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Abstract
Industrial defect detection is commonly addressed with

anomaly detection (AD) methods where no or only incom-
plete data of potentially occurring defects is available. This
work discovers previously unknown problems of student-
teacher approaches for AD and proposes a solution, where
two neural networks are trained to produce the same output
for the defect-free training examples. The core assumption
of student-teacher networks is that the distance between the
outputs of both networks is larger for anomalies since they
are absent in training. However, previous methods suffer
from the similarity of student and teacher architecture, such
that the distance is undesirably small for anomalies. For
this reason, we propose asymmetric student-teacher net-
works (AST). We train a normalizing flow for density es-
timation as a teacher and a conventional feed-forward net-
work as a student to trigger large distances for anomalies:
The bijectivity of the normalizing flow enforces a divergence
of teacher outputs for anomalies compared to normal data.
Outside the training distribution the student cannot imitate
this divergence due to its fundamentally different architec-
ture. Our AST network compensates for wrongly estimated
likelihoods by a normalizing flow, which was alternatively
used for anomaly detection in previous work. We show that
our method produces state-of-the-art results on the two cur-
rently most relevant defect detection datasets MVTec AD
and MVTec 3D-AD regarding image-level anomaly detec-
tion on RGB and 3D data.

1. Introduction

To ensure product quality and safety standards in indus-
trial manufacturing processes, products are traditionally in-
spected by humans, which is expensive and unreliable in
practice. For this reason, image-based methods for auto-
matic inspection have been developed recently using ad-
vances in deep learning [9, 18, 29, 38, 39]. Since there are
no or only very few negative examples, i.e. erroneous prod-
ucts, available, especially at the beginning of production,
and new errors occur repeatedly during the process, tradi-
tional supervised algorithms cannot be applied to this task.

RGB 3D GT PRED.

Figure 1. Qualitative results on MVTec 3D-AD [8]. The two left
columns show the input, the third the ground truth and the fourth
our anomaly detection. Images are masked by foreground extrac-
tion. Our method is able to successfully combine RGB and 3D
data to detect defects even if only present in one data domain.

Instead, it is assumed that only data of a normal class of
defect-free examples is available in training which is termed
as semi-supervised anomaly detection. This work and oth-
ers [9, 22, 36, 38, 39] specialize for industrial anomaly de-
tection. This domain differs in contrast to others that normal
examples are similar to each other and to defective prod-
ucts. In this work, we not only show the effectiveness of
our method for common RGB images but also on 3D data
and their combination as shown in Figure 1.

Several approaches try to solve the problem by so-called
student-teacher networks [5, 7, 19, 51, 53]. First, the
teacher is trained on a pretext task to learn a semantic em-
bedding. In a second step, the student is trained to match the
output of the teacher. The motivation is that the student can
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Figure 2. Toy example with mini-MLPs: The students were opti-
mized to match the outputs in the grey area. While the symmet-
ric student-teacher pair (top) generalizes unintentionally and maps
anomalous data very similarly, the distance between student and
teacher outputs can be used for anomaly detection in the asym-
metric student-teacher pair (bottom).

only match the outputs of the teacher on normal data since
it is trained only on normal data. The distance between
the outputs of student and teacher is used as an indicator
of an anomaly at test-time. It is assumed that this distance
is larger for defective examples compared to defect-free ex-
amples. However, this is not necessarily the case in pre-
vious work, since we discovered that both teacher and stu-
dent are conventional (i. e. non-injective) neural networks
with similar architecture. A student with similar architec-
ture tends to undesired generalization, such that it extrapo-
lates similar outputs as the teacher for inputs that are out of
the training distribution, which, in turn, gives an undesired
low anomaly score. This effect is shown in Figure 2 us-
ing an explanatory experiment with one-dimensional data:
If the same neural network with one hidden layer is used for
student and teacher, the outputs are still similar for anoma-
lous data in the yellow area of the upper plot. In contrast,
the outputs for anomalies diverge if an MLP with 3 hidden
layers is used as the student.

