rates for both networks.

5.2. Label Errors in Frequently used Datasets
In this section, we use our method to find real label er-

rors in popular semantic segmentation datasets. We employ
Nvidia’s multi-scale attention net with an HRNet-OCR trunk.
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mIoU TP FN FP AP Prec Rec F1

p̂ = 0.1

Nvidia Attn. Net 83.32 96 70 170 35.19 36.09 57.83 44.44
DeepLabV3+ 79.37 59 107 87 23.89 40.41 35.54 37.82
Nvidia Attn. Net sota 86.82 72 94 91 33.94 44.17 43.37 43.77
DeepLabV3+ sota 83.50 86 90 61 36.38 58.50 51.81 54.95
Base. 1 – 166 0 18458 – 00.89 100.00 01.76
Base. 2: Nvidia 83.32 127 39 2117 – 05.66 76.51 10.54
Base. 2: Deeplab 79.37 110 56 3684 – 02.90 66.27 05.56
Base. 2: Nvidia sota 86.82 126 40 1414 – 08.18 75.90 14.77
Base. 2: Deeplab sota 81.40 128 38 1805 – 06.62 77.11 12.20

p̂ = 0.25

Nvidia Attn. Net 83.32 185 196 111 51.82 62.50 48.56 54.65
DeepLabV3+ 79.37 152 229 95 49.94 61.54 39.90 48.41
Nvidia Attn. Net sota 86.82 194 187 141 51.40 57.91 50.92 54.19
DeepLabV3+ sota 81.40 228 153 126 49.82 64.41 59.84 62.04
Base. 1 – 381 0 18037 – 02.07 100.00 04.06
Base. 2: Nvidia 83.32 271 110 2140 – 11.24 71.13 19.41
Base. 2: Deeplab 79.37 239 142 3742 – 06.00 62.73 10.96
Base. 2: Nvidia sota 86.82 288 93 1388 – 17.18 75.59 28.00
Base. 2: Deeplab sota 83.50 292 89 1840 – 13.70 76.65 23.24

p̂ = 0.5

Nvidia Attn. Net 83.32 453 293 327 53.81 58.08 60.72 59.37
DeepLabV3+ 79.37 343 403 246 47.69 58.23 45.98 51.39
Nvidia Attn. Net sota 86.82 487 259 371 56.26 56.76 65.28 60.72
DeepLabV3+ sota 81.40 481 265 325 61.42 59.68 64.48 61.98
Base. 1 – 746 0 17367 – 04.12 100.00 07.91
Base. 2: Nvidia 83.32 540 206 2106 – 20.41 72.39 31.84
Base. 2: Deeplab 79.37 473 273 3799 – 11.07 63.40 18.85
Base. 2: Nvidia sota 86.82 567 179 1448 – 28.14 76.01 41.07
Base. 2: Deeplab sota 83.50 563 183 1860 – 23.24 75.47 35.53

Table 3. Results for label error detection trained on clean and
validated on perturbed Cityscapes datasets.

mIoU TP FN FP AP Prec Rec F1

p̂ = 0.1

Nvidia Attn. Net 82.71 93 73 153 36.36 37.80 56.02 45.15
DeepLabV3+ 79.06 43 123 46 20.50 48.31 25.90 33.73
Base. 1 – 166 0 18458 – 00.89 100.00 01.76
Base. 2: Nvidia 82.71 124 42 1981 – 05.89 74.70 10.92
Base. 2: Deeplab 79.06 103 63 3510 – 02.85 62.05 05.45

p̂ = 0.25

Nvidia Attn. Net 82.74 208 173 216 46.34 49.06 54.59 51.68
DeepLabV3+ 78.84 146 235 198 29.90 42.44 38.32 40.28
Base. 1 – 381 0 18037 – 02.07 100.00 04.06
Base. 2: Nvidia 82.74 265 116 1823 – 12.69 69.55 21.47
Base. 2: Deeplab 78.84 232 149 5335 – 04.17 60.89 07.80

p̂ = 0.5

Nvidia Attn. Net 82.68 340 406 288 48.52 54.14 45.58 49.49
DeepLabV3+ 78.67 290 456 422 34.02 40.73 38.87 39.78
Base. 1 – 746 0 17367 – 04.12 100.00 07.91
Base. 2: Nvidia 82.68 465 281 1747 – 21.02 62.33 31.44
Base. 2: Deeplab 78.67 436 310 4078 – 09.66 58.45 16.58