In general, it is not guaranteed that an out-of-distribution
input will cause a sufficiently large change in both out-
puts due to the missing injectivity of common neural net-
works. In contrast to normalizing flows, conventional net-
works have no guarantee to provide out-of-distribution out-
puts for out-of-distribution inputs. These problems moti-
vate us to use an asymmetric student-teacher pair (AST):
A bijective normalizing flow [34] acts as a teacher while
a conventional sequential model acts as a student. In this
way, the teacher guarantees to be sensitive to changes in
the input caused by anomalies. Furthermore, the usage of
different architectures and thus of different sets of learn-
able functions enforces the effect of distant outputs for out-
of-distribution samples. As a pretext task for the teacher,
we optimize to transform the distribution of image features
and/or depth maps to a normal distribution via maximum

likelihood training which is equivalent to a density esti-
mation [15]. This optimization itself is used in previous
work [22, 38, 39] for anomaly detection by utilizing the
likelihoods as an anomaly score: A low likelihood of be-
ing normal should be an indicator of anomalies. However,
Le and Dinh [28] have shown that even perfect density es-
timators cannot guarantee anomaly detection. For example,
just reparameterizing the data would change the likelihoods
of samples. Furthermore, unstable training leads to mises-
timated likelihoods. We show that our student-teacher dis-
tance is a better measure for anomaly detection compared
to the obtained likelihoods by the teacher. The advantage
to using a normalizing flow itself for anomaly detection is
that a possible misestimation in likelihood can be compen-
sated for: If a low likelihood of being normal is incorrectly
assigned to normal data, this output can be predicted by the
student, thus still resulting in a small anomaly score. If a
high likelihood of being normal is incorrectly assigned to
anomalous data, this output cannot be predicted by the stu-
dent, again resulting in a high anomaly score. In this way,
we combine the benefits of student-teacher networks and
density estimation with normalizing flows. We further en-
hance the detection by a positional encoding and by mask-
ing the foreground using 3D images.

Our contributions are summarized as follows:

• Our method avoids the undesired generalization from
teacher to student by having highly asymmetric net-
works as a student-teacher pair.

• We improve student-teacher networks by incorporat-
ing a bijective normalizing flow as a teacher.

• Our AST outperforms the density estimation capability
of the teacher by utilizing student-teacher distances.

• Code is available on GitHub1.

2. Related Work
2.1. Student-Teacher Networks

Originally, the motivation for having a student network
that learns to regress the output of a teacher network was to
distill knowledge and save model parameters [23, 31, 48].
In this case, a student with clearly fewer parameters com-
pared to the teacher almost matches the performance. Some
previous work exploits the student-teacher idea for anomaly
detection by using the distance between their outputs: The
larger the distance, the more likely the sample is anoma-
lous. Bergmann et al. [7] propose an ensemble of students
which are trained to regress the output of a teacher for im-
age patches. This teacher is either a distilled version of an
ImageNet-pre-trained network or trained via metric learn-
ing. The anomaly score is composed of the student uncer-
tainty, measured by the variance of the ensemble, and the

1https://github.com/marco-rudolph/ast
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regression error. Wang et al. [51] extend the student task by
regressing a feature pyramid rather than a single output of
a pre-trained network. Bergmann and Sattlegger [5] adapt
the student-teacher concept to point clouds. Local geomet-
ric descriptors are learned in a self-supervised manner to
train the teacher. Xiao et al. [53] let teachers learn to clas-
sify applied image transformations. The anomaly score is a
weighted sum of the regression error and the class score en-
tropy of an ensemble of students. By contrast, our method
requires only one student and the regression error as the
only criterion to detect anomalies. All of the existing work
is based on identical and conventional (non-injective) net-
works for student and teacher, which causes undesired gen-
eralization of the student as explained in Section 1.

2.2. Density Estimation

Anomaly detection can be viewed from a statistical per-
spective: By estimating the density of normal samples,
anomalies are identified through a low likelihood. The con-
cept of density estimation for anomaly detection can be sim-
ply realized by assuming a multivariate normal distribution.
For example, the Mahalanobis distance of pre-extracted fea-
tures can be applied as an anomaly score [12, 35] which
is equivalent to computing the negative log likelihood of a
multivariate Gaussian. However, this method is very inflex-
ible to the training distributions, since the assumption of a
Gaussian distribution is a strong simplification.

To this end, many works try to estimate the density more
flexibly with a Normalizing Flow (NF) [14, 22, 38, 39, 41,
44]. Normalizing Flows are a family of generative mod-
els that map bijectively by construction [3, 15, 34, 52] as
opposed to conventional neural networks. This property
enables exact density estimation in contrast to other gen-
erative models like GANs [21] or VAEs [27]. Rudolph et
al. [38] make use of this concept by modeling the density
of multi-scale feature vectors obtained by pre-trained net-
works. Subsequently, they extend this to multi-scale feature
maps instead of vectors to avoid information loss caused
by averaging [39]. To handle differently sized feature maps
so-called cross-convolutions are integrated. A similar ap-
proach by Gudovskiy et al. [22] computes a density on fea-
ture maps with a conditional normalizing flow, where like-
lihoods are estimated on the level of local positions which
act as a condition for the NF.

A common problem of normalizing flows is unstable
training, which has a tradeoff on the flexibility of density
estimation [4]. However, even the ground truth density es-
timation does not provide perfect anomaly detection, since
the density strongly depends on the parameterization [28].

2.3. Other Approaches

Generative Models
Many approaches try to tackle anomaly detection based on

other generative models than normalizing flows as autoen-
coders [9, 18, 20, 37, 55, 57] or GANs [1, 11, 42]. This
is motivated by the inability of these models to generate
anomalous data. Usually, the reconstruction error is used
for anomaly scoring. Since the magnitude of this error
depends highly on the size and structure of the anomaly,
these methods underperform in the industrial inspection set-
ting. The disadvantage of these methods is that the synthetic
anomalies cannot imitate many real anomalies.
Anomaly Synthesization
Some work reformulates semi-supervised anomaly detec-
tion as a supervised problem by synthetically generating
anomalies. Either parts of training images [29, 43, 46] or
random images [54] are patched into normal images. Syn-
thetic masks are created to train a supervised segmentation.
Traditional Approaches
In addition to deep-learning-based approaches, there are
also classical approaches for anomaly detection. The one-
class SVM [45] is a max-margin method optimizing a func-
tion that assigns a higher value to high-density regions than
to low-density regions. Isolation forests [30] are based on
decision trees, where a sample is considered anomalous
if it can be separated from the rest of the data by a few
constraints. Local Outlier Factor [10] compares the den-
sity of a point with that of its neighbors. A comparatively
low density of a point identifies anomalies. Traditional ap-
proaches usually fail in visual anomaly detection due to
the high dimensionality and complexity of the data. This
can be circumvented by combining them with other tech-
niques: For example, the distance to the nearest neighbor,
as first proposed by Amer and Goldstein [2], is used as an
anomaly score after features are extracted by a pre-trained
network [32, 36]. Alternatively point cloud features [24] or
density-based clustering [16, 17] can be used to characterize
a points neighborhood and label it accordingly. However,
the runtime is linearly related to the dataset size.

3. Method
Our goal is to train two models, a student model fs and a

teacher model ft, such that the student learns to regress the
teacher outputs on defect-free image data only. The train-
ing process is divided into two phases: First, the teacher
model is optimized to transform the training distribution pX
to a normal distribution N (0, I) bijectively with a normal-
izing flow. Second, the student is optimized to match the
teacher outputs by minimizing the distance between fs(x)
and ft(x) of training samples x ∈ X . We apply the distance
for anomaly scoring at test-time, which is further described
in Section 3.2.

We follow [7, 22, 39] and use extracted features obtained
by a pre-trained network on ImageNet [13] instead of RGB
images as direct input for our models. Such networks have
been shown to be universal feature extractors whose outputs
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Figure 3. Overview of our pipeline: Teacher and student receive
image features and/or depth maps as input which is conditioned by
a positional encoding. First, the teacher represented by a normal-
izing flow is optimized to reduce the negative log likelihood loss
that may be masked by a foreground map from 3D. Second, the
student is trained to match the teacher outputs by minimizing the
(masked) distance between them.

carry relevant semantics for industrial anomaly detection.
In addition to RGB data, our approach is easily extend-

able to multimodal inputs including 3D data. If 3D data
is available, we concatenate depth maps to these features
along the channels. Since the feature maps are reduced in
height and width compared to the depth map resolution by
a factor d, we apply pixel-unshuffling [56] by grouping a
depth image patch of d×d pixels as one pixel with d2 chan-
nels to match the dimensions of the feature maps.

Any 3D data that may be present is used to extract the
foreground. This is straightforward and reasonable when-
ever the background is static or planar, which is the case
for almost all real applications. Pixels that are in the back-
ground are ignored when optimizing the teacher and stu-
dent by masking the distance and negative log likelihood
loss, which are introduced in Sections 3.1 and 3.2. If not
3D data is available, the whole image is considered as fore-
ground. Details of the foreground extraction are given in
Section 4.2.1.

Similar to [22], we use a sinusoidal positional encod-
ing [50] for the spatial dimensions of the input maps as
a condition for the normalizing flow ft. In this way, the
occurrence of a feature is related to its position to detect
anomalies such as misplaced objects. An overview of our
pipeline is given in Figure 3.

3.1. Teacher

Similar to [22, 38, 39], we train a normalizing flow based
on Real-NVP [15] to transform the training distribution
to a normal distribution N (0, I). In contrast to previous
work, we do not use the outputs to compute likelihoods and
thereby obtain anomaly scores directly. Instead, we inter-
pret this training as a pretext task to create targets for our
student network.