Table 4. Results for label error detection trained and validated on
perturbed Cityscapes datasets.

For each dataset, we either use pretrained state-of-the-art
weights or train the network on the predefined training sets
ourselves. We examine the validation set of each dataset
(except for Cityscapes where we also consider the training
set), where we use one half of the set to train the label error
detection and search in the other half for real label errors.
Then we switch the roles of the splits, such that we search in
both split for label errors. For each split we validate the 100
FPo-components k̂ (having no intersection with the ground
truth) with the highest estimated m(k̂) ≈ P (TPo) (which
is achieved by sorting m(k̂)). Hereby, we strictly follow
the label policies of the datasets and only confirm predic-
tions as real label errors when there is no doubt about their

correctness, i.e., we proceed rather conservatively.

Results on Cityscapes. For Cityscapes, we examine the
training set and the validation set, individually. In addition,
we study the classes person, rider/bicycle and vehicles in-
dependently of the classes of traffic lights and road signs
in order to avoid that the classifier gives us an unbalanced
amount traffic lights and road signs predictions to validate.
We consider 75 candidates of the first set of classes and 25 of
latter classes for each split. For Cityscapes the sota weights
provide an mIoU of 86.82%. In the training set we achieve
a precision of 57.5% which amounts to 115 true label errors
and 85 false discoveries within the 200 most probable label
error candidates with highest meta classification score within
the 2975 images of the training set; see section 5.2.

On the validation set our method achieves a precision of
53% where we found 106 label errors when considering 200
candidates. The results for the validation set are a slightly
worse compared to the results for the training set which is to
be expected as the validation set only contains 500 images
while we examine the same amount of predictions from our
method. For a class-wise breakdown of these results, see
table 8 in appendix C. Two examples of identified label
errors are presented in fig. 2.

Dataset mIoU TP FP Prec

Cityscapes Training 86.82 115 85 57.50
Cityscapes Validation 86.82 106 94 53.00
PascalVOC Validaiton 78.03 95 105 47.50
Coco-Stuff Validation 28.20 134 66 67.00
ADE20K 43.12 110 90 55.00

Table 5. Precision of our approach for different datasets.

Summarizing the Cityscapes results, by reviewing only
400 candidates conservatively, we already identified 231
label errors. The precision of 53% for the small validation
set indicates that there may remain further label errors which
can be approached further by using our method.

Results on PascalVOC. The PASCAL Visual Object
Classes (VOC) 2012 dataset [12] contains 20 object cat-
egories of a wide variety. The training set consists of 8497
and the validation set of 2857 images. The attention net
achieves a mIoU of 78.03% on the validation set. For the
current and all subsequent datasets, we only study the vali-
dation set as we expect a vast amount of label errors therein.
Conversely to Cityscapes, we do not additionally filter or
split the classes. For the evaluation, we consider every class
and examine the 200 candidates with highest meta classifica-
tion probability.

We identified 95 label errors and obtained a precision of
47.5%; see section 5.2. One might expect that a high IoU
for a specific class would result in a high precision for this
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Figure 2. Two examples of label errors detected by our method,
one example per row. Left: prediction of our label error detection
method; right: “ground truth” annotation. Our method is able to
find both, overlooked and flipped labels.

class. However, our results contradicts this intuition. While
this is true for the class of Person for which we achieve a
precision of 84%, the opposite is true for almost every other
class. For a detailed discussion on these results we refer to
appendix C. Two exemplary label errors are shown in fig. 3

Figure 3. Two detected label errors in PascalVOC. The visualization
scheme follows the one of fig. 2.