The normalizing flow consists of multiple subsequent
affine coupling blocks. Let the input x ∈ Rw×h×nfeat be

+
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Figure 4. Model architecture of teacher (left side) and student
(right side). While the teacher is a Real-NVP-based [15] condi-
tional normalizing flow [4], the student is a conventional convolu-
tional neural network.

feature maps with nfeat features of size w×h. Within these
blocks, the channels of the input x are split evenly along the
channels into the parts x1 and x2 after randomly choosing
a permutation that remains fixed. These parts are each con-
catenated with a positional encoding c as a static condition.
Both are used to compute scaling and shift parameters for
an affine transformation of the counterpart by having sub-
networks si and ti for each part:

y2 = x2 ⊙ es1([x1,c]) + t1([x1, c])

y1 = x1 ⊙ es2([x2,c]) + t2([x2, c]),
(1)

where ⊙ is the element-wise product and [·, ·] denotes con-
catenation. The output of one coupling block is the con-
catenation of y1 and y2 along the channels. Note that the
number of dimensions of input and output does not change
due to invertibility.

To stabilize training, we apply alpha-clamping of scalar
coefficients as in [4] and the gamma-trick as in [39]. Using
the change-of-variable formula with z as our final output

pX(x) = pZ(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ , (2)

we minimize the negative log likelihood with pZ as the nor-
mal distribution N (0, I) by optimizing the mean of

Lt
ij = − log pX(xij) =

∥zij∥22
2

− log

∣∣∣∣det ∂zij∂xij

∣∣∣∣ (3)
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Dataset MVTec AD MVTec 3D-AD
Alias (MVT2D) (MVT3D)
RGB images ✓ ✓
3D scans × ✓
#categories 15 10
image side length 700-1024 400-800
#train samples per cat. 60-320 210-300
#test samples per cat. 42-160 100-159
#defect types per cat. 1-7 3-5

Table 1. Overview of the used datasets.

over all (foreground) pixels at pixel position (i, j).

3.2. Student

As opposed to the teacher, the student is a conventional
feed-forward network that does not map injectively or sur-
jectively. We propose a simple fully convolutional network
with residual blocks which is shown in Figure 4. Each
residual block consists of two sequences of 3 × 3 convo-
lutional layers, batch normalization [25] and leaky ReLU
activations. We add convolutions as the first and last layer
to increase and decrease the feature dimensions.

Similarly to the teacher, the student takes image features
as input which are concatenated with 3D data if available.
In addition, the positional encoding c is concatenated. The
output dimensions match the teacher to enable pixel-wise
distance computation. We minimize the squared ℓ2-distance
between student outputs fs(x) and the teacher outputs ft(x)
on training samples x ∈ X , given the training set X , at a
pixel position (i, j) of the output:

Ls
ij = ∥fs(x)ij − ft(x)ij∥22. (4)

Averaging Ls
ij over all (foreground) pixels gives us the final

loss. The distance Ls is also used in testing to obtain an
anomaly score on image level: Ignoring the anomaly scores
of background pixels, we aggregate the pixel distances of
one sample by computing either the maximum or the mean
over the pixels.

4. Experiments
4.1. Datasets

To demonstrate the benefits of our method on a wide
range of industrial inspection scenarios, we evaluate with
a diverse set of 25 scenarios in total, including natural ob-
jects, industrial components and textures in 2D and 3D. Ta-
ble 1 shows an overview of the used benchmark datasets
MVTec AD [6] and MVTec 3D-AD [8]. For both datasets,
the training set only contains defect-free data and the test set
contains defect-free and defective examples. In addition to
image-level labels, the datasets also provide pixel-level an-
notations about defective regions which we use to evaluate
the segmentation of defects.

MVTec AD, which will be called MVT2D in the follow-
ing, is a high-resolution 2D RGB image dataset containing

10 object and 5 texture categories. The total of 73 defect
types in the test set appear, for example, in the form of dis-
placements, cracks or scratches in various sizes and shapes.
The images have a side length of 700 to 1024 pixels.

MVTec 3D-AD, to which we refer to as MVT3D, is a
very recent 3D dataset containing 2D RGB images paired
with 3D scans for 10 categories. These categories include
deformable and non-deformable objects, partially with nat-
ural variations (e.g. peach and carrot). In addition to the de-
fect types in MVT2D there are also defects that are only rec-
ognizable from the depth map, such as indentations. On the
other hand, there are anomalies such as discoloration that
can only be perceived from the RGB data. The RGB im-
ages have a resolution of 400 to 800 pixels per side, paired
with rasterized 3D point clouds at the same resolution.

4.2. Implementation Details

4.2.1 Image Preprocessing

Following [12, 39], we use the layer 36 output of
EfficientNet-B5 [47] pre-trained on ImageNet [13] as a fea-
ture extractor. This feature extractor is not trained during
training of the student and teacher networks. The images
are resized to a resolution of 768 × 768 pixels resulting in
feature maps of size 24× 24 with 304 channels.

4.2.2 3D Preprocessing

We discard the x and y coordinates due to the low infor-
mative content and use only the depth component z in cen-
timeters. Missing depth values are repeatedly filled by us-
ing the average value of valid pixels from an 8-connected
neighborhood for 3 iterations. We model the background as
a 2D plane by interpolating the depth of the 4 corner pix-
els. A pixel is assumed as foreground if its depth is further
than 7mm distant from the background plane. As an in-
put to our models, we first resize the masks to 192 × 192
pixels via bilinear downsampling and then perform pixel-
unshuffling [56] with d = 8 as described in Section 3 to
match the feature map resolution. In order to detect anoma-
lies at the edge of the object and fill holes of missing values,
the foreground mask is dilated using a square structural ele-
ment of size 8. We subtract the mean foreground depth from
each depth map and set its background pixels to 0. The bi-
nary foreground mask M with ones as foreground and zeros
as background is downsampled to feature map resolution to
mask the loss for student and teacher. This is done by a bi-
linear interpolation f↓ followed by a binarization where all
entries greater than zero are assumed as foreground to mask
the loss at position (i, j):

Lmasked
ij =

{
Lij if f↓(M)ij > 0

0 else
. (5)
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Category ARNet DRÆM GAN Rippel PatchCore DifferNet PaDiM CFlow CS-Flow Uninf. STFPM* AST
[18] [54] [1] [35] [36] [38] [12] [22] [39] Stud. [7] [51] (ours)

Grid 88.3 99.9 70.8 93.7 98.2 84.0 - 99.6 99.0 98.1 100 99.1 ± 0.2
Leather 86.2 100 84.2 100 100 97.1 - 100 99.9 94.7 100 100 ± 0.0
Tile 73.5 99.6 79.4 100 98.7 99.4 - 99.9 100 94.7 95.5 100 ± 0.0
Carpet 70.6 97.8 69.9 99.6 98.7 92.9 - 98.7 100 99.9 98.9 97.5 ± 0.4

Te
xt

ur
es

Wood 92.3 99.1 83.4 99.2 98.8 99.8 - 99.1 100 99.1 99.2 100 ± 0.0
Avg. Text. 82.2 99.3 77.5 98.5 98.3 94.6 99.0 99.5 99.8 97.3 98.7 99.3 ± 0.08
Bottle 94.1 99.2 89.2 99.0 100 99.0 - 100 99.8 99.0 100 100 ± 0.0
Capsule 68.1 98.5 73.2 96.3 98.1 86.9 - 97.7 97.1 92.5 88.0 99.7 ± 0.1
Pill 78.6 98.9 74.3 91.4 96.6 88.8 - 96.8 98.6 92.2 93.8 99.1 ± 0.1
Transistor 84.3 93.1 79.2 98.2 100 91.1 - 95.2 99.3 79.4 93.7 99.3 ± 0.1
Zipper 87.6 100 74.5 98.8 99.4 95.1 - 98.5 99.7 94.4 93.6 99.1 ± 0.1
Cable 83.2 91.8 75.7 99.1 99.5 95.9 - 97.6 99.1 78.7 92.3 98.5 ± 0.2

O
bj

ec
ts

Hazelnut 85.5 100 78.5 100 100 99.3 - 100 99.6 99.1 100 100 ± 0.0
Metal Nut 66.7 98.7 70.0 97.4 100 96.1 - 99.3 99.1 89.1 100 98.5 ± 0.2
Screw 100 93.9 74.6 94.5 98.1 96.3 - 91.9 97.6 86.0 88.2 99.7 ± 0.1
Toothbrush 100 100 65.3 94.1 100 98.6 - 99.7 91.9 100 87.8 96.6 ± 0.1
Avg. Obj. 84.8 97.4 75.5 96.9 99.2 94.7 97.2 97.7 98.2 91.0 93.7 99.1 ± 0.03
Average 83.9 98.0 76.2 97.5 99.1 94.7 97.9 98.3 98.7 93.2 95.4 99.2 ± 0.04

Table 2. AUROC in % for detecting defects of all categories of MVT2D [6] on image-level grouped into textures and objects. We report the
mean and standard deviation over 5 runs for our method. Best results are in bold. Beside the average value, detailed results of PaDiM [12]
were not provided by the authors. The numbers of STFPM* [51] were obtained by a reimplementation.