Results on COCO-Stuff. The COCO-Stuff dataset [1] is
the largest dataset we examine, containing 118K training
images and 5K validation images of variable size and 93
total categories. On the validation set, the net achieves an
mIoU of 28.20% and our approach obtained a high precision
of 67%. This amounts to 134 true positives within 200
candidates from 36 class. For this dataset we also observed
that a low IoU does not automatically imply a low precision.
Again we refer to appendix C for more details.

Results on ADE20K. ADE20K [46, 47] consists of 27K
images annotated in 151 classes. We trained for 200 epochs
and a crop size of 600× 600 pixels on 25K training images

and applied our method to the validation set of 2K images,
where we obtain a precision 52.5% with an mIoU of 43.12%.
Section 5.2 shows the results for this dataset. For the further
details see appendix C. We found 104 label errors in 200
predictions across 58 classes. We note that the class defini-
tions of this dataset are in part not sufficiently distinct. In
addition, since we were not able to find class descriptions for
this dataset, we had to infer from the ground truth annotation
which objects the classes represent. This led to a significant
amount of false positives since we were regularly not able to
evaluate confidently whether the prediction is a true positive
or not.

6. Conclusion & Outlook
In this work, we demonstrated how uncertainty quan-

tification leverages the detection of label errors in seman-
tic segmentation datasets via deep learning. We find good
trade-offs of human labor and discovery rates of label er-
rors, therefore enabling the efficient quality improvement
for semantic segmentation datasets. In the future, we plan
to develop measures and estimators for overall dataset qual-
ity. Furthermore, we plan to extend our method to detect
falsely induced connected components (e.g. a piece of sky
within the street) that are likely to be overlooked by the
DNN, thus probably being overlooked by our method. We
make our codes for benchmark, evaluation and method pub-
licly available under https://github.com/mrcoee/
Automatic-Label-Error-Detection.

Limitations. Since our method filters the false positive
prediction of a DNN by measuring its uncertainty, it relies
on the quality of the nets predictions. Therefore, if a DNN is
not able to provide decent semantic masks, our method does
not find label errors efficiently. The training of a (w.r.t. the
task) suitable DNN might fail in particular in presence of a
substantial amount of label errors. However, then a manual
correction sweep might be appropriate in the first place.

Acknowledgment
We thank H. Gottschalk for discussion and useful advice.

We acknowledge support by the European Regional Develop-
ment Fund (ERDF), grant-no. EFRE-0400216. Additionally,
this work is funded by the German Federal Ministry for
Economic Affairs and Energy, within the project “KI Delta
Learning”, grant no. 19A19013Q. We thank the consortium
for the successful cooperation. The authors also gratefully
acknowledge the Gauss Centre for Supercomputing e.V.
(https://www.gausscentre.eu) for funding this
project by providing computing time through the John
von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Julich Supercomputing Centre
(JSC).

83221

https://github.com/mrcoee/Automatic-Label-Error-Detection
https://github.com/mrcoee/Automatic-Label-Error-Detection


References
[1] Holger Caesar, Jasper R. R. Uijlings, and Vittorio Ferrari.

Coco-stuff: Thing and stuff classes in context. CoRR,
abs/1612.03716, 2016.

[2] Robin Chan, Krzysztof Lis, Svenja Uhlemeyer, Hermann
Blum, Sina Honari, Roland Siegwart, Mathieu Salzmann,
Pascal Fua, and Matthias Rottmann. Segmentmeifyou-
can: A benchmark for anomaly segmentation. CoRR,
abs/2104.14812, 2021.

[3] Robin Chan, Matthias Rottmann, Fabian Hüger, Peter
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