4.2.3 Teacher

For the normalizing flow architecture of the teacher, we use
4 coupling blocks which are conditioned on a positional en-
coding with 32 channels. Each pair of internal subnetworks
si and ti is designed as one shallow convolutional network
ri with one hidden layer whose output is split into the scale
and shift components. Inside ri we use ReLU-Activations
and a hidden channel size of 1024 for MVT2D and 64 for
MVT3D. We choose the alpha-clamping parameter α = 3
for MVT2D and α = 1.9 for MVT3D. The teacher net-
works are trained for 240 epochs for MVT2D and 72 epochs
for MVT3D, respectively, with the Adam optimizer [26],
using author-given momentum parameters β1 = 0.9 and
β2 = 0.999, a learning rate of 2 · 10−4 and a weight decay
of 10−5.

4.2.4 Student

For the student networks, we use nst blocks = 4 resid-
ual convolutional blocks as described in Section 3.2. The
Leaky-ReLU-activations use a slope of 0.2 for negative val-
ues. We choose a hidden channel size of nhidden = 1024
for the residual block. Likewise, we take over the number
of epochs and optimizer parameters from the teacher. The
scores at feature map resolution are aggregated for evalua-
tion at image level by the maximum distance if a foreground
mask is available, and the average distance otherwise (RGB
only).

4.3. Evaluation Metrics

As common for anomaly detection, we evaluate the per-
formance of our method on image-level by calculating the
area under receiver operating characteristics (AUROC). The
ROC measures the true positive rate dependent on the false

positive rate for varying thresholds of the anomaly score.
Thus, it is independent of the choice of a threshold and in-
variant to the class balance in the test set. For measuring
the segmentation of anomalies at pixel-level, we compute
the AUROC on pixel level given the ground truth masks in
the datasets.

4.4. Results

4.4.1 Detection

Table 2 shows the AUROC of our method and previous
work for detecting anomalies on the 15 classes of MVT2D
as well as the averages for textures, objects and all classes.
We set a new state-of-the-art performance on the mean de-
tection AUROC over all classes, improving it slightly to
99.2%. This is mainly due to the good performance on
the more challenging objects, where we outperform pre-
vious work by a comparatively large margin of 0.9%, ex-
cept for PatchCore [36]. The detection of anomalies on tex-
tures, which CS-Flow [39] has already almost solved with a
mean AUROC of 99.8%, still works very reliably at 99.3%.
Especially compared to the two student-teacher approaches
[7, 51], a significant improvement of 6% and 3.6% respec-
tively is archieved. Moreover, our student-teacher distances
show to be a better indicator of anomalies compared to
the likelihoods of current state-of-the-art density estimators
[22, 39] which, like our teacher, are based on normalizing
flows.

Even though MVT2D has established itself as a stan-
dard benchmark in the past, this dataset (especially the tex-
tures) is easily solvable for recent methods, and differences
are mainly in the sub-percent range, which is only a mi-
nor difference in terms of the comparatively small size of
the dataset. In the following, we focus on the newer, more
challenging MVT3D dataset where the normal data shows
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Method Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

Voxel GAN [8] 38.3 62.3 47.4 63.9 56.4 40.9 61.7 42.7 66.3 57.7 53.7
Voxel AE [8] 69.3 42.5 51.5 79.0 49.4 55.8 53.7 48.4 63.9 58.3 57.1
Voxel VM [8] 75.0 74.7 61.3 73.8 82.3 69.3 67.9 65.2 60.9 69.0 69.9
Depth GAN [8] 53.0 37.6 60.7 60.3 49.7 48.4 59.5 48.9 53.6 52.1 52.3
Depth AE [8] 46.8 73.1 49.7 67.3 53.4 41.7 48.5 54.9 56.4 54.6 54.6
Depth VM [8] 51.0 54.2 46.9 57.6 60.9 69.9 45.0 41.9 66.8 52.0 54.6
1-NN (FPFH) [24] 82.5 55.1 95.2 79.7 88.3 58.2 75.8 88.9 92.9 65.3 78.2
3D-ST128 [5]� 86.2 48.4 83.2 89.4 84.8 66.3 76.3 68.7 95.8 48.6 74.8
AST (ours) 88.1 ± 2.0 57.6 ± 6.9 96.5 ± 1.0 95.7 ± 0.6 67.9 ± 1.1 79.7 ± 1.2 99.0 ± 0.9 91.5 ± 2.1 95.6 ± 0.7 61.1 ± 3.4 83.3 ± 0.8

R
G

B

PatchCore [36] 87.6 88.0 79.1 68.2 91.2 70.1 69.5 61.8 84.1 70.2 77.0
DifferNet [38]� 85.9 70.3 64.3 43.5 79.7 79.0 78.7 64.3 71.5 59.0 69.6
PADiM [12]* 97.5 77.5 69.8 58.2 95.9 66.3 85.8 53.5 83.2 76.0 76.4
CS-Flow [39]� 94.1 93.0 82.7 79.5 99.0 88.6 73.1 47.1 98.6 74.5 83.0
STFPM [51]* 93.0 84.7 89.0 57.5 94.7 76.6 71.0 59.8 96.5 70.1 79.3
AST (ours) 94.7 ± 0.7 92.8 ± 1.2 85.1 ± 1.2 82.5 ± 0.8 98.1 ± 0.4 95.1 ± 0.6 89.5 ± 1.1 61.3 ± 2.4 99.2 ± 0.2 82.1 ± 0.9 88.0 ± 0.6

3D
+

R
G

B

Voxel GAN [8] 68.0 32.4 56.5 39.9 49.7 48.2 56.6 57.9 60.1 48.2 51.7
Voxel AE [8] 51.0 54.0 38.4 69.3 44.6 63.2 55.0 49.4 72.1 41.3 53.8
Voxel VM [8] 55.3 77.2 48.4 70.1 75.1 57.8 48.0 46.6 68.9 61.1 60.9
Depth GAN [8] 53.8 37.2 58.0 60.3 43.0 53.4 64.2 60.1 44.3 57.7 53.2
Depth AE [8] 64.8 50.2 65.0 48.8 80.5 52.2 71.2 52.9 54.0 55.2 59.5
Depth VM [8] 51.3 55.1 47.7 58.1 61.7 71.6 45.0 42.1 59.8 62.3 55.5
PatchCore+FPFH [24] 91.8 74.8 96.7 88.3 93.2 58.2 89.6 91.2 92.1 88.6 86.5
AST (ours) 98.3 ± 0.4 87.3 ±3.3 97.6 ± 0.5 97.1 ± 0.3 93.2±2.1 88.5 ± 1.4 97.4± 1.4 98.1 ± 1.2 100 ± 0.0 79.7 ± 1.0 93.7± 0.2

Table 3. AUROC in % for detecting defects of all categories of MVT3D [8] on image-level for 3D data, RGB data and the combination
of both. We report the mean and standard deviation over 5 runs for our method. Best results per data domain are in bold. Numbers of
listed methods followed by a � are non-published results obtained by the corresponding authors on request. A * indicates that we used a
reimplementation. The numbers from PatchCore are taken from [24].

Method MVT2D MVT3D (RGB+3D)
AE-SSIM [9] 87.0 -
PatchCore [36] 98.4 -
PatchCore+FPFH [24] - 99.2
AST (ours) 95.0 ± 0.03 97.6 ± 0.02

Table 4. Anomaly segmentation results measured by the mean
pixel-AUROC over all classes and its standard deviation over 5
runs. Despite image-level detection is the focus of this work, our
method is able to localize defects for practical purposes with an
AUROC of 95% or 97.6%.

more variance and anomalies only partly occur in one of the
two data modalities, RGB and 3D.

The results for individual classes of MVT3D grouped by
data modality are given in Table 3. We are able to outper-
form all previous methods for all data modalities regard-
ing the average of all classes by a large margin of 5.1%
for 3D, 5% for RGB and 7.2% for the combination. Fac-
ing the individual classes and data domains, we set a new
state-of-the-art in 21 of 30 cases. Note that this data set
is much more challenging when comparing the best results
from previous work (99.1% for MVT2D vs. 86.5% AUROC
for MVT3D). Nevertheless, we detect defects in 7 out of 10
cases for RGB+3D at an AUROC of at least 93%, which
demonstrates the robustness of our method. In contrast, the
nearest-neighbor approach PatchCore [36], which provides
comparable performance to us on MVT2D, struggles with
the increased demands of the dataset and is outperformed by
11% on RGB. The same applies for the 3D extension [24]
using FPFH [40] despite using a foreground mask as well.
Figure 1 shows qualitative results for the RGB+3D case
given both inputs and ground truth annotations. More ex-

amples can be found in the supplemental material. Despite
the low resolution, the regions of the anomaly can still be
localized well for practical purposes. Table 4 reports the
pixel-AUROC of our method and previous work.

For the class peach in the RGB+3D setting, the top of
Figure 5 compares the distribution of student-teacher dis-
tances for anomalous and normal regions. The distribution
of anomalous samples shows a clear shift towards larger dis-
tances. At the bottom of Figure 5, the outputs of student and
teacher as well as our the distance of corresponding pairs
representing our anomaly score are visualized by a random
orthographic 2D projection. Note that visualizations made
by techniques such as t-SNE [49] or PCA [33] are not mean-
ingful here, since the teacher outputs (and therefore most
of the student outputs) follow an isotropic standard normal
distribution. Therefore, different random projections barely
differ qualitatively.

4.4.2 Ablation Studies

We demonstrate the effectiveness of our contributions and
design decisions with several ablation studies. Table 5
compares the performance of variants of students with the
teacher, which can be used as a density estimator itself for
anomaly detection by using its likelihoods, given by Eq. 2,
as anomaly score. In comparison, a symmetric student-
teacher pair worsens the results by 1 to 2%, excepting the
RGB case. However, the performance is already improved
for RGB and 3D+RGB by creating the asymmetry with a
deeper version of the student than the teacher by doubling
the number of coupling blocks to 8. This effect is further
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Figure 5. Top: Histogram of our AST distances for normal
and anomalous regions of the class peach in MVT3D. Bottom:
Random orthographic projections of student and teacher outputs
grouped in non-defective (left plot) anomalous regions (right plot)
for the class peach. The plotted student-teacher distance repre-
senting the anomaly score is clearly higher for anomalous regions
since the student is not able to match the teacher outputs, as it was
only trained on non-defective regions.

enhanced if the architecture of the NF-teacher is replaced
by a conventional feedforward network as we suggest. We
also vary the depth of our student network and analyzed
its relation to performance, model size and inference time
in Table 6. With an increasing number of residual blocks
nst blocks, we observe an increasing performance which is
almost saturated after 4 blocks. Since the remaining poten-
tial in detection performance is not in relation to the lin-
early increasing additional computational effort per block,
we suggest to choose 4 blocks to have a good trade-off.

In Table 7 we investigate the impact of the positional en-
coding and the foreground mask. For MVT3D, positional
encoding improves the detection by 1.4% of our AST-pair
when trained with 3D data as the only input. Even though
the effect is not present when combining both data modal-
ities, we consider it generally reasonable to use the posi-
tional encoding, considering that the integration with just
32 additional channels does not significantly increase the
computational effort.

Foreground extraction in order to mask the loss for train-
ing and anomaly score for testing is also highly effective.
Since the majority of the image area often consists of back-
ground, the teacher has to spend a large part of the distri-
bution on the background. Masking allows the teacher and
student to focus on the essential structures. Moreover, noisy

Method 3D RGB 3D+RGB
Teacher only 82.2 69.8 90.9
NF student (symm.) 81.8 76.0 88.9
NF student (deeper) 81.8 76.7 92.7
AST (ours) 83.3 88.0 93.7

Table 5. Comparison of average detection performance in AUROC
percentage on MVT3D of teacher and student-teacher in a sym-
metric and asymmetric setting. Our proposed asymmetric student-
teacher pair outperforms all baselines in all cases.

nst blocks AUROC [%] ↑ #Params. [M] ↓ inf. time [ms] ↓
1 92.8 26.0 3.4
2 93.3 44.8 6.1
4 93.7 82.6 10.4
8 93.7 151.1 19.8

12 93.8 233.6 29.4
teacher 90.9 3.8 4.5

Table 6. Tradeoff between performance and computational effort
on 3D+RGB data of MVT3D. The inference time was measured
with a NVIDIA RTX 1080 Ti.

input pos. enc. mask teacher AST
✗ ✓ 78.4 81.9

3D ✓ ✗ 59.4 67.2
✓ ✓ 82.2 83.3
✗ ✗ 69.3 87.8

RGB ✓ ✗ 69.8 88.0
✓ ✓ n. a. n. a.
✗ ✓ 90.9 93.8

3D+RGB ✓ ✗ 66.2 84.0
✓ ✓ 90.9 93.7

Table 7. Impact of the positional encoding and the foreground
mask on the detection performance of student and teacher on
MVT3D. Numbers are given in AUROC percentage. Since masks
are obtained from 3D data, there is no mask for RGB.

background scores are eliminated.

5. Conclusion
We discovered the generalization problem of previous

student teacher pairs for AD and introduced an alternative
student-teacher method that prevents this issue by using a
highly different architecture for student and teacher. We
were able to compensate for skewed likelihoods of a nor-
malizing flow-based teacher, which was used directly for
detection in previous work, by the additional use of a stu-
dent. Future work could extend the approach to more data
domains and improve the localization resolution.
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a discriminatively trained reconstruction embedding for sur-
face anomaly detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8330–
8339, 2021.

[55] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei
Zhang. Deep structured energy based models for anomaly
detection. In Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning-
Volume 48, pages 1100–1109, 2016.

[56] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward
a fast and flexible solution for cnn-based image denoising.
IEEE Transactions on Image Processing, 27(9):4608–4622,
2018.

2601



[57] Chong Zhou and Randy C Paffenroth. Anomaly detection
with robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge dis-
covery and data mining, pages 665–674, 2017.

2602


